当前位置:文档之家› QJDJ[1].J02.15汽车减振器零部件清洁度检测

QJDJ[1].J02.15汽车减振器零部件清洁度检测

QJDJ[1].J02.15汽车减振器零部件清洁度检测
QJDJ[1].J02.15汽车减振器零部件清洁度检测

BG7903-2001 Array成都九鼎科技(集团)有限公司

企业标准

Q/JDJ·J02·15—2013

汽车减振器零部件

清洁度检测

2013-5-15发布 2013-5-20实施

成都九鼎科技(集团)有限公司发布

前言

因《汽车筒式减振器清洁度限值及测定方法》QC/T 546—1999标准于2010年1月20日作废(见工业和信息化部公告工科(2010) 第77号),目前暂无新标准代替。

鉴于QC/T 546—1999标准是以杂质重量作为产品清洁度的指标,不能真实反映由杂质颗粒大小引起的产品质量问题。因此,参考NAS(美国航空、航天标准)清洁度标准,在本标准中主要以杂质粒径大小及数量作为评判清洁度的指标。

本标准由长城公司技术部门提出。

本标准由我公司标准化部门归口。

本标准由我公司设计部门负责起草并解释。

本标准主要起草人:张勇、焦彦艳。

BG7905—2001 成都九鼎科技(集团)有限公司企业标准

汽车减振器零部件清洁度检测Q/JDJ·J02·15—2013

1范围

本标准规定了附着在减振器零部件上的微粒子计数测定和等级判定方法。本标准适用于减振器零部件,其他零部件也可参照执行。

2 定义

2.1清洁度

是指零件、部件及总成特定部位的清洁程度或被杂质污染的程度。用从规定部位以及规定方法采集到杂质微粒的重量、大小和数量来表示。本标准主要检测杂质微粒的大小和数量。

2.2杂质

杂质是指有一定极限尺寸的一切固体颗粒,而这一极限尺寸与过滤元件的尺寸有关。

3概述

用清洗液只将表面积在10 dm2(100000 mm2)以上的零部件洗净,回收附着在零部件上的微粒子,对于滤膜上采集到的粒径在50μm以上的微粒子,依靠放大镜测出大小,数出数目。粒径用各个粒子的最大尺寸表示。根据试样中存在的最大粒子所属的粒径范围与比其小一级的粒径范围内的粒子数所决定的两个范围等级,取大等级作为综合等级。

4测定方法

4.1取样

4.1.1装配前,零部件清洁度检测应从生产线上抽取清洗干净的待装零部件作为样本。

4.1.2拆解分析减振器时应以1支减振器拆解后的内部零部件及油筒(即与减振油接触的零部件)作为样本。

4.1.3入厂零部件清洁度检测应从库房抽取零部件作为样本。

4.1.4取样部位按表3。

表3

4.1.5检测数量的确定

4.1.

5.1零部件检测数量确定

4.1.

5.1.1求各零部件的表面积S

i

(单位:mm2 ) ——内装零部件:全表面积

(阀片、阀座、导向器、活塞、缸筒等) ——外装零部件:与油接触的表面积(最大表面积) (封盖、端盖、油筒、连杆等)

注:小数点以下四舍五入

4.1.

5.1.2零部件检测个数N

i

,按公式(1)计算

100000(mm2)

N i = (1)

S

i

式中:

N

i

——零部件检测个数;

S

i

——零部件的表面积mm2;

注:除不尽时,将有效数字第三位舍去进1。但是,小数点以下有数时,从小数第一位舍去进1。

4.1.

5.1.3将计算结果计入表1。

表1零部件清洁度测定个数统计表

4.2试验条件

4.2.1过滤元件

滤膜:不大于10μm微孔滤膜,直径φ60mm。

4.2.2清洗液

无水乙醇

4.2.3粘结带

宽65mm以上,透明。

4.2.4镊子

为不弄伤薄膜滤膜,前端应为平嘴。

4.2.5烧杯

容量为500ml的塑料烧杯。

4.2.6洗瓶

耐溶剂性的。

4.2.7真空泵

真空度不大于80kPa。

4.2.8放大镜

放大倍数应达到10倍以上,并带有10mm分为100等分的刻度。

4.2.9过滤装置

由容量300ml、带刻度的上部漏斗、滤膜(按4.2.1)、紧固夹具,滤膜支撑台,下部漏斗,耐溶剂性橡胶塞,吸瓶等组成(见图1)。

图1 过滤装置

4.1.10用于清洁度检测的器具、装置及设备应保持清洁。

4.3杂质收集的操作过程

4.3.1器具的清洗

将清洗液装入洗瓶,清洗烧杯、上部漏斗及镊子,不应沾有灰尘。

4.3.2安装过滤装置

4.3.2.1用镊子取出1片测定用滤膜,在清洗液中涮洗其两面。

4.3.2.2置于滤膜支撑台上,把上部漏斗稳定的安装在滤膜上,用紧固夹具固定牢固(见图1)

4.3.3试样采集

4.3.3.1按4.1.5要求抽取规定数量的零部件或1支减振器总成拆解件放入干净的容器具中;

