第16届中环杯决赛试卷与答案四年级_7257
- 格式:pdf
- 大小:415.90 KB
- 文档页数:5
参赛证号(请用2B铅笔填涂)一、填空题Ⅰ(本大题共5小题,每题6分,共30分)1.计算:56.87.520.1643.228.425.321⨯+⨯+⨯+=。
2.小明在前3次测验中的分数分别为82分、86分、92分。
为了使得他四次测验的平均分达到90分,他第四次测验必须考到分。
3.小明参加投篮比赛,一共投进了10个球。
每投进一个球的得分,要么是2分,要么是3分。
小明一共得了26分,那么他一共投进个3分球。
4.数列121,1221,12221,122221,……的前2017项中,有项能被3整除。
5.如图,将一个小正方体放入一个大正方体内,小正方体的体积为5立方厘米,大正方体棱长是小正方体棱长的4倍,则两个正方体之间空白部分的体积为立方厘米。
二、填空题Ⅱ(本大题共5小题,每题8分,共40分)6.如果一个数可以表示为两个偶数的乘积,这两个偶数都不是4的倍数,并且这样的表示方法只有一种,那么这个数就称为“思维数”(比如12就是“思维数”,因为符合要求的表示方法只有2乘以6)。
不超过2017的最大“思维数”是。
7.如图,长方形XYZW由8个正方形组成,其中白色正方形的边长为1。
则XYZW的面积为。
8.小明将若干个(至少两个)连续正整数乘起来,得到一个六位数乘积4774ab,则a b+=。
9.如图,在3×3的方格中,将中间一块涂黑,在剩下的8个1×1的小方格中各填入一个数,使得每条边上3个小方格内数之和为42。
如果这8个数之和为111,并且这8个数中有且只有两种不同的值,那么这两种值之和为。
10.新新骑着自行车,以每分钟400米的速度,从816路公交车的始发站出发,沿816路车的线路前进。
当他骑出1400米时,一辆816路公交车从始发站开出。
已知这辆车每分钟行驶600米,每4分钟到达一站并停车1分钟。
那么这辆车开出分钟后能追上新新。
(请继续完成反面内容)三、填空题Ⅲ(本大题共5小题,每题10分,共50分)11.如图所示,六边形ABCDEF的对角线AD、BE、CF不交于一点。
解析(初赛)第十六届“中环杯”四年级_______ 33+20.15=20.15+40.3)×1.计算题:(【分析】原式33+20.15?=(20.15+20.15?2)66+20.15?=20.15?33+20.15 1)??66?20.15?(33 2015?,要求这四个数字构成一个四位、2.abc_____这样的四位数都也a1都大互不相同,=【分析=1432134=1=2有 a2431234=1有=2,共.3一个长方体的六个面的面积之积1464,则该长方体的体积________【分析设长方体的长宽高分别则1464abaabac2222?c(a14641b)222?121acb 2121)?(abc11?abc4.小明通过2、0、1、6这四个数字构成了一个数列(不断地将2、0、1、6这四个数字按照这个顺序加在数后面):2,20,201,2016,20162,201620,2016201,20162016,201620162,…,这个数列中,质数有______个.【分析】只有第一个2是质数,以后出现的数都不是质数,所以质数有1个.、B两地沿相同的方向行驶.甲车如果每小时行驶50甲、乙两车同时从A千米,则6小时5.可以追上前方的乙车;如果每小时行驶80千米,则2小时可以追上前方的乙车.由此可知,乙车的速度是________千米/时.?时间,速度差千米/时,由追及问题的路程差=【分析】设乙车速度为x得2?x)?x)?6?(80(50?300?6x?160?2x140?4x35?x6.右图中有_________个三角形., 【分析】分类枚举,如图个;个小三角形构成的有4 1个小三角形构成的个122345个小三角形构成的个121356个小三角形构成的个123345246个小三角形构成的个共(个.17已知四位满足下面的性质都是完全平方数(完全平方数是CBABCAB4=22,81=92481.所有满、能表示为某个整数平方的数,比如为完全平方数),则我们就称__________. 足这个性质的四位数之和为【分析】满足条件的平方数为有:ABBCCD491664 634649164861 ?ABCD?164或936或498764?和为164+936+498764=1S(123)?1?2?3?6)aS(naa.8.的各个的数码和(比如表示对于自然数,如果一个自然数S(3n)?3S(n)n_____________ 的最大值为数码都互不相同,并且,则【分析】S(3n)?3S(n)?3乘以n时不能进位,则n中最大的数字只能为3,故n最大为3210.