地铁车辆车门结构
- 格式:docx
- 大小:121.92 KB
- 文档页数:5
简述轨道交通车门系统和故障分析摘要:在日常的检维修当中地铁车辆车门系统出现的故障比较多,所以说车门系统的故障分析和处理是日常工作当中的一个重点。
本文简述了地铁车辆车门系统的组成并就其常见故障进行了分析。
关键词:地铁车辆;车门系统;故障分析;引言:南京地铁 1 号线车辆由法国ALSTOM公司设计,共20 列组成。
每列车由6 辆编组:A- B- C- C- B- A,分成 2 个完全对称的单元。
每列车有60 套客室门系统,采用国外技术成熟的由EDCU车门控制器控制的电动双页塞拉门系统。
地铁车门在实际运营中是故障率最高的部位,为此,南京地铁在立足解决故障率高发的目的上,联合国内企业及高校对车门控制器EDCU 进行了国产化的研制。
在南京地铁投入使用的短短几年时间里,事实证明,地铁车辆车门在实际运营中是故障率最高的部位。
通过近3年的运营,门控器因故障更换已超过5%,更换的大部分原因是其内部安全继电器故障,其次是通信接口的问题。
现有的轨道车辆门控器功能较为单一,除实现通讯和简单的车门运动控制外,对故障的诊断能力较为薄弱,即在故障发生时可发出报警信号,但并不能准确指明故障点和故障原因。
这给车门系统故障的检修带来了不便。
若车门系统在列车运行等紧急情况下发生故障,门控器的故障诊断设计就显得更为重要了。
1 车门系统结构简介通过对目前正在使用中的轨道列车门控器的调查和分析,综合考虑目前门控器所具备的优点和不足,新型轨道车辆门控系统网络从结构上分为三个部分,分别是门控系统网关、门控系统节点和通信模块,其中门控系统网关和通信模块在门控系统中各配置一个,并需要为每一个车门配置一个门控系统节点。
门控系统网络采用的是CAN总线,因此理论上只需要三条信号线就可以将网络上的所有设备连接起来,连接时使用设备并联的方式,而且设备实际的连接顺序和位置都不会对通信造成影响。
门控系统的结构框图如图1所示。
2故障分析2.1 车门故障形式据正线运营统计,车门系统主要产生以下几类故障。
地铁车辆客室车门结构与性能的对比分析摘要:在国内大型城市轨道交通系统中,其地铁车辆客室车门结构类型是非常丰富的,车门结构类型,运动形式,占用车体的空间,安装维护的便利性,开关门性能,隔音,淋雨等密封性能也各有表现。
所以本文中简单分析了地铁车辆客室车门的基本结构组成,并对内藏门、外挂门、塞拉门三种基本车门类型的结构,性能进行了对比分析,确保各种不同车门的结构特点,优异性能得到体现。
关键词:地铁车辆;客室车门结构;基本组成;性能对比前言:当前我国城市轨道交通发展快速,其车门技术内容的发展也相对全面,地铁车辆用客室车门通常分为塞拉门,内藏门,外挂门。
各种车门的结构,性能都各有特点,地铁车辆客室车门作为车辆运行中的重要组成部分,它的结构,性能表现良好与否直接决定了地铁车辆运行的安全性与稳定性。
因此,对地铁车辆的客室车门结构与性能进行相互对比分析,从而找出各自的优异特点,便于各种地铁车辆的选用。
1.地铁车辆客室车门基本结构与组成地铁车辆客室车门的基本组成包括了门扇、承载导向机构、驱动机构、门锁闭机构、紧急解锁装置、电气控制系统、以及门槛,压条,密封毛刷等。
门扇起到隔离车辆内外的作用;承载导向机构安装在车体上,主要承受门扇的重量,以及约束门扇的运动轨迹;驱动机构包含电机,传动丝杆,传动螺母等,起到传输,驱动门扇运动的功能。