4.3.3.2将200ml清洗液倒入烧杯中,清洗零部件,对于体积大的零部件,可将零部件一端放入烧杯,用洗瓶从上端冲洗,油筒总成可用洗瓶直接冲洗其内壁后,

再将清洗液倒入烧杯中。

4.3.4试样的过滤

4.3.4.1将烧杯中的试样注入上部漏斗。

4.3.4.2为了收集烧杯壁上的残留试样,往烧杯中倒入约30ml清洗液,充分搅拌后,倒入上部漏斗,使清洗液沿漏斗内壁慢慢流下。如此反复操作两次。

4.3.4.3开动真空泵。

4.3.4.4为了收集上部漏斗里的残留试样,将清洗液沿漏斗壁慢慢注入。

4.3.4.5待滤膜由湿变干,即将紧固夹具和上部漏斗卸下,停止真空泵的吸引,而将滤膜保留在滤膜支撑台上。

4.3.4.6用镊子将滤膜从滤膜支撑台上轻轻取下,将附着杂质颗粒的一面朝上放置,用干净的粘结带将滤膜覆盖并粘贴在检测报告上。

4.4测定

4.4.1粒径范围规定如下

①≥50μm~100μm

②≥100μm~200μm

③≥200μm~400μm

④≥400μm~800μm

⑤≥800μm~1600μm

⑥≥1600μm~3200μm

4.4.2移动放大镜,用目镜的刻度测量通过目镜的粒子。粒子最大尺寸的取法见图2。

图2 粒子最大尺寸的取法

4.4.3.按4.4.2要求测定各粒径范围内的粒子数,测定试样中最大粒子所属的粒径范围和数量及比其小一级粒径范围内最大粒子的数量即可。

5等级判定

5.1等级

测定结果的等级判定基准按附表1的规定。

5.2判定方法

5.2.1测定试样中最大粒子所属的粒径范围及其等级。

5.2.2从5.2.1所确定的粒径范围,测定比其小一级粒径范围的粒子数并确定其等级。

5.2.3比较上述5.2.1、5.2.2确定的等级,取大的等级作为综合等级。但当最大粒子属于50μm以上、不足100μm 时,用这个范围内的粒子数确定综合等级。

6 结果报告

按照附表2填入特定粒径范围内的个数及等级等,出具检测报告。

附表1 :等级判定基准表

10dm2试样中的单位(个)

5

附表2:检测报告格式

清洁度检测报告

汽车零部件清洁度

汽车零部件清洁度,颗粒度大小分析系统 ?产品编号: 清洁度检测分析 ?产品型号: BH-CIA300 ?所属类别: 汽车零部件检测解决方案- 清洁度分析检测 ?所属品牌: 德国徕卡 ?所属用途: 金相岩相分析 ?应用领域: 金属 产品特性: 清洁度标准ISO4406、ISO4407、ISO16232、NAS1638、VDA19、GB/T 2 汽车零部件清洁度,颗粒度大小分析系统

全自动清洁度分析系统BH-CIA300 Automatic Cleanliness Inspection System 制造商:BAHENS 1、全自动清洁度分析系统Automatic Analysis System 系统组成:BAHENS立体显微镜、德国原装进口电动台,自动拍照系统、全自动清洁度分析 软件,DELL 高性能计算机等。 显微镜:国产立体显微镜,适合25 微米以上杂质的检测。 自动扫描台:德国进口自动,行程76X52mm,最小步进0、02 微米、 检测范围: 整个滤膜 检测内容杂质尺寸 杂质数量 杂质形状分类:颗粒或纤维 杂质性质分类:反光(金属),亚光(非金属,金属氧化物) 清洁度标准ISO4406、ISO4407、ISO16232、NAS1638、VDA19、GB/T 20082、GB/T 14039,工厂自定义 清洁度自动评级自动,可编辑 清洁度专用报告自动,可编辑 最小检测尺寸25 微米 按照ISO16232 的基本原则,可对滤膜上大于25 微米的杂质进行精确检测。 自动扫描整个试样(通常就是滤纸)、自动拍照,颗粒自动识别、统计、分析,自动检查清洁度、自动生成专业分析报告; 检测流程与内容包括: 1) 对直径47 毫米(或更小)的滤纸进行自动与高精度扫描,全自动图像拼接,全自动拍照。

汽车零部件清洁度检测和控制

汽车零部件清洁度检测 和控制 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

汽车零部件清洁度检测和控制-如何更合理和有效 随着零件清洗在技术和应用领域的进步,汽车零部件的清洁度要求变得尤其严苛。对清洁度的要求,有时已经超越了实用性和功能性,带来的是更高的成本,更多的时间,和资源的浪费。因此,如何制定一个更加合理,更加有效,符合质量要求而不过激的清洁度规范和标准,变得越来越重要。 汽车零部件的清洁度规范和标准建立,涉及到五个步骤和问题:零件的尺寸,污染物性质,必要的清洁,清洁过程,和清洁度检测验证。 首先,零件的尺寸是设计一个高效的清洗过程的基础。清洗设备制造商要与客户共同工作,以了解零部件的精确尺寸,公差和材料组成。材料尤其不能被忽略,因为在清洗过程中,化学品会产生腐蚀,物理清洗会导致热膨胀而改变零部件的尺寸。 第二个问题是需要被清洗的污染物的性质和数量,这是清洁度工作的重要变量。在清洗之前,应该进行零部件清洁度的检测,比如用天平做称重法以检测污染物重量,用全自动清洁度检测扫描显微镜或激光粒度仪来检测无贪污颗粒的尺寸,数量,形状,性质等等。正确计算污染物性质,数量,尺寸,对清洗设备的设计或选购清洗设备非常重要,用清洗处理能力小的清洗机去清洗污染物过多或过大的零部件,清洗机会很快过载,这里要强调的是,尺寸小但污染物较多的零部件,反而可能需要更大的清洗槽。 精确全面地进行清洁度检测以确定污染物的性质和数量,不仅仅是对结果的抽检,更关系到合理正确的零部件清洗流程。比如清洗机采用什么样的清洗剂,如果我们不知道需要清洗的污染物有哪些,那么清洗剂的选用

零件清洁度检验作业指导书

零件清洁度检验作业指导书 1 检验目的: 1.1 为了明确生产线零件清洁度要求,便于加工车间及外协厂家对零件清洗效果的有效控制。 1.2 此操作指导书规定了用于确定缸盖罩及油底壳总成其零部件清洁度的检查、评定及操作方法。 2 检验范围: 2.1 适用于一般用途的发动机缸盖罩及油底壳总成及零部件清洁度的检查和评定。 2.2 检测部位主要是缸盖罩及油底壳总成总成及零部件的内表面及螺栓孔内表面。 3 检验环境: 3.1 检测室内要干燥、通风,室温保持20±5℃。 3.2 检测室要有良好的防尘设施,清洗间要有严格的防火措施。 4 检验方式:检查员抽检。 5 检验人员:技术质量部计量、检验室检查员。 6 检验频次:每周抽检1次,每次2件,分别在2个包装箱内各抽一件。 7 作业准备: 7.1 仪器设备:烘干炉、干燥瓶、滤膜过滤装置、天平、托盘、放大镜(50倍); 7.2 检验工具:喷壶、120#汽油、毛刷、孔径为5um的微孔滤膜; 7.3 检验工具:无齿镊子、清洁放膜干燥皿。 8 检验方法:

