电动机正反转的PLC控制(经典试讲)
- 格式:ppt
- 大小:1.91 MB
- 文档页数:18
plc控制电机正反转教案【篇一:用plc实现三相异步电动机的正反转控制电路教学设计】用plc实现三相异步电动机的正反转控制电路一、学情分析学生上学期以开始学习电力拖动,因此对于简单的继电器接触器控制回路的分析基本无大碍。
但学习程度参差不齐,学习能力一般,虽然学生对plc技术的学习具有一定的兴趣,但这种兴趣不够稳定,需要教师创设适度的情境,适时地激发。
二、学习任务分析本节内容是中国劳动社会保障出版社瞿彩萍主编的《plc应用技术(三菱)》第三单元中任务二的内容,在教材的p58~p59中。
其主要内容包括继电器接触器控制系统转换到plc控制系统的方法、操作swopc-fxgp/win-c编程软件和对plc的读写、电路块串、并联指令、堆栈指令和程序的优化。
三相异步电动机的正反转控制电路是简单的继电器控制系统,该系统可以反应plc梯形图转换的方法、规则和注意事项。
本节内容属于新授课,分为三课时完成,以下为第一课时内容。
要求学生会按照plc控制电路的设计顺序对继电器接触接器控制电路进行设计,并利用thplc可编程控制器完成调试。
同时,通过对本节内容的学习,让学生将逐步养成严谨求实,合作创新的科学态度,为继续学习和发展奠定方法基础。
三、教材目标依据维修电工类专业《plc应用技术(三菱)》的教学基本要求,结合教学内容的逻辑顺序和08机电班学生的认知水平和思维发展水平,从以下三方面制定本节课的教学目标:知识目标和能力目标(1)会列出i/0分配表、plc接线图、梯形图和指令表(2)能熟练操作swopc-fxgp/win-c编程软件和对plc的读写方法和过程(1) 会根据学习目标,阅读教材 (2) 会对简单继电接触控制电路进行plc控制电路转换 (3) 学会类比、比较和归纳总结学习方法情感态度和价值观(1)在学习过程中,感受学习plc的乐趣,激发学习兴趣;(2)在合作学习过程中,学会合作,形成合作精神和竞争意识;(3)通过规范解题步骤,帮助学生养成严谨求实的科学态度。
目录目录设计题目设计目的设计要求设计思路PLC外部接线图电动机控制图程序清单(梯形图加指令表)设计心得参考文献设计题目三相电动机循环的正反转控制设计目的1、学生在老师的指导之下,综合运用本课程及前期所学课程的相关知识和技能,相对独立地设计和调试一个小型PLC应用系统或继电器控制系统,为即将从事的专业工作奠定基础;2、提高学生对文献资料的检索和信息处理的能力;3、初步培养编写和整理“设计说明书”的能力;4、通过用plc控制电动机正反装控制,初步掌握plc编程的一般步骤,对三相电动机的工作有一个了解。
设计要求工艺要求:一台小型三相异步电动机控制为:正转3秒,停2秒,反转2秒,停3秒,循环运行5次,自动停止运程。
要求:(1)正反转时用不同的指示灯指示运行过程(2)设置启动和停止按钮。
(3)运行安全可靠。
设计思路根据PLC三相电动机循环正反转控制的要求,应用程序采用一体化结构。
通过PLC控制程序来实现整体的运行,系统仅需要少量的按钮和接口,一般的PLC配置都可运行。
该系统本着简单易懂、可靠性强、适应性强等方面进行设计。
在运行程序时只需要按下启动按钮即可实现程序的运行,当程序运行结束后会自动停止,如果中间需要停止程序,只需按下停止按钮即可。
该程序安全、可靠、省时、省力、价格便宜。
控制软件应用SIEMENS编程软件,采用梯形图语言编写,工作系统自动控制。
