相似多边形的性质(1)
- 格式:pdf
- 大小:334.79 KB
- 文档页数:7
孙疃中心学校师生共用讲学稿年级 九 学科 数学 主备教师 审核人 年级组长签名 讲学日期 班级 学生姓名 课题: 23.4相似多边形的性质(第1课时)【学习目标】1. 理解并掌握相似多边形的有关性质.2. 会用相似多边形的性质解决有关问题.3. 能将多边形问题转化为三角形问题来解决.【学习重、难点】1. 重点:理解并掌握相似多边形的有关性质.2. 难点:相似多边形有关性质的探究【学习过程】一、复习巩固引入新课1. 相似三角形有哪些性质?2. 相似多边形是否也有这些性质呢?二、探究学习与相似三角形一样,根据定义,两个相似多边形的对应角相等、对应边成比例 除此之外,两个相似多边形还有还有哪些性质?探究:如图,已知多边形ABCD E ∽多边形A ′B ′C ′D ′E ′,过对应顶点作对角线AC ,AD 和A ′C ′、A ′D ′.此时,△ABC 与△A ′B ′C ′有什么关系?根据多边形ABCD E ∽多边形A ′B ′C ′D ′E ′,得AB AB =BCBC ,∠B=∠B 所以△ ∽△于是得ABAB AC AC 同理你能得出△ACD 与△A ′C ′D ′,△ADE 与△A ′D ′E ′之间分别有什么关系吗?由此你能得出什么结论?利用这个性质,可以证明:定理1 相似多边形周长的比等于相似比定理2 相似多边形面积的比等于相似比的平方请自己写出两个定理的证明过程。
证明1:证明2:三、学以致用例1 如图,在梯形ABCD 中,A D ∥BC ,AD=2,BC=8,EF ∥BC ,且EF 分别交AB 、DC 于点E 、F 。
(1) 若梯形AEFD ∽梯形EBCF ,求EF 的长;(2) 求满足(1)条件下的梯形AEFD 与梯形EBCF 的周长比A DE FB C例2 已知 ABCD 与 ADEF 相似,且 AFED 的面积是 ABCD 面积的41,求FO :OE. D E COA F B四、巩固练习1.在一张比例尺为1:5000的地图上,一块多边形地区的周长是72cm ,面积 为320 cm2.求这个地区的实际周长与面积。
24.4 相似多边形的性质学习目标要求1、掌握相似多边形的性质。
2、会利用相似多边形的性质解决问题。
教材内容点拨知识点1:相似多边形边、角的性质:根据相似多边形的定义,可知当两个多边形相似时,它们的对应角相等,对应边对应成比例,其比叫做相似多边形的相似比。
知识点2:相似多边形的周长、面积的性质:相似多边形的周长比等于相似比,面积比等于相似比的平方。
由于从多边形的一个顶点出发,可引出(n-3)条对角线,这(n-3)条对角线将多边形分成了(n-2)个三角形,所以相似多边形具有与相似三角形相类似的性质,诸如相似多边形的周长比等于相似比,面积比等于相似比的平方。
典型例题点拨例1、已知图中的两个四边形相似,找出图中的成比例线段,并用比例式表示。
点拨:根据条件:“图中的两个四边形相似”,利用相似多边形的定义求解。
解答:∵四边形ABCD∽四边形EFGH,且∠A=∠E、∠B=∠F,∴。
例2、如图,在 ABCD中,延长AB到E,使,延长CD到F,使交BC于G,交AD于H,则的周长与的周长的比为_________。
点拨:在 ABCD中,AB∥CD,所以△CBE与△CFG相似,要求的周长与的周长的比,即是求这两个三角形的相似比。
解答:1:4。
例3、如图,将的高AD三等分,这样把三角形分成三部分,设三部分的面积为,则。
点拨:利用相似三角形的面积比等于相似比的性质,先求出△ADE、△AFG、△ABC这三个三角形面积之间的关系,进而求出之间的关系。
解答:∵平行线段DEFGBC将三角形的高三等分,∴,∴。
例4、如图,在梯形ABCD中,是AB上一点,,并且EF将梯形ABCD分成的两个梯形AEFD、EBCF相似,若,求。