、BCEF//BCEGFOOABCDABCD.9.若是正方形都是正方形,其中点如图,的中心,和S?S?S3.25BCEFEF________(,的长度都是正整数,并且四边形则的面积为EGFOABCDEGFO EGFO. 的面积,以此类推)表示F11._________. 【分析】结果如下:23195?115 207234485100011.克的物体,这把秤会显示其正确的重量;对神庙里有一把古老的秤,对于重量小于10001000.的随机数于重量大于等于克的物体,这把秤会显示出一个大于等于、、、S1000PRQ表示它们的重小明有五个物品,题目各自的重量都小于克,我们分别用.将这五个物品两两配对放到秤上进行称重,得到下面的结果:量700P+T=Q+R=900R+T=2100Q+T=800Q+S=1200. (克)(克)、(克)、(克)、、(克)__________.那么这五个物品的重量从重到轻的顺序为=2100⑤;Q+S=1200④;R+T=800①;Q+R=900②;P+T=700③;【分析】Q+T 所以:S>R>T>Q>P; 由②⑤得:T>Q;R>T; 由①③得:Q>P; 由②④得:S>R由①②得:0123456712.写在一个正方体的八个顶点上(每个顶点写一个数,所有的、、、、、将、、则一个面上的四个数之和最大则这相邻的两个数必然是一奇一偶可先确定枚举即可,如图,最大的和.17372pq1896n13的数表示自然满,定pq1(13332________.)和【分析】位置原理+分解质因数.pqr?190062?100nn?2?38?19?10n?2?19?(102)?n?1?101)2?19??(5?n?1499)(即,为:所以:p q r2,19110??51n?原式8??(925n?9??n17)14..四个完全相同的等腰梯形如下图进行放置,题目的下底构成了一个正方形的两条对角线PX=3XQ÷=____________.整个正方形面积,阴影部分面积若XQP1.2.515次当甲地时,两人一共相遇了.地,也算一次相遇个全程;所以乙的速度是甲,则甲走全程用时为2AB8058÷4=2014…24029×时间为2=8058,个全程,1+2014×时,次到那甲第2015B走了2=4029 (次)3+2=60442014×012…916.中的数字(方框内数字允、、在的每个方框中填入一个、、??0____________. 种填数方法许相同,任何数最高位不能为,使得算式成立,有)设ab?cd?efg 【分析】ab?10,cd可取90到99:10个:个到9911?11,cd可取89ab:可取10到99ab90个?99,cd(10+90)×81÷+90×9=4860(个)AEDAE=15DE=20.17.以,如下图所示,三角形为直角三角形,两条直角边的长度分别为,,,ACGABEFAEABFEADADABCD与交为边作平行四边形为边作正方形边于点,以FGHAGHCFH_______..的面积之差(大面积减去小面积)为与三角形交于点则三角形ABFEGHCD的面积ADEAD=25,所以正方形的边长为25,根据三角形【分析】有勾股定理可以算出:ADC 三角形,GD=16,所以GF=13,同时在AEG中用勾股定理算出AG=9可以算出EG=12,的AGH 与三角形CFH)×16÷2=304;三角形(的面积=25×25÷2=312.5,梯形CDGF=13+25CDGF=312.5-304=8.5. ADC-梯形面积之差=三角形a,b,c,d 18.满足下面的性质:四个不同的质数a+b+c+d 1—个质数;)(还是个质数;a,b,c,d中某两个数之和还是—(2). )a,b,c,d中某三个数之和还是一个质数(3_______ . a+b+c+d的最小值为满足条件的b+c+d只能是a=2,由于某三个数的和为质数,2【分析】有a+b+c+d为质数知必有,不妨设17. ,7,5219732为质数,所以可以从最小的尝试,的得到答案为,,,或,31. a+b+c+d 最后可得的最小值为3?3—19.个数,其中右上角的数已经填好了,的小方格内都要填一个的方格中,每个11?30.接下来填的数需要满足下列条件:为(如图)(1)每个数都能整除与它相邻的上面方格内的数(如果与它相邻的上面方格不存在,自然不;用满足这个条件)(2)每个数都能整除与它相邻的右面方格内的数(如果与它相邻的右面方格不存在,自然不._______.种不同的填法有用满足这个条件),他的上方格和右方格必,可设三列从上到下≤3种种种).1+2+3=种1+2=种种).1.).20-1A-I3?5.20.所示,如图我们可以用的方格表来表示字母20-2A-D的表中,需要满足:左表中右边的数字表示这一行中圆点个数,下边的将填入图.数字表示这一列中圆点个数,填好后的结果如右表所示20-3A-I,使其符合前面描述的要求现在,将填入图的表中(每个字母能且只能使用一次).(只要将字母写入表格即可,不用画圆点)20-20-20-359128GABFCDHEI【分析】。