锁闭机构作用是当门扇关闭后,将门扇机械锁闭;紧急解锁装置布置在车体内外,通过钢丝绳与机构内的解锁装置连接,当发生紧急情况时,操作内侧紧急解锁装置,可以用于乘客逃生,操作外侧紧急解锁装置,可以实现乘客救援;电气控制系统,主要包含门控器,微动开关等,门控器用来控制车门的开关,障碍检测等,微动开关用来监控车门状态,如锁闭,解锁,紧急解锁操作等[1]。
1.地铁车辆客室车门结构的对比分析作为地铁车辆中的关键部件,客室车门结构的种类非常多,按照车门门扇运动轨迹,车门与车体的相对位置及安装,以及车门与车体的密封结构等,地铁车辆客室门主要包括三种,分别为内藏门、外挂门、塞拉门。
地铁车辆客室车门组成及控制逻辑分析摘要:地铁是当前城市交通运输体系的重要组成部分,可以实现地下空间资源的高效开发和利用,满足城市交通运输需要。
车门作为地铁车辆系统的重要组成部分,对于地铁车辆的运行安全性而言,车门控制逻辑及检修方法相当重要,一旦车门出现故障,将会影响乘客乘降作业,严重甚至影响车辆正常运营。
车门的重要性要求相关检修技术人员对地铁车辆车门组成及控制逻辑要进行深化认识,合理优化车门的检修方式及内容,在出现故障时能够及时有效地检修处理,以提高地铁车辆的运营效率及可靠度。
关键词:地铁车辆;客室车门;控制逻辑;故障检修城市地铁在实际运营过程中,乘客能够直接接触的最初部件就是客室车门,它的稳定与否直接关系到乘客的生命是否安全。
当前我国城市地铁车辆是城市交通运输的主力军,客流量大、上下次数频繁就必然导致客室车门的频繁开关门动作,如此多的车门数量以及如此频繁地开关必然导致客室车门的磨损及老化。
因此,客室车门在城市地铁车辆组成部件中故障率最高,优化客室车门维护保养,提升客室车门维修修程水平是当前车辆维修领域的重要研究方向。
一、客室车门概述通常地铁车辆的客室车门由内藏门、塞拉门以及外挂门组成,三个组成部件构成车门的整个联动系统。
苏州地铁客室车门主要研究塞拉门方向。
塞拉门是整个客室车门的最外层部分。
在城市地铁高速运行的过程中车辆主体与空气高速摩擦,塞拉门的作用就是最大限度降低空气涡流噪音以及降低空气阻力,当然塞拉门在合并后能够使客室车门与车体外侧完美结合成一个平面,进而实现车辆行驶美观的效果。
与内藏门不同,塞拉门的传动结构主要是由螺母机械和电机驱动丝杠组成,两者带动门叶进行移动,完成车门的开关动作。
门叶托架上安装附属滚轮,滚轮在导轨内滑动带动门叶移动。
客室车门的上部导轨端口处具有一定的弯曲程度,进而保障门叶在执行关闭动作时能够完全闭塞。
客室车门的下部导轨安装在门叶下部,这部分导轨能够与车体上安装的滚轮完全齿合,这样做是为了保障车门在完全打开时与侧墙能有具备良好的平行度。
地铁列车车门系统故障分析及处理地铁列车是城市的重要交通工具,保障乘客的安全和便利是地铁运营的首要任务。
地铁列车的车门系统是保障乘客安全的重要组成部分,一旦出现故障将对列车运营带来严重影响。
本文将对地铁列车车门系统故障的分析及处理进行探讨,以期为地铁运营提供一些有益的参考。
一、地铁列车车门系统的结构及原理地铁列车车门系统通常由车门控制器、车门传动装置、车门传动电机和车门位置传感器等组成。
车门控制器负责控制车门的开关动作,车门传动装置通过传动电机带动车门的开闭,车门位置传感器用来检测车门位置是否准确。
车门系统的工作原理是:当列车到站停靠后,车门控制器接收到开门指令后,控制传动电机带动车门打开,同时监测车门位置传感器的信号,确保车门打开到位后才可允许乘客上下车;当列车准备启动离站时,车门控制器接收到关门指令后,控制传动电机带动车门关闭,同样监测车门位置传感器的信号,确保车门关闭到位后列车方可离站。
1.传动电机故障:传动电机是车门系统的动力来源,一旦传动电机损坏或失灵,将导致车门无法正常开闭。
2.车门控制器故障:车门控制器作为车门系统的中枢控制部件,一旦出现故障将导致车门的开闭动作失效。