8.1 将零件放置于托盘上方或托盘内,喷壶用120#汽油冲刷零件清洗部位,同时用毛刷轻刷冲洗部位,将冲刷下来的物质全部倒入烧杯中,冲洗不掉的残留物(如渣皮、压铸毛坯瘤等)不准敲打或硬性剔除,此部分残留物也不做考核使用,各种器具清洗时,应防止将带有杂质的清洗液飞溅到容器外; 8.2 用无齿镊子夹取滤膜一片,用天平称下滤膜质量,质量记为:G1,精确至0.1mg; 8.3 将滤膜放于过滤装置上,将收集后的所有容器中的溶液轻轻倒入装有微孔滤膜的漏斗进行过滤,过滤完成后用120#汽油沿着漏斗壁清洗漏斗里的残余杂质,采集所有杂质; 8.4 待所有滤液过滤干净后,将含有所有杂质的滤膜拿下放入清洁放膜干燥皿中置于烘干炉中干燥; 8.5 将烘干炉中的烘干温度控制在90°±5℃之间。烘干至少3小时后,将滤纸取出,放入干燥瓶内干燥30分装后,将滤膜放入天平称重,质量记为:G2精确至0.1mg; 8.6 杂质质量即为:G总=G2-G1; 8.7 最大颗粒尺寸:过滤后的杂质放在载物片上,同时将标本样(0.8mm)也放在载物片上,进行观察,在放大镜中读取到最大颗粒尺寸。 9 注意事项: 9.1 操作者衣着、双手应清洁; 9.2 所有取样工具和容器均应清洗干净,目测无异物; 10 采用标准:柴油机整机及零部件清洁度标准 11评价标准及结果判断:

物流过程对汽车零部件防护与清洁度控制

《物流过程对汽车零部件防护与清洁度控制》 1..目的 为了在物流过程中对汽车零部件得到有效防护,使上汽集团乘用车各工厂基地物流内、外仓库有统一的零件防护标准,提升产品质量,满足客户需求,使产品达到规定的寿命,不使产品在制造、使用、维修过程中因污染而缩短零件的使用寿命,并对零件的有效监督与管理,特制定本清洁度控制方法。 2.范围 适用于上汽集团乘用车各生产基地的物流过程中各工厂内、外仓库(含VMI)对总装、车身车间零部件防护与清洁度的控制与管理,油漆、动力总成车间零件的清洁度要求更高,不计入此范畴。 3.定义 清洁度是指汽车零件、总成和整机(发动机)特定部位被杂质污染的程度。用规定的方法从规定的特征部位采集到杂质微粒的质量、大小和数量来表示。这里所说的“规定部位”是指危及的特征部位。这里说的“杂质”,包括产品制造、运输使用和维修过程中,本身残留的、外界混入的和系统生成的全部杂质。 4.职责 现场物流(含内、外库收货人员)负责目视检查包装器具外观有/无防护盖、塑料膜、袋、套等防护材质,目测检查残留在零件表面的比较大而明显的颗粒、斑点、锈斑等污染,发现不符项,现场立即分析、整改,现场物流人员仅对零件外观清洁度负责; 现场物流(含内、外库)无法解决的清洁度问题,有责任通知相关物流包装工程师,由包装工程师对不合格项的供应商进行后续问题的整改、监督、跟踪、落实,直到问题解决; 仓库管理负责人(含内、外库)严格按照精益生产的5S管理要求,保持库房整洁、清洁,目视化管理清晰,零件定置定位管理合理; 5.零件防护的运输车辆要求 为上汽集团乘用车公司供应生产零件的车辆,只可选用封闭式运输车辆,具体要求如下: 双开门厢式飞翼车,车厢顶端离地距离不高于; 后进式集装箱卡车,集装箱20,标箱与40,标箱/高箱,车厢顶端离地距离不高于; 6.零件防护的装卸道口环境与场地要求 物流内、外仓库装卸道口的环境要求,道路畅通、清洁,地面是不宜飞沙扬尘的道路/道口,户外装卸设备建议使用电瓶叉车装卸货物,在环境条件无法保证飞沙扬尘的情况下,物流道口管理人员必须采用洒水方式,避免地面扬尘,必要时(视情况而定),可间隔重复洒水,保持地面湿润,以不扬尘为宜。 易扬尘的道口。要洒水 7.库房地面要求(含内、外库) 为了保持室内地面清洁,库区整洁,地面必须是采用下面任何一种不宜扬尘的地坪: 1.非金属骨料耐磨硬化地面; 2.金属骨料耐磨地面; 3.环氧树脂处理地面; 4.固化处理地面; 5.或打蜡地面; 这是最基本的仓储环境硬件,不符合此条件的库房,必须整改。对于没有湿度要求的储存零件,若地面暂时不能整改的,必须定期洒水,清扫,以不扬尘为宜;

零部件清洁度测试标准

零部件清洁度测试标准 在分析技术清洁度时,必须考虑标准(VDA-19.1、ISO-16232)以及客户特定的测试 规定。这些标准规定了分析过程中必须使用的提取方法和测试设备。客户规范或图纸中 规定了特定部件的清洁度要求,基于我们多年了经验,我们收集和整理了部分相关标准, 下面是部分可供参考/选择的清洁度检测标准和试验规范。 AGCO GF10750201 Global Hydraulic Cleanliness Practice Materials KG PML 00419 Behr GmbH & Co. KG BKA doc00981120120724112202 Test Specification for the Analysis of Gunshot Powder Residues