点拨:根据相似多边形的定义,对应边成比例,可得AD、EF、BC之间的关系式,解得EF,从而得解。
解答:∵EF将梯形ABCD分成的两个梯形AEFD、EBCF相似,∴,即,解得EF=6,∴。
考点考题点拨1、中考导航中考中相似多边形的考察基本是通过选择题和填空题的形式出现,但近来也出现了不少考察相似多边形的综合题,往往与平行四边形和梯形相结合。
多边形的相似性与性质解析多边形是几何学中常见的图形,而相似性是指两个或多个图形的形状相似。
本文将探讨多边形的相似性及其性质,帮助读者更好地理解和应用于实际问题中。
一、相似性的概念多边形的相似性是指两个多边形的对应边成比例,对应角相等。
具体来说,当两个多边形的所有对应边长度之比相等,且对应角度相等时,它们被认为是相似的。
二、相似性的判定条件在判定两个多边形是否相似时,我们可以根据以下条件进行分析:1. 角对应判定:两个多边形的对应角相等。
2. 边对应判定:两个多边形的对应边成比例。
这些判定条件是判断两个多边形相似的基本依据。
三、相似性的性质相似的多边形具有一些重要的性质,接下来我们将介绍其中几个:1. 周长比:相似的多边形的周长比等于任意一条对应边的长度比。
举个例子,若两个三角形相似,它们的周长比等于对应边的长度比。
2. 面积比:相似的多边形的面积比等于任意一条对应边长度的平方比。
对于两个相似的三角形,它们的面积比等于对应边长度的平方比。
3. 高度比:相似三角形的高度比等于对应边长度的比。
4. 布尔斯公式:布尔斯公式是用来计算三角形面积的公式,根据布尔斯公式,相似三角形的面积比等于对应边长度的平方比。
四、应用举例相似性在几何学中有着广泛的应用,特别是在测量和建模方面。
以下是一些应用举例:1. 比例尺计算:根据多边形的相似性,可以利用已知边长比例尺计算未知边长的长度。
2. 面积估算:通过相似多边形的面积比例,可以估算未知多边形的面积。
3. 空间几何建模:多边形的相似性可用于构建三维物体的模型,从而进行工程计算和设计。
五、总结多边形的相似性是几何学中重要的概念,通过判断角对应和边对应的比例关系,我们可以确定多边形之间是否相似。
相似性具有周长比、面积比和高度比等重要性质,并可以应用于测量和建模等实际问题中。
熟练掌握多边形的相似性与性质,对于解决几何问题将大有裨益。
相似多边形的性质的应用1、相似多边形的性质(1)相似多边形中,对应的三角形相似,其相似比等于原相似多边形的相似比.(2)相似多边形中,对应线段的比等于相似比.(3)相似多边形周长的比等于相似比;面积的比等于相似比的平方.2、重要方法相似多边形的周长比等于相似比,面积比等于相似比的平方,运用这两个性质解决实际问题时,一定要弄清他们的关系,并努力把实际问题与之联系,从而把实际问题简单化.相似三角形的性质(1)回答了相似三角形中所有对应线段都构成比例的问题,这个性质为我们今后证明线段的比例式提供了极大的方便.性质(2)、(3)揭示了相似三角形的周长、面积与相似比的关系,利用它可以解决相似三角形中有关周长和面积的问题,这里要注意这些性质的灵活运用.如:两个相似三角形的相似比,等于它的周长比;也等于它们的面积比的算术平方根.例1 一个多边形的边长分别为2,3,4,5,6,另一个多边形和这个多边形相似,其最短边长为6,则最长边长为()A.12 B.18 C.24 D.30思路与技巧由相似多边形对应边成比例,设最长边为x.∴,∴2x=36,x=18.答案 B点评本题根据相似多边形的对应边成比例的性质,第一个多边形的最短边与第二个多边形的最短边,第一个多边形的最长边与第二个多边形的最长边分别是对应边,切记不可将对应关系弄错.例2 如图在□ABCD中,AB=6,AD=4,EF∥AD,若□ABCD∽□EFDA,求AE的长.思路与技巧(1)图形中有几对相似的平行四边形?为什么?对应边分别是什么?(2)AE的对应边应是哪条线段?为什么?(3)试一试:求S□ABCD∶S□EFDA的值.