第十六届“中环杯”小学生思维能力训练活动第十六届“中环杯”中小学生思维能力训练活动五年级决赛2016年3月5日 12:30~14:00考试时间:90分钟满分:100分一、填空题A :(本大题共8小题,每题6分,共48分)【第1题】 计算:11112016________21422754⎛⎫⨯+--= ⎪⎝⎭。
【分析与解】 计算。
1111201621422754⎛⎫⨯+-- ⎪⎝⎭1111201621422754⎡⎤⎛⎫⎛⎫=⨯+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦1120161418⎛⎫=⨯- ⎪⎝⎭11201620161418=⨯-⨯144112=-32=第十六届“中环杯”小学生思维能力训练活动若E 、U 、L 、S 、R 、T 分别表示1、2、3、4、5、6(不同的字母表示不同的数字),且满足: ⑴6E U L ++=;⑵18S R U T +++=;⑶15U T ⨯=;⑷8S L ⨯=。
则六位数________EULSRT =。
【分析与解】⑴因为6E U L ++=;而1236++=;所以{}{},,1,2,3E U L =;⑵因为18S R U T +++=;而654318+++=;所以{}{},,,6,5,4,3S R U T =;⑶因为15U T ⨯=;而1511535=⨯=⨯;所以{}{},3,5U T =;⑷因为8S L ⨯=;而81824=⨯=⨯;所以{}{},2,4S L =。
由⑴和⑶,得3U =,则5T =;由⑴和⑷,得2L =,则4S =;最后分别结合⑴和⑵,得1E =,6R =;故六位数132465EULSRT =。
第十六届“中环杯”小学生思维能力训练活动一个超过20的自然数N ,在14进制与20进制中都可以表示为回文数(回文数就是指正读与倒读都一样的数,比如12321、3443都是回文数,而12331不是回文数)。
N 的最小值为________(答案用10进制表示)。
【分析与解】数论,进制与位值。
第十六届华罗庚金杯少年数学邀请赛 总决赛 小学组一试2011年7月23日中国·惠州一. 填空题:(共3题,每题10分)1. 计算 313615176413900114009144736543++++++=_________.2. 如右图所示,正方形ABCD 的面积为12,AE =ED ,且EF =2FC ,则三角形ABF 的面积等于_________.3. 某地区的气象记录表明,在一段时间内,全天下雨共1天;白天雨夜间晴或白天晴夜间雨共9天;6个夜间和7个白天晴朗。
则这段时间有_______天,其中全天天晴有_______天。
二. 解答题:(共3题,每题10分,写出解答过程)4. 已知a 是各位数字相同的两位数,b 是各位数字相同的两位数,c 是各位数字相同的四位数,且c b a =+2。
求所有满足条件的(a ,b ,c )。
5. 纸板上写着100、200、400三个自然数,再写上两个自然数,然后从这五个数中选出若干个数(至少两个)做只有加、减法的四则运算,在一个四则运算式子中,选出的数只能出现一次,经过所有这样的运算,可以得到k 个不同的非零自然数。
那么k 最大是多少?6. 将1,2,3,4,5,6,7,8,9填入右图的圆圈中,每个圆圈恰填一个数,满足下列条件:1) 正三角形各边上的数之和相等;2) 正三角形各边上的数之平方和除以3的余数相等。
问:有多少种不同的填入方法?( 注意,经过旋转和轴对称反射,排列一致的,视为同一种填法 )总决赛 小学组二试2011年7月23日中国·惠州一. 填空题:(共3题,每题10分)1. 某班共36人都买了铅笔,共买了50支,有人买了1支,有人买了2支,有人买了3支。
如果买1支的人数是其余人数的2倍,则买2支的人数是_________.2. 右图中,四边形ABCD 的对角线AC 与BD 相交于O ,E 为BC 的中点,三角形ABO 的面积为45,三角形ADO 的面积为18,三角形CDO 的面积为69。