3.车门传动装置故障:车门传动装置的温度、润滑等因素都会影响其正常工作,一旦传动装置出现故障将影响车门的正常开闭。
4.车门位置传感器故障:车门位置传感器的准确性对于车门的正常开闭起到至关重要的作用,一旦出现故障将影响车门的开闭动作。
5.外部干扰:地铁列车在运行过程中可能会受到一些外部干扰,如异物堵塞、人为损坏等,都会导致车门系统故障。
1. 制定应急预案地铁运营公司应制定专门的应急预案,针对车门系统常见的故障,制定相应的处理措施,包括故障排查流程、处理步骤、责任分工等,以便在出现故障时能够迅速有效地处理。
2. 提高设备维护质量加强车门系统的定期检查和维护工作,确保传动电机、控制器、传动装置、位置传感器等设备的正常运行。
对于雨雪天气和高温天气要加强设备的防护措施,避免受到天气因素的影响。
地铁车辆车门结构的控制原理与改进方案分析【摘要】本文针对地铁车辆车门的基本结构进行了详细的分析,并对其控制原理做了详细的阐述,从而提出了一些改进的意见和方案,仅供参考。
【关键词】地铁;车门结构;控制原理;改进方案一、地铁车辆车门的基本结构一般地铁车辆车门的基本结构包括悬挂机构、左右门页、驱动装置、解锁装置、钥匙开关以及一套密封型材等,另外还包括电子车门控制单元、车门电气连接装置以及显示灯等电气装置。
地铁客室车门的系统框图如图1所示。
1~9依次为右门页、左门页、车门悬挂机构、右侧密封件、左侧密封件、紧急解锁手柄、门控单元EDCU、车门电机、丝杆以及螺母机构。
1、车门悬挂机构。
地铁车辆车门的悬挂机构一般为滑块型,且依靠的是滚珠轴承来进行运作。
悬挂机构由三个部件组成,一是“U”型钢轨,二是铝型材质构件,三是一对钢制滑块。
悬挂机构简图如图2所示。
2、驱动装置。
地铁车辆车门所安装的驱动装置主要有四个部件组成,一是驱动电机,二是丝杆及螺母机构,三是连接电机与丝杆的皮带,四是一对滑轮。
驱动电机一般为永磁直流式的驱动电机,它主要包括了一个齿联轴节以及一对安装座。
驱动电机的结构图如图3所示。
3、门页。
地铁车辆车门的门页是一个比较复杂的复合结构,主要是由铝型蜂窝和铝型框架的夹心结构组成。
铝板运用固热化的方式粘接到铝型框架上,这样能够使其表面更加的平整光滑,同时还能有效的增强其刚性。
另外每个门页的颜色要与地铁车辆的整体颜色相适应。
4、车门密封。
地铁车辆车门的密封性主要是为了能够给乘客们提供一个舒适的乘车环境,并防止发生窜风现象,因此地铁车辆对密封性的要求非常的严格。
一般车门的密封结构主要是一个环形的唇形胶条与铝型框架组成一个密封结构。
密封结构的简图如图4所示。
5、控制单元EDCU。
控制单元是整个地铁车辆车门结构中最为重要的电气部件,它的作用就是控制地铁车门,通常安装在客室的内侧,且安装时还应注意防水保护。
6、检测开关。
总复习3车门结构1.车门按驱动方式、开启方式、按用途分怎样分类?答:按驱动方式分为电控风动门和电传动门,按开启方式分为内藏钳入式对开侧移门、外侧移门、塞拉门和外摆式车门。
按用途分可分为紧急疏散门和司机室车门。
2.车门系统一般由哪几个子系统组成?答:车门系统主要由控制系统、驱动系统、机械传动系统、悬挂和导向系统、锁闭机构、门页以及负责检测的各种行程开关组成。
3.广州地铁一号线电控气动门中的中央控制阀包括哪三个阀?四个行程开关分别叫什么?答:三个电磁阀:MV1〔开门电磁阀〕、MV2〔关门电磁阀〕、MV3〔解锁电磁阀〕。
四个开关:S1〔锁闭行程开关〕、S2〔关闭行程开关〕、S3〔切除行程开关〕、S4〔手动解锁行程开关〕。
4.电控电动驱动门由电动机,控制器。