解∵EF∥AD,四边形ABCD是平行四边形,AD=4 ∴EF=AD=4,∵□ABCD∽□EFDA,∴(相似多边形对应边成比例),又∵AB=6,∴∴.点评由相似的条件,可知AE的对应边是DA,一般的在条件中,若使用的是相似符号,则对应边则是确定的,因此书写相似多边形时,对应的字母要写在对应的位置上.例3 已知:如图,正方形ABCD中,E是AC上一点,EF⊥AB于F,EG⊥AD于G,AB=6,AE∶EC=2∶1,求S四边形AFEG.思路与技巧(1)四边形AFEG是什么图形?为什么?(2)AE∶EC的值与哪两条线段的比相等?为什么?如何求出AF的长?(3)任意的两个正方形都相似吗?为什么?所有的矩形都相似吗?所有的菱形都相似吗?解∵正方形ABCD,EF⊥AB,EG⊥AD∴EF∥CB,EG∥DC∵∠1=∠2=45° ∴EF=AF∵∠FAG=90°,∴AFEG是正方形,∴正方形ABCD∽正方形AFEG,∴S正ABCD∶S正AFEG=AB2∶AF2(相似多边形的面积比等于相似比的平方),在△ABC中,EF∥CB ∴AE∶EC=AF∶FB=2∶1,又A B=6 ∴AF=4 ∴S正ABCD∶S正AFEG=36∶16,∴.点评本题中的正方形是特殊的多边形,但在一般的多边形中,一定要注意对应关系.(1)相似多边形的对应边的比,等于相似比的平方;(2)所有的正方形都是相似的,此题中只须证出四边形AFEG是正方形,即可得到它与正方形ABCD相似例4 已知:如图所示,△ABC中,DE//FG//BC.(1)若AD=DF=FB,求S1:S2:S3;(2)若S1:S2:S3=1:8:27,求AD:DF:FB.思路与技巧注意在(2)中,不能由S1:S2=1:8,就得出AD:DF=1:,因为此处不能直接运用面积的比等于相似比的平方,S1,S2不是两个相似三角形的对应面积.解(1)令,则,(2)∴可设,则∴AD:AF:AB=1:3:6AD:DF:FB=1:2:3.点评根据相似形,实施比例转化,应用面积比等于相似比的平方.例5 如图所示,△ABC的面积为16,,D为AB上任一点,F为BD的中点,DE//BC,FG//BC,分别交AC于E、G,设AD=x.(1)把△ADE的面积S1,用含x的代数式表示;(2)把梯形DFGE的面积S2,用含x的代数式表示.思路与技巧转化为相似三角形,利用其性质解决.解(1),即(2)∵F为BD的中点,.例6 如图所示,已知O是四边形ABCD的一边AB上的任意一点,EH//AD,HG//DC,GF//BC.试说明四边形EFGH与四边形ABCD是否相似,并说明你的理由.思路与技巧证明两个四边形的对应边成比例,对应角相等.解四边形四边形.理由:因为,所以,所以,所以又因为,所以,所以,所以.而,所以.因为,所以,所以.而,所以.设,所以,所以,所以因此,所以四边形四边形.点评通过图形的分割,转化为三角形问题加以研究.例7 已知:ABCD是梯形,AB//DC,对角线AC,BD交于E,ΔDCE的面积与ΔCEB的面积比为1∶3.求:ΔDCE的面积与ΔABD的面积比.分析:题目中已知条件是面积比,要求的也是面积比,因此根据图形找到面积之间的关系是很重要的.ΔDCE与ΔCEB是等高三角形,因此面积比为底的比,而ΔDCE与ΔABE是相似三角形,面积的比等于相似比的平方,又可证出ΔADE与ΔBCE的面积相等,这样ΔDCE与ΔABD的面积比就可求了.解∵SΔ DCE∶SΔCEB=1∶3,而ΔDCE与ΔCEB是等高三角形,∴DE∶EB=1∶3,∵DC//AB,∴ΔDCE∽ΔBAE,∴SΔDCE∶SΔBAE=(DE∶EB)2=1∶9,∵ΔADC与ΔBDC为等底、等高三角形,∴SΔADC=SΔBDC,∴SΔADC-SΔDCE=SΔBDC-SΔDCE,∴SΔAED=SΔBEC设SΔDCE=k, 则SΔAED=SΔBEC=3k, SΔBAE=9k,∴SΔABD=SΔABE+SΔADE=12k,∴SΔDCE∶SΔABD=1∶12.