第⼗六届中环杯选拔赛(四年级)第⼗六届“中环杯”⼩学⽣思维能⼒训练活动六年级组选拔赛1.计算:171720.152++2015=3203_____。
2.要使得算式()111145-1-+4=7234成⽴,⽅框内应填的数是_____。
3.把61本书分给某个班级的学⽣,如果其中⾄少有1⼈能分到⾄少3本书,那么这个班最多有_____⼈。
4.有⼀个数,除以3余数是1,除以5余数是2,那么这个数除以15的余数是_____。
5.如图,⼀个三⾓形的三个内⾓分别为(5x +3y )°、(3x +20)°、(10y +30)°,其中x 、y 都是正整数,则x +y =_____。
6.三个数两两之间的最⼤公约数分别是3、4、5,那么这三个数的和最⼩是_____。
7.对字母a ~z 进⾏编码(a =1,b =2,……,z =26),这样每个英⽂单词(所有单词中的字母都认为是⼩写字母)都可以算出其所有字母编码的乘积p 。
⽐如单词good ,其对应的p 值为7×15×15×4=6300(因为g =7,o =15,d =4)。
如果某个合数⽆法表⽰成任何单词(⽆论这个单词是不是有意义)的p 值,这样的合数就称为“中环数”。
最⼩的三位数“中环数”为_____。
8.甲、⼄两⼈同时骑⾃⾏车从A 地道C 地,路上会经过B 地。
骑了⼀会⼉,甲问⼄:“我们已经骑了多少公⾥了?”⼄回答:“我们骑的路程相当于这⾥到B 地距离的13。
”⼜骑了10公⾥后,甲⼜问:“我们还要骑多少公⾥才能到达C地?”⼄回答:“我们还要骑的路程相当于这⾥到B地距离的13。
”A、C两地相距_____公⾥(答案写成分数形式)。
9.如果⼀个数不是11的倍数,但是移除⼀个任意位上的数码后,它就变成11的倍数了(⽐如111就是这样的数,⽆论移除其个位、⼗位或百位数码,都变成11的倍数了),这样的数定义为“中环数”。
第十六届全国中学生物理竞赛参考解答一、参考解答1 只要有液态水存在,平衡时汽缸中气体的总压强就等于空气压强与饱和水蒸气压强之和:3.0atm p p p =+=总空饱00〔1〕第一次膨胀后102V V =2.0atm p p p =+=总空饱11〔2〕由于第一次膨胀是等温过程,所以 0102p V p V p V ==空空空011〔3〕解〔1〕、〔2〕、〔3〕三式,得 1.0atm p =饱〔4〕 2.0atm p =空0〔5〕 1.0atm p =空1〔6〕由于1.0atm p =饱,可知汽缸中气体的温度0373K T =〔7〕根据题意,经两次膨胀,气体温度未改变。
2.设水蒸气为mol γ水.经第一次膨胀,水全部变成水蒸气,水蒸气的压强仍为p 饱,这时对于水蒸气和空气分别有10p V RT γ=饱水〔8〕1002p V RT RT γ==空1空〔9〕由此二式与〔5〕、〔6〕式可得2mol γ=水〔10〕3. 在第二次膨胀过程中,混合气体可按理想气体处理,有21p V p V =总2总1〔11〕由题意知,204V V =,102V V =,再将〔2〕式代入,得 1.0atm p =总2〔12〕二、参考解答l .在所示的光路图〔图复解16-2-1〕中,人射光AB 经透镜1L 折射后沿BC 射向2L ,经2L 折射后沿CD 出射.AB 、BC 、CD 与透镜主轴的交点分别为P 、P '和P '',如果P 为物点,因由P 沿主轴射向1O 的光线方向不变,由透镜性质可知,P '为P 经过1L 所成的像,P ''为P '经2L 所成的像,因而图中所示的1u 、1v 、2u 、2v 之间有以下关系:111111u v f +=〔1〕222111u v f +=〔2〕 21d u v =+〔3〕当入射光线PB 与出射光线平行时,图中的αα'=,利用相似三角形关系可求得21v h h u '=, 21uh h v '=从而求得2211v u u v =〔4〕联立方程〔1〕、〔2〕、〔3〕、〔4〕,消去1v 、2u 和2v ,可得:1112()f du d f f =-+〔5〕由于d 、1f 、2f 均已给定,所以1u 为一确定值,这说明:如果入射光线与出射光线平行,那么此入射光线必须通过主轴上一确定的点,它在1L 的左方与1L 相距1112()f du d f f =-+处,又由于1u 与α无关,但凡通过该点射向1L 的入射光线都和对应的出射光线相互平行.2.由所得结果〔5〕式可以看出,当12d f f >+时,10u >,此情况下的光路图就是图复解16-2-1.当12df f =+时,1u →∞,0α=,此时入射光线和出射光线均平行于主轴,光路如图复解16-2-2.