根据系统控制要求,进行针对性设计,要充分保证系统的安全,保证整个系统的运行安全可靠。
自动条件下,必须复位后在满足自动条件下才能进行自动运行程序,当中充分应用各个过程的互锁来保证系统的安全。
电动机的正反转通过不同颜色的指示灯反映出来,设计程序时,先根据设计要求,弄懂整个程序的要求,理清思路,然后写出程序的顺序功能图,根据顺序功能图,写出梯形图,之后在根据整体的功能,进行外部接线的设计。
PLC外部接线图PLC外部接线按照以下图表接线:+24V VCL(1M)1M GND1L GND5V 5VQ0.1 灯AQ0.3 灯BI0.0 启动按钮I0.1 停止按钮电动机控制图如图所示:正转接触器KM1的一个动断辅助触点串联在反转接触器KM2的线圈电路中,而反转接触器的一个动断触点串联在正转接触器的线圈电路中。
用西门子PLC控制电机正反转的编程生产设备常常要求具有上下、左右、前后等正反方向的运动,这就要求电动机能正反向工作,对于交流感应电动机,一般借助接触器改变定子绕组相序来实现。
常规继电控制线路如下图所示。
在该控制线路中,KM1 为正转交流接触器,KM2 为反转交流接触器,SB1 为停止按钮、SB2 为正转控制按钮,SB3 为反转控制按钮。
KM1、KM2 常闭触点相互闭锁,当按下SB2 正转按钮时,KM1 得电,电机正转;KM1 的常闭触点断开反转控制回路,此时当按下反转按钮,电机运行方式不变;若要电机反转,必须按下SB1停止按钮,正转交流接触器失电,电机停止,然后再按下反转按钮,电机反转。
若要电机正转,也必须先停下来,再来改变运行方式。
这样的控制线路的好处在于避免误操作等引起的电源短路故障。
PLC 控制电机正反转I/O 分配及硬件接线1、接线:按照控制线路的要求,将正转按纽、反转按纽和停止按纽接入PLC 的输入端,将正转继电器和反转继电器接入PLC 的输出端。
注意正转、反转控制继电器必须有互锁。
2、编程和下载:在个人计算机运行编程软件STEP 7 Micro-WIN4.0,首先对电机正反转控制程序的I/O 及存储器进行分配和符号表的编辑,然后实现电机正反转控制程序的编制,并通过编程电缆传送到PLC 中。
在STEP 7 Micro-WIN4.0 中,单击“查看”视图中的“符号表”,弹出图所示窗口,在符号栏中输入符号名称,中英文都可以,在地址栏中输入寄存器地址。
3、图符号表定义完符号地址后,在程序块中的主程序内输入如下图程序。
注意当菜单“察看”中“√符号寻址”选项选中时,输入地址,程序中自动出现的是符号编址。
若选中“查看”菜单的“符号信息表”选项,每一个网络中都有程序中相关符号信息。
4、程序监控与调试:通过个人计算机运行编程软件STEP 7 Micro-WIN4.0,在软件中应用程序监控功能和状态监视功能,监测PLC 中的各按纽的输入状态和继电器的输出状态。
实习二 PLC控制电机正反转实验一、实验元件介绍1. 低压断路器低压断路器也称为自动开关或空气开关,主要用于电路中的过载、短路保护。
(1)组成结构:1 ) 触点和灭弧系统。
2 ) 各种可供选择的脱扣器,包括过电流脱扣器,失电压、欠电压脱扣器,热脱扣器和分励脱扣器。
本实验中低压断路器选用的是过电流脱扣器。
3 ) 操作机构和自由脱扣机构。
(2) 工作原理当电路正常工作是,断路器可以接通或分断正常负载电流;当电路发生严重的过载或短路时,断路器能自动地分断故障电路,有效地保护串接在其后的电气设备。