点评相似三角形的面积比等于相似比的平方,计算时不要丢掉平方;若从面积比求相似三角形的相似比,则要注意开平方.例8 如图,有一边长为5cm的正方形ABCD和等腰△PQR,PQ=PR=5cm,QR=8cm,点B、C、Q、R在同一条直线l上,当C、Q两点重合时,等腰△PQR以1cm/秒的速度沿直线l按箭头所示方向开始匀速运动,t秒后正方形ABCD与等腰△PQR重合部分的面积为Scm2,解答下列问题:(1)当t=3秒时,求S的值;(2)当t=5秒时,求S的值;思路与技巧本题考点有等腰三角形;正方形;相似三角形.第一问,思路,作PEQR,E为垂足,运用相似三角形的性质,面积比第于相似比的平方,可求出面积.第二问方法与第一问类似,但是要注意图形的位置.解(1):作PE⊥QR,E为垂足∵PQ=PR,∴QE=RE=QR=4.∴PE==3.当t=3时,QC=3.设PQ与DC交于点G.∵PE∥DC,∴△QCG∽△QEP,∴=()2.∵S△QEP=×4×3=6,∴S=()2×6=(cm2).(2)当t=5时,QC=5,B、C两点重合,CR=3,设PR与DC交于G. 由△RCG∽△REP,可求出S△RCG=.S=12-=(cm2).点评本题是代数,几何综合问题,等腰三角形,正方形等多种知识,解答本题的基本思想是数形结合,构造函数,用运动观点考虑.每种情况画一图形,结合图形,认真分析,实现数形结合的思想.。
相似多边形基本知识相似多边形是数学中一个重要的概念,它在几何学和实际应用中都具有广泛的应用。
相似多边形具有相同的形状,但是大小可以不同。
在本文中,我们将介绍相似多边形的定义、性质以及如何确定相似多边形之间的关系。
一、相似多边形的定义相似多边形是具有相同形状但大小不同的多边形。
即使边长和内角都不相等,只要多边形的形状相同,就可以称它们为相似多边形。
相似多边形通过对应边的比值来确定彼此之间的关系。
例如,若多边形A和多边形B的边比为a:b,那么我们可以表示为A∼B,表示多边形A与多边形B相似。
二、相似多边形的特性相似多边形具有以下一些特性:1. 边的比例关系:相似多边形的对应边的比值相等,即A∼B,则对应边AB的比值等于a:b。
2. 角的对应关系:相似多边形的内角相等,即A∼B,则对应角的度数相等。
3. 面积的比例关系:相似多边形的面积比等于边长比的平方,即A∼B,则多边形A的面积与多边形B的面积的比等于(a/b)²。
三、判断相似多边形的条件在实际问题中,我们需要根据已知条件判断两个多边形是否相似。
常见的判断相似多边形的条件包括:1. 边比例相等:两个多边形的对应边的比值相等。
2. 角度相等:两个多边形的对应角度相等。
3. 边角关系:如果两个多边形的对应边比例相等,并且对应角度相等,那么它们是相似的。
四、相似多边形的应用相似多边形在实际应用中有着广泛的用途。
以下是一些常见的应用场景:1. 建筑设计:在建筑设计中,相似多边形可以用来计算建筑物的比例关系,从而确定合适的尺寸和比例。
2. 地图制作:在地图制作中,相似多边形可以用来表达地图上不同地区的比例关系,帮助人们更好地理解地理信息。
3. 电影特效:在电影特效中,相似多边形可以用来生成虚拟世界的模型,通过调整大小和比例来创造逼真的效果。
4. 工程测量:在工程测量中,相似多边形可以用来测量难以直接测量的物体的尺寸,通过相似性关系来推算出实际尺寸。
榆林八中学生自主学习方案八年级:姓名:一、课前热身:1、相似多边形的定义:_______________________________________2、相似比:________________________________________________3、相似多边形对应角,对应边有什么关系?二、探究新知1.做一做:阅读教材第146页,回答以下问题。