当12df f <+时,10u <,这说明P 点在1L 的右方,对1L 来说,它是虚物.由〔1〕式可知,此时10v >,由2211f u v f =可知,20u >,又由21220u vv u =<可知,20v <,所以此时的光路图如图复解16-2-3. 三、参考解答根据题中所给的条件,当圆环内通过电流I 时,圆环中心的磁感应强度012B r μ=穿过圆环的磁通量可近似为02BS Ir μφπ≈=〔1〕根据法拉第电磁感应定律,电流变化产生的感生电动势的大小02Ir t tμφπ∆∆==∆∆E〔2〕圆环的电阻02r IR I I tμπ∆==∆E 〔3〕 根据题设条件0.05m r =,720410N A μπ=⨯⋅--,100A I =,61410A/s 310A/s It∆≤≈⨯∆--,代入〔3〕式得23310R ≤⨯Ω-〔4〕 由电阻与电阻率ρ、导线截面积S 、长度L 的关系LR S ρ=与导线的直径1mm d =,环半径5cm r =,得电阻率2297.510m 8S d R RL rρ===⨯Ω⋅-〔5〕 四、参考解答1.双星均绕它们的连线的中点做圆周运动,设运动速率为v ,向心加速度满足下面的方程:222/2v GM M L L =〔1〕v =2〕周期:2(/2)L Tv ππ=计算=3〕 2.根据观测结果,星体的运动周期TT <观察计算计算〔4〕 这说明双星系统中受到的向心力大于本身的引力,故它一定还受到其他指向中心的作用力,按题意这一作用来源于均匀分布的暗物质,均匀分布在球体内的暗物质对双星系统的作用与一质量等于球内暗物质的总质量M '位于中点处的质量点一样.考虑暗物质作用后双星的速度即为观察到的速度v 观,那么有2222(/2)v GM MM M G L L L '=+观/2〔5〕v 观6〕 因为在轨道一定时,周期和速度成反比,由〔4〕式得:1v 观1=7〕 把〔2〕、〔6〕式代入〔7〕式得14N M M -'=〔8〕 设所求暗物质的密度为ρ,那么有341324L N M πρ-⎛⎫=⎪⎝⎭ 故33(1)2N ML ρπ-=〔9〕五、参考解答解法一:1.〔1〕电阻图变形.此题连好的线路的平面图如图预解16-5-1所示.现将电阻环改画成三角形,1、3、5三点为顶点,2、4、6三点为三边中点,如图预解1—5-2与图预解16-5-3所示.整个连好的线路相当于把n D 的三个顶点分别接到1n D -的三个中点上,图预解16-5-1变为图预解16-5-4.这样第1问归结为求图预解16-5-4中最外层三角环任意两顶点间的等效电阻。
第十六届华罗庚金杯少年数学邀请赛决赛试题A 参考答案(小学组)一、 填空题 (每小题 10分,共80分)二、解答下列各题 (每题10分,共40分, 要求写出简要过程)9. 答案: 2011平方厘米.解答. 连接FD 的直线与AE 的延长线相交于H . 则△DFG 绕点D 逆时针旋转180o 与△DHE 重合,DF=DH , ADH AFD S S ∆∆=.梯形AEGF 的面积=△AFH 的面积=2×△AFD 的面积=长方形ABCD 的面积 =2011(平方厘米).10. 答案:13种可能.解答. 分几种情形考虑.第一种情形: 线路号的数字中没有荧光管坏了. 只有351一个可能线路号. 第二种情形: 线路号的数字中有1支荧光管坏了.坏在第一位数字上, 可能的数字为9, 线路号可能是951;坏在第二位数字上, 可能的数字为6,9, 线路号可能是361, 391;坏在第三位数字上, 可能的数字为7, 线路号可能是357.第三种情形: 线路号的数字中有2支荧光管坏了.都坏在第一位数字上, 可能的数字为8, 线路号可能是851;都坏在第二位数字上, 可能的数字为8, 线路号可能是381;都坏在第三位数字上, 可能的数字为4, 线路号可能是354;坏在第一、二位数字上, 第一位数字可能的数字为9,第二位数字可能的数字为6,9, 线路号可能是961, 991;坏在第一、三位数字上, 第一位数字可能的数字为9,第三位数字可能的数字为7, 线路号可能是957;坏在第二、三位数字上,第二位数字可能的数字为6,9, 第三位数字可能的数字为7,线路号可能是367, 397.所以可能的线路号有13个:351,354,357,361,367,381,391,397,851,951,957,961,991.11. 答案: 3, 5.解答. 设这个月的第一个星期日是a 日(71≤≤a ), 则这个月内星期日的日期是a k +7, k 是自然数, 317≤+a k . 要求有三个奇数.