、传动装置,闭锁装置和紧急开门装置组成。
5.门页V型调整上部间距比下部间距大多少毫米?答:2mm6.车门锁钩与锁销间隙应满足什么技术要求?答:满足〔1土0.5〕mm7.司机室运行屏中各彩色符号的代表车门什么状态。
答:灰蓝色符号:车门关闭状态,黄色符号:车门翻开状态,黑色符号:紧急翻开,红色闪烁符号:故障,一直红色符号:手动解锁。
8.广州地铁三四号线采用哪种车门?答:电控塞拉门9.电控气动车门三大系统故障是指哪三个系统的故障?举例说明车门故障表现繁多,既有车门气路系统、〔机械传动〕方面的问题,也有车门〔电气空气及信息检测系统〕的故障。
车门机械故障主要分〔两〕种:零部件损坏故障、〔调整不到位〕故障;车门电路故障主要有继电器〔卡滞〕、〔烧损〕,行程开关内部〔弹簧老化〕造成主触头不到位等。
车门气路故障主要表现在〔气动元件调节功能失效〕漏气等。
10.广州地铁1号线、2号线、3号线、深地1号线车门分别是哪种车门?答:广地1:内藏钳入式对开侧移门,广地2:外侧移门,广地3:电控塞拉门,深地:电控塞拉门。
11.TMS列车管理系统的开关门联锁功能是:1〕只有列车静止时,开、关门指令才有效。
广州地铁车辆车门结构,控制原理及改进意见1 综述地铁客室车门因其数量多(每列车有60个客室车门)、操作频繁(运营中平均每2 min就须开关门1次)而成为广州地铁一号线电动车组(以下简称车辆)至关重要的部件。
车门的结构和控制若在设计上不够安全可靠,将会影响运营,损害地铁公司的形象,有的甚至直接危害乘客的人身安全。
世界各国的地铁公司在购买车辆时,都十分重视车辆客室车门在安全性,可靠性方面的设计。
2 客室车门的设计思想广州地铁一号线运营的设计能力为单向最大截面客流量为76 800人/h,行车间隔为2 min,列车全程平均运行速度为35 km/h。
为此,地铁车辆车门在设计时要尽可能提高乘客上下车的速度,缩短列车的停站时间;列车上可能十分拥挤,必须保证列车进站后不能开错门;为了提高车门操作的准确性和安全性,需要对车门和列车的状态进行监控。
另外,作为一种后备的紧急情况下开门的措施,每个车门还应设有一个独立的纯机械的开门装置。
概括起来,广州地铁一号线车辆客室车门应具有以下特点:(1)数量多,车门的净开度大。
(2)正常运行时,车门的控制具有ATP(列车自动保护)保护的功能,故障导向安全。
(3)每个车门均带有独立的纯机械的紧急开门装置。
3 客室车门的基本结构"传动方式及控制原理广州地铁一号线车辆客室车门由两扇内藏式滑动门页组成,以压缩空气为动力驱动单臂气缸,通过钢丝绳、滑轮等组成的机械传动机构完成门的开关动作,每节车每侧5个门,全列车共60个门,有利于乘客迅速上下,缩短车辆停站时间,满足地铁运输方便快捷的要求。
3.1 车门的主要技术参数(见表1)3.2 车门的主要结构特点车门及其控制系统由门页、车门导轨、传动机构、门机械锁闭机构、紧急解锁机构、气动控制系统、电气控制系统、门状态信号指示等组成。
2扇门页由连续成环形的特种钢丝绳连接,钢丝绳安装在支承导轨上的滑轮内,左侧门页与驱动风缸直接连接,并通过安装在左门页上方钢丝绳夹紧机构与钢丝绳相连,右侧门页与钢丝绳调整装置连接,通过调整装置使钢丝绳保持一定的张紧力,2扇门页上方设有1个锁钩,车门关闭后,锁闭系统动作,锁钩勾住2扇门页上的锁销,使车门安全可靠地锁闭;为了获得车门的状态信息,给维修、行车人员显示车门故障,还装有车门锁闭、车门关闭行程开关S1、S2,车门切除、车门紧急解锁行程开关S3、S4等附加装置,各行程开关均与相应的指示灯相连。