(3) 文字符号为QF,图形符号如图 2-1-1。
图2-1-1 低压断路器的图形符号注:本实验所用低压断路器接入的是三相交流电和一相零线(黑色线),需特别注意零线位置与颜色。
2.交流接触器(前六组使用)交流接触器是一种自动接通和断开主电路、大容量控制电路的控制电器,其主要控制对象是电动机。
(1)组成结构:1 ) 电磁机构它由电磁线圈、静铁芯和衔铁等组成,其功能是操作触点的闭合和断开。
2 ) 触点系统它包括主触点和辅助触点,主触点可以通断较大电流,用于主回路;辅助触点通断较小电流,用于控制电路。
本实验中的交流接触器共有3对主触点和2对常开、常闭触点。
3 ) 灭弧系统4 ) 其他部分它包括弹簧、传动机构、接线柱及外壳等。
(2) 工作原理当线圈通电后,线圈电流产生磁场,使静铁芯产生电磁吸力将衔铁吸合,衔铁带动动触桥向下运动,使常开触点闭合,常闭触点断开,同时将主触点闭合。
当线圈断电时,电磁吸力消失,衔铁在弹簧的作用下释放,各触点又恢复原来位置。
(3) 文字符号为KM, 图形符号如图2-1-2。
a) b) c) d)图2-1-2 接触器的图形符号a)线圈b)主触点c)动合(常开)辅助触点d)动断(常闭)辅助触点注:本实验所用交流接触器和以前有所不同,其常开、常闭触点并不对称,因此需注意它上面的主触点(黄绿红)、线圈(红色)、常开触点(黄色NO)和常闭触点(蓝色NC)的位置,并且是上下对称的。
电动机的正反转控制(带双重互锁)的PLC程序设计摘要:本文主要是用可编程控制器PLC编制一个梯形图程序,来实现三相异步电动机的带双重互锁的正反转控制。
关键词:PLC 梯形图双重互锁正反转一般的只具有线圈互锁的电机的正反转控制程序,要想进行正反转切换,必需先使电机停下来才可。
那么,在电机不停下的情况下如何能直接实现正反转的切换呢?1 目的用PLC实现三相异步电动机的和正转、反转、停止控制,具有防止相间短路的措施和过载保护环节。
要求在电机不停下的情况下,直接实现正反切换。
2 具体要求(1)按下正向起动按钮时,电动机正向起动,并稳定运行。
(2)按下反转起动按钮时,电动机反向起动,并稳定运行。
(3)按下停止按钮SB1,电动机停止运行。
3 编程过程(1)I/O点分配(如表1)(2)外部接线图(如图1)(3)梯形图程序设计(如图2)(4)分析工作原理按下正向起动按钮SB2时,常闭触点I0.2断开,Q0.1的线圈失电释放,同时I0.2的常开触点闭合,接通线圈Q0.0并自锁,通过输出电路,接触器KM1得电吸合,电动机正向起动,并稳定运行。
按下反转起动按钮SB3时,常闭触点I0.3断开,Q0.0的线圈失电释放,同时I0.3的常开触点闭合,接通Q0.1线圈并自锁,通过输出电路,接触器KM2得电吸合,电动机反向起动,并稳定运行。
按下停止按钮SB1,或过载保护FR动作,都可使KM1或KM2失电释放,电动机停止运行。
(5)说明电动机在正反转切换时,为了防止因主电路电流过大,或接触器质量不好,某一接触器的主触点被断电时产生的电弧熔焊而被粘结,其线圈断电后主触点仍然是接通的,这时,如果另一接触器线圈通电,仍将造成三相电源短路事故。
为了防止这种情况的出现,应在可编程控制器的外部设置由KM1和KM2的常闭触点组成的硬件互锁电路,假设KM1的主触点被电弧熔焊,这时其辅助常闭触点处于断开状态,因此KM2线圈不可能得电。
4 结论该程序中用了正反转的启动按钮进行互锁,可以使在电机不停下的情况下,方便地直接实现正反切换。