当a =1时, 要使7k +1是奇数, k 为偶数, 即k 可取0, 2, 4三个值, 此时,177+=+k a k 分别为1, 15, 29, 这时20号是星期五.当a =2时, 要使7k +2是奇数, k 为奇数, 即k 可取1, 3两个值, 7k +2不可能有三个奇数.当a =3时, 要使7k +3是奇数, k 为偶数, 即k 可取0, 2, 4三个值, 此时377+=+k a k 分别为3, 17, 31, 这时20号是星期三.当74≤≤a 时, a k +7不可能有三个奇数.12. 答案: 253.解:令k m 15=, k 是自然数, 首先考虑满足下式的最大的m ,.201115151153152151≤⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-++⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡m m 于是.2011213152)1(1515)1(152151150151511531521512≤-=+-=+⨯-++⨯+⨯+⨯=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-++⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡k k k k k kk m m 因此.402213152≤-k k 又40224114171317152>=⨯-⨯, 40223632161316152<=⨯-⨯,得知k 最大可以取16. 当16=k 时, m =240. 注意到这时312161952363220112131520112+⨯==-=--k k . 注意到20112024131618161513151615121516152151615115161515161511516152151>=⨯+=⎥⎦⎤⎢⎣⎡+⨯+⎥⎦⎤⎢⎣⎡+⨯++⎥⎦⎤⎢⎣⎡+⨯+⎥⎦⎤⎢⎣⎡+⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡-⨯++⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡ 而201120081216181615121516153152151<=⨯+=⎥⎦⎤⎢⎣⎡+⨯++⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡ .所以253 是满足题目要求的n的最小值.三、解答下列各题(每小题15分,共30分,要求写出详细过程)13.答案: 312解答. 由于2+0+1+1=4 且0+1+2+3+4+6+7+8+9=40, 4≡40(mod 9), 所以, 九个不同的汉字代表的数字:0, 1, 2, 3, 4, 6, 7, 8, 9.易知:40-4=36, 36÷9=4(次), 说明此算式共发生四次进位.“4=2+2=1+1+2=1+2+1”显然:①华=1, “4=2+2”无解②华=1, “4=1+1+2”有解A:28+937+1046=2011, 可组成算式36种(6×6×1=36)B:69+738+1204=2011, 可组成算式48种(6×4×2=48)C:79+628+1304=2011, 可组成算式48种(6×4×2=48)③华=1, “4=1+2+1”有解A:46+872+1093=2011, 可组成算式36种(6×6×1=36)B:98+673+1240=2011, 可组成算式72种(6×6×2=72)C:97+684+1230=2011, 可组成算式72种(6×6×2=72)总计:72×3+96=216+96=312(种).14.解答. 如左下图, 设M, N, P分别为棱GC, GF, GH的中点, 'M, 'N, 'P 分别为棱AE, AD, AB的中点, O为正方体的中心(长方形BDHF的中心).(1)第一只蜘蛛甲可以把爬虫控制在右上图所示的范围内.首先蜘蛛甲做与爬虫关于点O的对称方向的移动, 不妨设爬虫由G沿棱GC 向点M移动, 蜘蛛甲由A沿棱AE向点'M移动, 爬虫被限制在GM上. 当爬虫到达点M时, 蜘蛛甲也同时到达点'M. 然后蜘蛛甲改变策略, 做与爬虫关于平面BDHF对称的方向移动.a) 当爬虫到达点B, D, F, H时, 蜘蛛甲捉住爬虫.b) 当爬虫未到达点B, D, F, H时, 爬虫被控制在左上图所示的范围内.(2) 蜘蛛乙先移动到点G, 由于右上图无环路, 蜘蛛乙可以跟在爬虫后面, 总可以捉住爬虫.。