BMW AG 10283184-000-03 Refrigerant Compressor BMW AG DIN73411-2 Hoses and Compounds BMW AG QV11111 Technical Cleanliness BMW AG QV17006 Components in the coolant circuit BMW AG QV33019 Front and rear axle BMW AG QV64037 capacitor Borg Warner APN-002-F Cleanliness of transmission parts Borg Warner APN-096 Cleanliness of transmission parts

自动变速箱零部件清洁度标准

CPMC 奇瑞精机公司技术标准 自动变速箱零部件清洁度标准 (试行版) 奇瑞精机公司发布

前言 本标准在格式和内容的编排上均符合GB/T1.1-2000、GB/T1.2-2002的规定。本次主要修订详细内容见本版规定。 本标准由奇瑞精机公司产品研发部提出。 本标准由奇瑞精机公司综合管理部归口。 本标准起草单位:奇瑞精机公司产品研发部。 本标准主要起草人:史时文。

自动变速箱零部件清洁度标准 1 范围 本标准主要规定了自动变速箱零部件清洁度分析方法与验收标准。 本标准适用于奇瑞精机公司生产的所有自动变速箱零部件的清洁度质量分析与验收。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范/标准,然而,鼓励根据本规范/标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本规范/标准。 PV 3347-1999 VW清洁度标准 3 清洁度分析的实施 3.1 变速箱零件取样 取样要取所有加工工序已完成并已被认可用于装配的零部件 ,清洁度分析应该在取件后立刻进行,且必须注意运输过程中灰尘的防护;检测件必须放在不锈钢清洗槽中,并且在分析时考虑其在运输中产生的杂质;抽检数量由精机公司质保部门确定,但检验数量至少应为五件。 3.2 清洁度分析的准备 a)将过滤纸(100μm,20μm,7μm)进行干燥,干燥至重量恒定(例如在105°C时干燥1小时); b)将干燥过的过滤纸在干燥器中冷却至重量恒定(例如:1小时); c)将过滤纸和密封环放入三级过滤器中,从上自下分别为100μm、20μm、7μm。 3.3 清洗和过滤过程 a)将零件放在清洗槽中的架子上,用喷嘴清洗所有加工面,以及所有光孔、螺纹孔、槽和油道等; b)调整喷洗压力为2.5-3bar,喷嘴喷射角80°至90°; c)主要零件的分析液最小用量列表如下(分析液牌号参考相关资料): 表1

汽车零部件清洁度检测和控制

汽车零部件清洁度检测和控制-如何更合理和有效随着零件清洗在技术和应用领域的进步,汽车零部件的清洁度要求变得尤其严苛。对清洁度的要求,有时已经超越了实用性和功能性,带来的是更高的成本,更多的时间,和资源的浪费。因此,如何制定一个更加合理,更加有效,符合质量要求而不过激的清洁度规范和标准,变得越来越重要。 汽车零部件的清洁度规范和标准建立,涉及到五个步骤和问题:零件的尺寸,污染物性质,必要的清洁,清洁过程,和清洁度检测验证。 首先,零件的尺寸是设计一个高效的清洗过程的基础。清洗设备制造商要与客户共同工作,以了解零部件的精确尺寸,公差和材料组成。材料尤其不能被忽略,因为在清洗过程中,化学品会产生腐蚀,物理清洗会导致热膨胀而改变零部件的尺寸。 第二个问题是需要被清洗的污染物的性质和数量,这是清洁度工作的重要变量。在清洗之前,应该进行零部件清洁度的检测,比如用天平做称重法以检测污染物重量,用全自动清洁度检测扫描显微镜或激光粒度仪来检测无贪污颗粒的尺寸,数量,形状,性质等等。正确计算污染物性质,数量,尺寸,对清洗设备的设计或选购清洗设备非常重要,用清洗处理能力小的清洗机去清洗污染物过多或过大的零部件,清洗机会很快过载,这里要强调的是,尺寸小但污染物较多的零部件,反而可能需要更大的清洗槽。 精确全面地进行清洁度检测以确定污染物的性质和数量,不仅仅是对结果的抽检,更关系到合理正确的零部件清洗流程。比如清洗机采用什么样的清洗剂,如果我们不知道需要清洗的污染物有哪些,那么清洗剂的选用可能是盲目的,其结果可到是无法清洗干净,或者过分的清洗,损伤零部件。了解污染物

的性质好有助于更好地维护清洗机,延长其使用寿命。因此,在清洁度检测设备上的成本投入增加,也可以被认为是对清洗机投入成本的降低。 解决了这些问题后,现在是时候来确定基准水平的清洁度。绝对干净通常是没有必要的。汽车零部件的清洁度不需要和外科手术工具一样的清洁度等级。找出什么时候污染开始影响性能,并从那里工作。设置一个规格稍高一点的清洁度等级是必须的,但把它定得太高则是低效和浪费。 举个例子说,如果一个零部件的污染物重量为2毫克,且每个污染颗粒尺寸不大于200微米时能完美地工作,那就不必设定更高的清洁度标准。 一旦清洁度的基准确立了,那么就按照三个要素来设计你的清洁度控制流程:机械作用、化学反应和材料处理。找到一个有着丰富经验的清洗机制造商,尤其是曾经熟知你所生产的零部件和使用的材料,可能产生的污染物的供应商,这将使设计过程更为顺畅。 最后一步就是花时间做准确全面的清洁度检测。要使用清洁度检测设备对一个清洗过程做准确全面的测试,确保清洗机能达到清洁的目标,又没有损伤零部件。这时的清洁度检测,应该使用设计时同样的方法,设备,条件,参数,因此,清洁度检测设备是否能满足自动化,智能化,可编程,可自动记录并重复清洁度检测参数变得非常关键。 通过以上的步骤和工作,紧密与一个合格的清洗机制造商,一个清洁度检测设备制造商合作,你可以确信你的清洁度控制规范和标准是合理的、实用的,有效的,既能制造高质量的产品,又能避免不必要的浪费。