地铁车辆客室车门结构与性能对比分析摘要:随着我国城市的不断发展,城市人口的激增,导致城市交通压力逐渐增大,地铁成为城市进行交通压力缓解的重要方式。
地铁车辆客室车门在实际的应用过程中,会由于挤压、震动的问题,导致客室车门出现故障,不仅影响了地铁的稳定运行,也不能对市民的安全进行保障。
本文主要对地铁车辆客室车门结构与性能进行对比。
关键词:地铁车辆;客室车门;结构;性能;对比客室车门是地铁车辆客室的主要组成部分,其性能和质量对于地铁的安全运行具有重要的影响。
目前,塞拉门、外挂门和内藏门是地铁车辆客室车门应用的三种基本类型,本文对这三种基本类型的结构进行分析,希望为地铁车辆进行客室车门的选择,提供一定的参考建议。
1.地铁车辆客室车门介绍1.塞拉门塞拉门是指地铁车辆客室门在开启和关闭时,客室车门门扇与地铁车体侧面进行横向和纵向的移动,以满足市民上下地铁的需求。
地铁车辆客室塞拉门主要分为内塞拉门和外塞拉门两种,我国主要以外塞拉门为主,满足了实际应用的需求[1]。
1.外挂门外挂门是指地铁车辆客室门在开启和关闭时,客室车门门扇与地铁车体侧面做纵向运动,使得客室车门突出于地铁车辆。
1.内藏门内藏门是指地铁车辆客室门在开启和关闭时,客室车门门扇与地铁车体侧面做纵向运动,而客室车门凹陷于地铁车辆内部。
我国地铁车辆客室车门在选择的过程中,根据实际运行需求,进行三种客室车门的科学选择,不仅满足了地铁实际运行的需求,还满足了市民安全乘坐地铁的需求。
1.地铁车辆客室车门的对比1.优势对比塞拉门的优点主要体现在以下几个方面:一是由于车门在关闭状态时, 门页外表面与车体侧墙成同一平面, 所以使列车外观平滑, 整体和谐美观,列车在高速运行时空气阻力小,也不会产生空气涡流而产生噪声;二是具有良好的密封性能, 对传入客室内噪声有较好的屏蔽作用, 同时可降低客室空调的能耗;三是采用塞拉门能使车内有效宽度增加,载客量也会增加。
内藏门的优点主要体现在以下几个方面:一是结构简单;二是可以抵抗大客流;三是故障率低。
课题一车门类型客室车门应满足:1、要有足够有效宽度;2、车门要均匀分布,以方便乘客的上、下车;3、要有足够数量车门;4、车门附近要有足够的空间和面积,方便上、下车乘客的周转;5、要确保乘客的安全。
6、具有较高可靠性。
分类:1、按功能:客室车门、司机室车门、紧急疏散门、司机室通道门。
2、按驱动方式不同区分(1)风动式车门风动式车门由压缩空气驱动传动气缸,再通过机械传动系统和电气控制系统完成车门的开关动作。
(2)电动式车门,动力来源于交或直流电动机,3、按开启方式不同区分(1)内藏嵌入式车门开关车门时门叶在车辆侧墙的外墙与内护板之间的夹层内移动,传动装置设于车厢内侧车门的顶部,装有导轮的门叶可在导轨上移动并与传动装置的钢丝绳或皮带相连接,借助气缸或电动机驱动传动机构,从而使钢丝绳或皮带带动门叶动作。
(2)外挂式车门与上述内藏嵌入式车门的主要区别仅在于开、关车门时,门页和悬挂机构始终处于侧墙的外侧,车门驱动机构的工作原理与内藏嵌入式车门相同。
(3)塞拉门借助于车门上端的传动机构和导轨,车门开启状态时门叶贴靠在侧墙的外侧,车门在关闭状态时,门叶外表面与车体外墙成一平面,这不仅使外表美观,而且也有利于在高速行驶时减少空气阻力,车门不会因空气产生涡流产生噪声,也便于自动洗车装置对车体的清洗。
(4)外摆式车门开门时通过转轴和摆杆使车门向外摆出并贴靠在车体外墙板上,门关闭后门叶外表面与车体外墙成一平面。
这种车门的结构特点为开门时具有较大的门叶摆动空间。
课题二车门编号及结构1、车门和门页的编号门页的编号自1位端到2位端,沿着每辆车的左侧为由小到大连续奇数,即1、3、5、7、9、11…17、19;右侧由小到大连续偶数,即2、4、6、8、10、12…18、20。