(1),,各等于多少?(2)△ABC与△A′B′C′相似吗?如果相似,请说明理由,并指出它们的相似比.(3)请你在图中再找出一对相似三角形.(4)△ADC与△A′D′C′相似吗?如果相似,请说明理由, 并指出它们的相似比.(5)等于多少?你是怎么做的?2.议一议:如图,已知△ABC∽△A′B′C′,△ABC与△A′B′C′的相似比为k.(1)如果CD和C′D′是它们的对应高,那么等于多少?(2)如果CD和C′D′是它们的对应角平分线,那么等于多少?(3)如果CD和C′D′是它们的对应中线呢?那么等于多少?3、想一想:相似三角形还有哪些性质?相似三角形对应高的比、对应角平分线的比和对应中线的比。
小组合作交流如图4-41所示,在等腰三角形ABC中,底边BC=36 cm,高AD=24 cm,四边PQRS是正方形.图4-41(1)△ASR与△ABC相似吗?为什么?(2)求正方形PQRS的边长.三、巩固新知1.两个相似三角形的相似比为_________,则对应高的比为_________, 则对应中线的比为_________.2.相似三角形对应边的比为2∶3,那么对应角的角平分线的比为______.3、如果两个相似三角形对应高的比为4∶5,那么这两个相似三角形的相似比是多少?对应中线的比,对应角平分线的比呢?四、课堂小结1、本节课你收获了什么?2、预习时的疑难你解决了吗?你还有哪些疑惑?五、达标测试:1、若△ABC∽△A′B′C′,AB=4,BC=5,AC=6,△A′B′C′的最大边长为15,那么它们的相似比是________,△A′B′C′的周长是________.2、如图:4-43,CD是Rt△ABC的斜边AB上的高.图4-43(1)则图中有几对相似三角形.(2)若AD=9 cm,CD=6 cm,求BD.(3)若AB=25 cm,BC=15 cm,求BD.3、如图7,已知△ABC∽△DEF,AM、DN是中线,试判断△ABM与△DEN是否相似?为什么?。
《相似多边形的性质(1)》的说课稿尊敬的各位评委,老师:大家好!我是来自永宁县回民中学的刘翠鸿。
今天我说课的内容是北师大版八年级下册第四章第八节《相似多边形的性质》第一课时,一、学习任务分析1、教材所处的地位和作用本节内容是在学习了相似三角形以及探索三角形相似判定条件的基础上,进一步探索相似三角形的性质,从而达到对相似三角形的定义、判定和性质的全面研究。
从知识的前后联系来看,相似三角形比全等三角形更具有一般性,也是研究相似多边形性质的基础和圆中有关线段关系的有效方式。
因此本节课具有承上启下的作用。
2、学情分析在前面的学习中,学生已经具备了一些探索图形性质的经验,也具备了一定的合作交流能力。
因此通过类比、合作交流并结合已有的活动经验,对本节课结论的直观发现比较容易,但严格的逻辑推理能力和书写格式需进一步的强化。
二、教学目标分析根据课程标准的要求,并考虑到学生已有的认知结构和心理特征,制定如下教学目标:1、理解并掌握相似三角形对应高的比,对应角平分线的比、对应中线的比与相似比的关系,并运用这些性质来解决实际问题;2、经历探索相似三角形性质的过程,体会数学逻辑推理的合理性和严谨性,体验解决问题策略的多样性;3、通过主动探究,合作交流,感受探索的乐趣和成功的体验,使学生养成积极思考、合作交流的习惯。
三、教学重点、难点分析根据课程标准,在充分理解教材的基础上,我确立了如下的教学重点、难点教学重点探究验证相似三角形的性质并运用相似三角形的性质解决简单的实际问题。
教学难点:由于八年级学生逻辑推理能力、概括总结能力还较低,所以理解和运用三角形相似的性质解决简单的实际问题是本节课的难点。
四、教法分析和学法指导1、教法分析八年级学生已经养成了良好的数学学习习惯,具有一定的自主探索,合作交流的学习能力。
本节课以提出问题、解决问题为主线,以独立思考和小组合作交流的形式,在教师的指导下发现、探索相似三角形的性质。
2、学法指导学生在七年级下学期已经学习全等三角形的判定和性质,对全等三角形的对应边的比已有所了解。