汽车空调用压缩机清洁度测定方法

附录A (规范性附录) 压缩机清洁度测定方法 A.1 准备 除选用孔隙度为8μm的滤纸或按相关规定选用其它孔隙度的滤纸外,其余按JB/T 9058-1999第6条的要求,对操作者、测量仪器和检测室做好测量前的准备。带有离合器的压缩机应从被测压缩机上拆下离合器,机体内如封有氮气,应在清洗前释放出充入的氮气。 A.2 清洗 A.2.1 整机内部清洗 a)用铜管和接头将吸气口和排气口连通; b)用注射器注入足够量异辛烷溶剂油或易挥发的环保溶剂; c)封住注射口后,在lmin内用手旋转压缩机主轴20圈; d)卸下铜管,并将内部物质(冷冻机油与异辛烷溶剂油或易挥发的环保溶剂的混合物),倒入干净的烧杯内; e)向铜管内注入足够的异辛烷溶剂油或易挥发的环保溶剂,清洗铜管内留下的任何杂质; f)再从油塞(如有)和吸、排气口处分别注入足够量的异辛烷溶剂油或易挥发的环保溶剂,立即密封吸、排气口和油塞(如有); g)用手在X,Y,Z方向上摇动压缩机各10次,从而彻底清洁内部; h)拆下接头和油塞(如有),将压缩机内物质倒入干净烧杯内; i)重复f到h过程1次。 A.2.2 解体清洗 a)用异辛烷溶剂油或易挥发的环保溶剂清洗干净压缩机外表面的杂质和油迹; b)拆解压缩机; c)通过手工或压力冲洗法,用异辛烷溶剂油或易挥发的环保溶剂对压缩机内部零件和机体内表面进行充分清洗,并将清洗物质倒入干净烧杯内。 A.3 过滤 a)用镊子取出滤纸,将滤纸放置在蒸发盘上,再将蒸发盘放置在设定温度为105℃±2℃的烘箱内烘烤20 min; b)干燥后,用调零的精密天平测量滤纸重量,天平精度为±0.1 mg; c)按JB/T 9058-1999第8条的规定,对清洗物质进行过滤。 A.4 烘干、称重和计算 按JB/T 9058-1999第9条的规定进行烘干、称重和计算。

零件清洁度测定方法

清洁度的测定方法 清洁度检测 清洁度测定方法对过程控制、品质保证和失效分析非常重要,是概括用于获得有关测定主体如各种机械设备、电子零件等清洁度数据的详细过程。 检测清洁度时对取样有要求,取样的基本要求决定于样品的数量和取样位置。零件体积越大、表面积越大、清洁度偏低,则样品数量相应减少。应该从生产中随机抽取零件,并且采样过程和后面的检查过程中不能造成零件的污染。 典型污染物类型 检测清洁度时,一要环境清洁,其清洁程度应与检测的要求相适应;二要检测人员的衣帽和双手清洁;三要所用器具也必须清洁。清洁度的测定方法 清洁度的测定方法很多,分成油污污染物和颗粒物污染物2大类测试,主要有如下几种:* 目视检查法 目视检查法即由人工直接用眼睛在显微镜下对零件可以看到的外表面或内腔表面进行检查。调节显微镜的照明亮度和放大倍数,人工可以判断污染颗粒是金属、非金属、或纤维以及尺寸大小。目测法可以检查残留在零件表面的比较大而明显的颗粒、斑点、锈斑等污染,但检查的结果与人为的因素关系很大。 * 接触角法(也叫水滴角法)-------测油脂类污染物

所谓接触角,就是液体在固体表面形成热力学平衡时所持有的角。对固体和液体之间形成的接触角的测量,是在表面处理及聚合体表面分析等众多类似领域广为知晓的分析技术,是对多个单位的单层变化十分敏感的表面分析技术。测量液滴在固体表面的接触角来评估表面的可湿润特性。如果液滴可湿润表面,则接触角小,反之液滴不能湿润表面,而在表面倾向于形成圆珠或气泡,则接触角大。这就是“水膜残迹”测试的原理。接触角大,表示表面被憎水性的污物(油/脂等)污染,反之,接触角小,液滴破裂或摊薄,表示该表面清洁。这种测试方法受底材的材质、底材的粗糙度及人为因素影响也很大,而且这种方法对非常轻小或分散的污物不易识别。尤其是有些特殊材料(如PTFE 塑料)即使表面很清洁,对大多数液体的接触角也很大。所以,接触角法不适合对某些底材或关键重要的表面清洁度测试。 * 荧光发光法-------测油脂类污染物 在许多情况下,可以利用紫外线来检测零件表面的清洁度。在紫外线的照射下,表面的污染物颗粒会发出荧光。因为紫外线的能量被污物吸收,污物颗粒电子被激化并跃进到高能级的电子层,处于高能级的不稳定的电子随即会返回原低能级电子层,在此过程中原来吸收的能量以发热发光的形式释放出来——荧光。这种激活释放的频率达每秒几千次,所以在紫外线下的荧光不是闪烁的而是持续稳定的,根据发荧光即可目测污物在零件表面的位置,荧光强度也是可以应用信号检测仪器测定从而表示表面被污染的程度。但如果要识别污染物的成分等特性,必须借助其他分析法。

《道路车辆 零部件和系统的清洁度》编制说明

道路车辆-零部件和系统的清洁度 编制说明 (征求意见稿) 2020年6月

道路车辆-零部件和系统的清洁度 编制说明 一、工作简况 1.任务来源 本项目任务来源于国家标准化管理委员会下达的“2018年国家标准制修订计划”的要求,计划编号 20180252-T-339。 2.背景 本部分编制主要是依据ISO 16232:2018《Road vehicles-clenliness of components and systems(道路车辆-零部件和系统的清洁度》(英文版),本部分与ISO 16232:2018的一致性程度为等同采用。本部分的编制将为我国道路车辆零部件的质量与国际接轨起到重要的作用。 3.主要工作过程 2016年3月,由上海明兴开城超音波有限公司、上海素盈清洁科技发展有限公司等公司提交了《推荐性国家标准项目建议书》,2016年4月,提交了《道路车辆-零部件和系统的清洁度》申报资料。 2016年5月,由全国汽车标准化技术委员会基础分技术委员会召开《关于召开第五届基础分标委2016年工作会议》审议立项通过; 2018年4月,国标委下达立项计划; 2018年6月,基础分技术委员会召开基础分标委2018年工作会议,并讨论标准草案。 在起草过程中,国际标准化组织又将ISO 16232:2013 道路车辆-流体回路零部件清洁度第1至第10部分;换版为ISO 16232:2018道路车辆-零部件和系统的清洁度,升级的国际标准增加了很多电子光学分析方法。 起草组对更新版本后的国际标准进行研究,于2020年6月形成征求意见稿。 二、标准的编制原则和主要内容 本标准编制的原则是等同采用ISO 16232:2018《Road vehicles-clenliness of components and systems(道路车辆-零部件和系统的清洁度)》(英文版)的技术内容,标准编写格式按照GB/T 1.1-2009《标准化工作导则第一部分:

零部件清洁度分析

标准化的零部件清洁度测试 作者:德国RJL 公司的Markus J. Heneka 日期:2015年11月9日 摘要:在这篇文章中,我们对VDA-19和ISO-16232标准中描述到的汽车行业零部件清洁度分析的最相关技术进行了概述。 介绍 汽车行业中关于清洁部件的要求,最早是由罗伯特·博世公司(Robert Bosch )在1996年为了提高柴油汽车发动机共轨喷射系统的生产质量而提出的。由于共轨的高压,罗伯特·博世缩小了喷嘴的尺寸至200μm 甚至更小。但他们很快意识到,在生产流程过后这种小喷嘴很容易被系统中残留的污染颗粒堵塞。由于这种新观念的出现,提出了对生产中清洁部件的质量规范。这也是零部件清洁度测试的诞生。 自此之后,在汽车系统中很多可靠性问题都已被归因于微粒子污染,也即是零部件清洁度不足(如图1)。 自1996年开始,由于零部件清洁度相关性 滑动面卡住 ● 涡轮增压器 ● 曲轴轴承 ● 剂量泵 ● 汽缸 喷嘴/过滤器堵塞 ● 喷油器 ● 燃料管 ● 液压系统 阀门阻塞 ● 防抱死装置 ● 液压系统 ● 剂量泵 ● 制动助力器 电路故障 ● 电子控制装置 ● 通讯电子设备 图1:颗粒污染物造成的典型失效模型[VDA-19.1]

数据的平稳上升,2005年德国汽车行业协会由此而出版了VDA-19标准。VDA-19标准从而成为全球范围内非常有用的文件,该文件也成为国际标准ISO-16232的清洁度检测的蓝图。值得注意的是,2009年出版的ISO-16232已经发展到与德国VDA-19标准完全兼容。数年之后,数百家清洁度实验室于汽车和供应行业中成立。与此同时,也有无数家独立服务的实验室开始运作。今天,受影响的众多公司中的很多职位甚至整个部门,都在协调零部件清洁度的各个方面。 在第一次VDA-19出版的十年后,德国汽车行业提出修订和扩展规范的要求。其主要目的是提高清洁度测试结果的可对比性,并且增加污染物萃取和分析的新技术内容。基于新的VDA-19标准于2015年3月份出版,一个ISO-16232修订委员会也相应成立,目的是将新VDA-19标准的内容转移到国际水平。新的ISO-16232预计将于2016/2017年出版。 如今,这两个标准成为了全球范围内汽车行业中的零部件清洁度的分析框架。特别是VDA-19标准中,提到了很多实用并有详细说明的关于零部件表面污染物颗粒的萃取和定量分析的最常用的方法。 测试方法 所有清洁度分析都分为三个步骤(图2)。首先,从零部件表面洗掉的污染物颗粒通过萃取液来获取。第二步,液体用过滤膜进行过滤。最后一步,将过滤膜进行分析以确定颗粒的质量,数量,尺寸和类型。

清洁度检验规范

重庆祥吉机械制造有限公司版次 A 页次1/2 文件名称清洁度检验规范文件编号Q/XJ.3J.JY-01-2015

1、目的: 为规范机油集滤器、机油盘隔板、机油盘总成及其他零部件清洁度的检测规范,以达到清洁度的检查和测定目的。 2、适用范围: 本标准适用于本公司生产的机油集滤器、机油盘隔板、机油盘总成及其他零部件清洁度的检查和测定。 3、设备器具及耗材: 3.1清洗设备、工具及耗材:Φ5、Φ10尼龙刷和Φ20的异形刷、喷壶、Φ500清洗盆、普通汽油或120#工业汽油。 3.2过滤烘干设备及器材:孔径为5um的微孔滤膜、漏斗、漏斗座。 3.3试验设备:恒温干燥箱、电子秤、干燥瓶 4、试验前准备: 4.1清洁度检测工作应在干燥、清洁、安全的工作室内进行,且工作室应有良好的防尘措施。 4.2各种设备仪器应定期检查,以保证测量精度。 4.3所有取样工具和容器等均应预先清洗干净,并用干净的白绸布擦拭,擦拭后白绸布上应出现脏痕。 5、抽样方法: 对于入库的总成,每个型号、每批抽查1件,杂质量按每台计算,如抽查不符合要求,则应加倍抽查,若仍不符合要求,则该批应全部返工清洁。 重庆祥吉机械制造有限公司版次 A 页次2/2 文件名称清洁度检验规范文件编号Q/XJ.3J.JY-01-2015

6、检测操作规程: 6.1在盛器内倒入适量的洁净汽油,将零件放置于器皿内,用刷子蘸取清洗液刷洗总成内腔、外表面,直至清洁干净,可根据总成清洁情况,可适当增加清洗次数,直至清洗干净无杂质。 6.2把滤膜放于过滤装置上,将收集后的所有溶液轻轻倒入漏斗进行过滤,过滤完所有溶液后用喷壶沿着漏斗壁冲洗残留杂质,采集所有杂质。 6.3待所有溶液过滤干净后,将含有所有杂质的滤膜取下,放入清洁器皿中,将放入滤膜的器皿置于恒温干燥箱内干燥。 6.4将恒温干燥箱的烘干温度控制在85°±5℃之间,烘干30分钟后,将滤膜取出,放入干燥瓶内干燥15分钟,再将滤膜放上电子秤称重量,做记录。 6.5杂质重量=烘干后滤膜总量-过滤前滤膜量 7、验收要求:见附件表一 8、数据报告格式:见附件表二 批准审核编制 表一:总成技术要求 序号产品型号及名称清洁度要求(mg) 备注