车门编号由车门两个门页号码合并而成:自1位端到2位端,左侧车门编号为1/3、5/7、9/11……17/19,而右侧车门的编号2/4、6/8、10/12……18/20。
一、车门系统构成车门是地铁车辆的一种重要设备,与运营平安有直接的关系。
由于地铁车辆具有运载客流量大,乘客上下车频繁等特点,一般每列车的车门数量较多、开度大,开关门动作也比拟频繁。
从开关动力来划分,地铁车辆车门通常为采用压缩空气驱动的风动车门和采用电机驱动的电动车门两种。
按照其开启及结构形式来划分,车门主要分为内藏式滑动移门、外挂式滑动移门、塞拉门等几种。
SZP1列车为A型车,采用Faiveley公司的电动式塞拉门,每节车有10对客室车门,左右各5对车门,对称布置,每对车门有2个门页,每页车门都有固定编号,如图3-9所示。
左侧5对车门的编号由I端数起为1/3、5/7、9/11、13/15、17/19,右侧5对车门的编号由I端数起为2/4、6/8、10/12、14/16、18/20。
图3-9 车门编号为了保证乘客平安,防止行车途中乘客因车门不慎翻开而掉落,车门必须在停车状态,并且收到ATP的允许开门信号时,才能被翻开。
而当列车启动时,必须在所有车门都关闭好,系统才允许列车进行牵引操作。
二、集中开门操作1.开门条件列车客室车门必须在符合以下条件时,才充许翻开:①列车停稳;②列车停车位置不超过规定停车位置的±50cm,ATP发出允许开门信号。
此时,“开左门〞或“开右门〞指示灯按钮红灯点亮,表示允许翻开左侧车门或右侧车门。
2.开门操作操作目标:使列车左侧〔或右侧〕所有车门同时翻开。
操作设备:开左侧门时,为左侧墙面板上的“开左门〞指示灯按钮08S01与08S05,或司机台上的“开左门〞指示灯按钮08S07与08S06。
开右侧门时,为右侧墙面板上的“开右门〞指示灯按钮08S02与08S08操作方法:列车停稳在规定位置后,当“开左门〞或“开右门〞红色指示灯点亮时,在手动开门模式下,同时按下08S01与08S05〔或08S07与08S06〕按钮,翻开左侧车门。
同时按下08S02与08S08,那么翻开右侧车门。
广州地铁车辆车门结构,控制原理及改进意见1综述
地铁客室车门因其数量多(每列车有60个客室车门)、操作频繁(运营中平均每2 min就须开关门1次)而成为广州地铁一号线电动车组(以下简称车辆)至关重要的部件。
车门的结构和控制若在设计上不够安全可靠,将会影响运营,损害地
铁公司的形象,有的甚至直接危害乘客的人身安全。
世界各国的地铁公司在购买车辆时,都十分重视车辆客室车门在安全性,可靠性方面的设计。
2客室车门的设计思想
广州地铁一号线运营的设计能力为单向最大截面客流量为76 800人/h,行车间隔为2 min,列车全程平均运行速度为35 km/h。
为此,地铁车辆车门在设计时要尽可能提高乘客上下车的速度,缩短列车的停站时间;列车上可能十分拥挤,必须保证列车进站后不能开错门;为了提高车门操作的准确性和安全性,需要对车门和列车的状态进行监控。
另外,作为一种后备的紧急情况下开门的措施,每个车门还应设有一个独立的纯机械的开门装置。
概括起来,广州地铁一号线车辆客室车门应具有以下特点:
(1)数量多,车门的净开度大。
⑵正常运行时,车门的控制具有ATP例车自动保护)保护的功能,故障导向
安全。
(3)每个车门均带有独立的纯机械的紧急开门装置。
3客室车门的基本结构"传动方式及控制原理
广州地铁一号线车辆客室车门由两扇内藏式滑动门页组成,以压缩空气为动力驱动单臂气缸,通过钢丝绳、滑轮等组成的机械传动机构完成门的开关动作,每节车每侧5个门,全列车共60个门,有利于乘客迅速上下,缩短车辆停站时间,满足地铁运输方便快捷的要求。