安装发动机清洁度的作用(正式版)

文件编号:TP-AR-L9611 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 安装发动机清洁度的作 用(正式版)

安装发动机清洁度的作用(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 发动机是汽车的主要部件,汽车发动机的质量好坏是直接影响着汽车的整体质量水平和正常运转及经济效益,根据本人多年驾驶维修经验,现仅以清洁度对发动机的使用寿命的影响进行简要分析,以便在维修和使用中引起对清洁的重视。 在汽车维修工序中,装配属最后工序,必须严把质量、清洁关。装配质量的好坏将直接影响汽车的性能及使用寿命。影响装配质量的因素很多,如:配件型号的要求,装配间隙的调整,螺栓的拧紧力矩等等。其中有一点容易被大家忽视,但又是重要的一环,即装配清洁度的要求问题。

由于汽车维修业不比厂家制造,除个别的维修厂外,其它维修站、点条件都比较简陋,尤其是我们是黄河施工单位大多是野外作业,工作条件及卫生环境都难以保证,维修工对清洁度概念及要求容易放松,加之有时必须在半路上作业,对清洁度的要求更是“大差不差”即可。然而正是这个装配“清洁度”,在很大成度上影响着汽车的运行性能与使用寿命。 首先、运动件之间存在的杂质会引起零部件的磨损,甚至发生卡滞现象,我们的装配现场常会存在灰尘、沙尘、甚至是铁末,这些细小杂质沾到零件表面上或落到机油底盘、气门室罩等机器内腔中,这些杂质终将直接或经润滑油间接输送到运动件之间,从而引起零件间接触不良,比压增大,摩擦加剧,引起零件的早期过度磨损,大大的降低了汽车使用寿命。若杂质较大,有时会造成零件的卡滞等。

VPI浸漆处理前电机产品零部件清洁度标准

南京迪瓦机械制造有限公司 VPI浸漆处理前 电机产品零部件清洁度标准 文件号 编制 批准 日期 分发号 版本号

1、适用范围 本标准适用于需VPI(真空压力浸漆)绝缘处理的各类电机产品零部件。 2、定子 2.1机座表面应无可见油脂、污垢、氧化皮、锈斑以及焊接和油漆引起的任何 附着物。机座表面无附着赃物(包括运输过程)。 2.2铸件定子还应无粘砂,夹砂。机座表面涂刷H06-2铁红环氧脂底漆部分必 须无皱皮,无疏松的油漆层及杂物(不允许用F06-1铁红酚酸等其他底漆)。 2.3机座内部无任何杂物(特别不允许有铁销等导电异物)。定子铁芯无锈斑、 油污、积灰。无任何残留的异物。 2.4绕组端部绝缘无损,决不允许绕组表面有油污斑迹(包括吊运过程手套痕 迹)及灰尘。无任何嵌线后残留的异物。 2.5严格控制脱模剂的使用决不允许有多余脱模剂存在,特别是不允许脱模剂 滴落到绕组表面。 2.6外压装定子 按湿热带产品要求加工的外压装定子零部件不允许用C04醇酸黑磁漆。定子铁芯通风槽内应无可见的油污、氧化皮等其他杂物。 转子(电枢) 3.2.1转子铁外圆及转轴各档无锈斑、油污。VPI绝缘处理前,去除M10超薄型不干性成膜型高效防锈油(需VPI绝缘处理的转轴绝不允许用5743硬膜防锈油)。 3.2.2绕组端部绝缘无损决不允许绕组表面有油污斑迹(包括吊运过程手套痕迹)。无纬带要烘干,运输和摆放过程中不允许有落地的痕迹。无任何嵌线后残留的异物(特别是导电物质)及灰尘。 3.2.3严格控制脱模剂的使用,不允许有多余脱模剂存在,特别是不允许脱模剂滴落到绕组表面。 4、其他零部件 4.1磁极 4.1.2铁芯无锈斑,油污。磁极螺孔内无铁屑,铁粉及其他杂物。 4.1.3线圈表面无油污、斑迹。 4.1.4带压紧工具的主极要严格控制脱模剂的使用进行脱模处理,不允许有多余脱模剂存在,特别是绕组表面不允许滴落脱模剂。 4.2线圈 4.2.2所有线圈表面无油污、坑脏痕迹、积灰。 4.2.3直流电机主极线圈、换向极线圈带压紧模具的要严格按照规定进行脱模处理,并清除多余脱模剂。