3.1车门的主要技术参数(见表1)
表1车门的主耍技术參数
车门开度」mm1
门离度mm 1 B60
供凤压力丿bar5
供电电tt/V DC110
幵关门时间人3±O*5
开关门时闾调整范圉冬L 5
3.2车门的主要结构特点
车门及其控制系统由门页、车门导轨、传动机构、门机械锁闭机构、紧急解
锁机构、气动控制系统、电气控制系统、门状态信号指示等组成。
2扇门页由连续成环形的特种钢丝绳连接,钢丝绳安装在支承导轨上的滑轮内,左侧门页与驱动
风缸直接连接,并通过安装在左门页上方钢丝绳夹紧机构与钢丝绳相连,右侧门页与钢丝绳调整装置连接,通过调整装置使钢丝绳保持一定的张紧力,2扇门页上方设有1个锁钩,车门关闭后,锁闭系统动作,锁钩勾住2扇门页上的锁销,
使车门安全可靠地锁闭;为了获得车门的状态信息,给维修、行车人员显示车门故障,还装有车门锁闭、车门关闭行程开关S1、S2,车门切除、车门紧急解锁行程开关S3、S4等附加装置,各行程开关均与相应的指示灯相连。
如门关时S1、S2 到位橙色指示灯灭;车门切除时S3动作,红色指示灯亮;紧急手柄拉下,S4动作,门外上方橙色灯亮。
同时,各行程开关还将车门的状态信息反馈到车辆的牵引控制单元;另外,车门上还设有手动切除功能的机械装置。
客室车门的基本结构见图1。
Q --------- 蓿
国i客室车门结构国
1.导轨{盍偏心支撑导轮'乩申央控制阀集成理.右側车门
玻J5U5.右侧门页i札棣胶糜封条左割门页沖.左割车门
在车门的基本结构中,中央控制阀集成(见图2)是车门控制的关键部件,它由“车门开门”、“车门关门”、“车门解锁” 3个二位三通电磁阀,以及“关门速度节流阀”、“开门速度节流阀”、“关门缓冲节流阀”、“开门缓冲节流阀” 4个气阀所集成。
图2申央控制阀集尿
L黃门电當阀T辭久解锁电磁阀Y聲氛开门电磁M Y LI4.
排气孔/iff音片让’黄门速度节流阀开门缓冲节流阀*几关门缓冲节流闻「乩幵门
速度节流阀询”气路连接头.
3.3车门的作用原理
车门通过中央控制阀来控制、以压缩空气为动力驱动双作用气缸前进和后
退,再通过钢丝绳等组成的机械传动机构完成门的开关动作,机械锁闭机构可以使车门可靠地固定在关闭位置。
操作车门按纽,通过电气控制系统控制中央控制阀上的3个二位三通电磁阀Y1 Y2、Y3勺通、断来实现车门的开、关及锁定。
在气缸的终端有150 mr的缓冲行程,调节中央控制阀上的调节旋纽可调整开关门速度及缓冲速度。
司机可以在司机室操纵按纽,通过电气控制系统实现列车所有门的同步动作,也可对没关好的车门单独进行重开门的控制。
3.4车门电气控制原理简述
以车辆某一门(如A车1/3门)开门、关门为例。
开门指令发出后,将使中间继电器8K 11得电,控制电磁阀丫1、丫3使车门得以打开;关门指令发出后,使中间继电器8K 21触点断开,8K 11失电,控制电磁阀丫2、丫3使车门关闭。
为了行车的安全,车门监控回路的8K 09、8K1(继电器、S1、S2、S3行程开关还直接或间接地
影响车辆的牵引和制动及紧急制动,起到监控和保护作用,用于车门控制的这些中间继电器的型号都是SH04
3.5车门的气动控制原理(见图3)
图3车门气动控制原理图
h中央控制阀集成诃.单向节流阀诣.祈锁气缸驱动气机A 关门速度节JS阀开门缓冲节涼阀K:.开门速度节关门缓冲节流阀】开门电班阀八@ 关门电磁阀th.解锁电磁阀「
3.5.1开门
开门指令发出后,电磁阀丫1、丫3得电,压缩空气进入丫1后分成2路,1路进入丫3并快速通过单向节流阀E进入解锁气缸,顶开锁钩;另1路经开门速度节流阀C 和D1、A1接口进入车门驱动气缸无杆腔,推动活塞向左移动,打开车门,气缸有杆腔空气从A2经过A快速排出,调节开门速度节流阀C可改变开门速度;当活塞运动至接近终点时(约150 mm),活塞自动切断A2风路,气缸有杆腔空气只能从D2排出,由于开门缓冲节流阀B的作用,形成开门缓冲,调节节流阀B可改变开门缓冲速度,直到活塞切断D2孔,活塞停止,开门行程到达终点。
3.5.2关门
与开门原理相同!但活塞移动方向相反
4用于车门操作及车门状态显示的其他设施
4.1操作车门的主要设施:
(1)位于司机室左侧墙上的“左门开”、“左门关”、“重开门”按纽。
(2)位于司机室右侧墙上的“右门开”、“右门关”、“重开门”按纽。
(3)位于司机室操纵台上的“左门开”按纽。
(4)车载ATP系统(在ATP没有切除时起作用)。
(5)车载ATO(列车自动驾驶)系统(在列车以AT(模式驾驶时,且车门开门模式选择“自动”时起作用)。
(6)位于司机座椅后面电器柜中的“车门旁路”开关。
(7)位于司机操纵台上的“强行开门”开关。
(8)位于司机操纵台上的车门开门操作模式选择开关,有“自动”及“手动”挡。
4.2 车门状态的显示
(1)每个客室车门上方的内外侧均有一个橙色指示灯(车门未锁时亮);内侧均有一个红色指示灯(车门切除时亮)。
(2)位于司机室左侧墙上及操纵台上的“左门开”指示灯按纽(当列车左侧门允许开时亮)及“左门关”指示灯按纽(当列车左侧门全部关好锁闭时亮)。
(3)位于司机室右侧墙上的“右门开”指示灯按纽(当列车右侧门允许开时亮)及“右门关”指示灯按纽(当列车右侧门全部关好锁闭时亮)。
(4)位于每节车后端左右外侧墙上的橙色指示灯(每节车每侧有1个以上车门未锁时亮)。
(5)位于司机操纵台上的“ TFT'彩色显示屏(显示车门被紧急解锁的位置及车载ATP系统对车门的控制状态)。
5 改进意见
广州地铁一号线车辆自1997年6月28日首期段开通以来,特别是1999年6月28 日全线投入商业运行至今,已累计运行100多万公里,客室车门情况总的来说是令人满意的,没有因车门系统故障发生安全事故。
但可靠性方面还存在一些不足,如由于车门系统故障造成的一些清客换车事件。
故障原因主要集中表现在车门控制继电器(SH04型)的失效较多、行程开关S2动作不到位等,因此,在地铁车辆客室车门的结构设计及电气控制设计上可从以下几方面作进一步的考虑和完善:(1)用于车门控制的中间继电器可靠性要求很高,因为一旦这些继电器出现故障,将影响车辆车门的控制,对运营影响较大。
因此,对于广州地铁一号线车辆车门控制继电器(SH04 型),地铁公司与供货商已决定用可靠性更高的继电器替换。
对于广州地铁二号线车辆的技术要求,广州地铁已决定在车门控制电路中尽量不采用或少采用继电器。
(2)由于车门控制对尺寸要求较高,而钢丝绳本身具有一定的伸缩性,采用钢丝绳传动方式,增加了车门计划性检修时对钢丝绳调整的工作量,可以考虑用同步齿形带的传动方式,香港地铁车辆就是用同步齿形带传动的。
对于广州地铁二号线车辆的技术要求,广州地铁已决定不采用钢丝绳传动方式,可能采用电控电动螺杆式或其他的传动方式。
(3)行程开关S2动作不到位对运营影响较大,且具有很大随机性和隐蔽性,考虑到频繁的开门动作,可以用光电接近开关代替。
要保证地铁车辆客室车门有高的安全性、可靠性,车门结构及控制的设计是十分重要的,尤其要针对地铁运营大客流量、停站时间短3列车行车间隔小的特点,在满足功能的条件下,尽量采用结构优化、控制环节少、控制元件品质高的车门,以提高车门的可靠性,减少故障率。