清洁度测定方法

清洁度的测定方法 清洁度的测定方法2009-08-03 清洁度测定方法对过程控制、品质保证和失效分析非常重要,是概括用于获得有关测定主体如各种机械设备、电子零件等清洁度数据的详细过程。 检测清洁度时对取样有要求,取样的基本要求决定于样品的数量和取样位置。零件体积越大、表面积越大、清洁度偏低,则样品数量相应减少。应该从生产中随机抽取零件,并且采样过程和后面的检查过程中不能造成零件的污染。 检测清洁度时,一要环境清洁,其清洁程度应与检测的要求相适应;二要检测人员的衣帽和双手清洁;三要所用器具也必须清洁。 目前,在我国航空航天部、机械部、铁道部等已报批核准的行业标准及具体要求的是最常用的配对称重法。我司所引进的全套设备就是重量法的成套检测装置。 清洁度的测定方法很多,主要有如下几种: * 目视检查法 目视检查法即由人工直接用眼睛在显微镜下对零件可以看到的外表面或内腔表面进行检查。调节显微镜的照明亮度和放大倍数,人工可以判断污染颗粒是金属、非金属、或纤维以及尺寸大小。目测法可以检查残留在零件表面的比较大而明显的颗粒、斑点、锈斑等污染,但检查的结果与人为的因素关系很大。 * 称重法 称重法是工业生产和试验中最常用的清洁度测定方法。其测定原理是将一定数量的试样在一定的条件下进行清洗,然后将清洗的液体通过滤膜充分过滤,污物被收集在经过干燥的滤膜表面,将滤膜再次充分干燥,根据分析天平称出过滤清洗前后干燥的滤膜质量,计算其增加值即为试样品上的固体颗粒污染物的质量。 * 接触角法 所谓接触角,就是液体在固体表面形成热力学平衡时所持有的角。对固体和液体之间形成的接触角的测量,是在表面处理及聚合体表面分析等众多类似领域广为知晓的分析技术,是对多个单位的单层变化十分敏感的表面分析技术。测量液滴在固体表面的接触角来评估表面的可湿润特性。如果液滴可湿润表面,则接触角小,反之液滴不能湿润表面,而在表面倾向于形成圆珠或气泡,则接触角大。这就是“水膜残迹”测试的原理。接触角大,表示表面被憎水性的污物(油/ 脂等)污染,反之,接触角小,液滴破裂或摊薄,表示该表面清洁。这种测试方法受人为因素影响也很大,而且这种方法对非常轻小或分散的污物不易识别。尤其是有些特殊材料(如PTFE 塑料)即使表面很清洁,对大多数液体的接触角也很大。所以,接触角法不适合对某些关键重要的表面清洁度测试。 * 荧光发光法 在许多情况下,可以利用紫外线来检测零件表面的清洁度。在紫外线的照射下,表面的污染物颗粒会发出荧光。因为紫外线的能量被污物吸收,污物颗粒电子被激化并跃进到高能级的电子层,处于高能级的不稳定的电子随即会返回原低能级电子层,在此过程中原来吸收的能量以发热发光的形式释放出来——荧光。这种激活释放的频率达每秒几千次,所以在紫外线下的荧光不是闪烁的而是持续稳定的,根据发荧光即可目测污物在零件表面的位置,荧光强度也是可以应用信号检测仪器测定从而表示表面被污染的程度。但如果要识别污染物的成分等特性,必须借助其他分析法。 * 颗粒尺寸数量法 这是一种零件清洁度测定的新方法。其基本原理是根据被检测的表面与污染物颗粒具有不同的光吸收或散射率。其测试方法是,将一定数量的零件在一定的条件下清洗,将清洗液通过的滤膜充分过滤,污物被收集在滤膜表面,然后将滤膜干燥,用显微镜(最佳设备是具有拍摄功能的图像识别和分析设备)在光照射下检测,按颗粒尺寸和数量统计污物颗粒,即可得到所测物体零件的固体颗粒污染物结果。这是一种适合精密清洗定量化的清洁度检测方法,尤其使用于检测微小颗粒和带色杂质颗粒。但是如果滤膜是白色的,那么对白色污物和气泡的识别就有可能引起误判。

清洁度检测规范

清洁度检测规范 1.目的 本标准规定了油泵总成及其零部件清洁度的检测规范,以方便清洁度的检查和测定。 2.适用范围 本标准适用于本公司生产的油泵及其零部件的清洁度检查和测定。 3.技术要求 3.1油泵总成内腔残留污染物总质量不得超过13mg.(按DDACB-003-2012标准) 3.2残留污染物最大颗粒度不超过0.05mm.(按DDACB-003-2012标准) 4.设备器具及耗材 4.1 试验设备 4.2 辅助器具(含备用) 4.3 试验用消耗材料 设备名称 制造厂商 型号/规格 备 注 电子分析天平 上海佑科仪器厂 FA1004B 分度值0.1mg 恒温干燥箱 浙江萧山仪器二厂 202-2 分度值2℃ 真空泵 浙江黄岩天龙真空 泵厂 XZ-1 1L/s 带标尺显微镜 上海精贤光电科技 有限公司 C1 分度值0.01mm 序号 名称 型号/规格 数量 备 注 5. 清洗盆 Φ240×90 2 6. 温度计 / 1 恒温干燥箱自带 7. 尼龙圆刷 Φ20 2 8. 尼龙圆刷 Φ65 1 9. 尼龙扁刷 25/50/75 各1 10. 量杯 50/500/1000ML 各2 11. 广口瓶 250/500/1000ML 各3 12. 抽滤瓶 250/500/1000ML 各1 见过滤装置示意图 13. 滤杯 / 1 14. 不锈钢镊子 1 扁平无齿 15.

5.准备工作 (1)清洁度测量工作应在干燥、清洁、安全的工作室内进行,且工作室应有良好的防尘措施。 (2)各种设备仪器应定期检查,以保证测量精度。 (3)所有取样工具和容器等均应预先清洗干净,并用干净的白绸布擦拭,擦拭后白绸布上不应出现脏痕。 6.抽样方法 对于入库的总成,每型号、每批抽查3台,杂质量按每台计算,如有一台不符合要求,则应加倍抽查,若仍不符合要求,则该批应全部重新清洗。 对于装配现场内待装配的零部件,每周抽查1次,每次3~5件。如有一件不符合要求,应加倍抽查该部件,若仍不符合要求,必须全部重新清洗后,才能装配。 序号 名称 型号/规格 数量 备 注 1 滤膜 规格Φ50mm ,孔隙5um ≥3片 2 清洗液1 120#工业汽油 ≥1升 预过滤 3 清洗液2 普通汽油 ≥2升 注:120#工业汽油,俗称“航空煤油”。在此处其清洁度不得超出被测元件清洁度的10%.

关于汽车的所有国家标准

B/T3730.1-1998 汽车和半挂车的术语及定义车辆类型 GB/T3730.3-1992 汽车和半挂车的术语及定义车辆尺寸 GB/T3730.2-1996 道路车辆质量词汇和代码 GB/T17347-1998 商用道路车辆尺寸代码 GB/T16735-1997 道路车辆车辆识别代号(VIN)位置及固定 GB/T16736-1997 道路车辆车辆识别代号(VIN)内容与构成 GB/T16737-1997 道路车辆世界制造厂识别代号(WMI) GB/T16738-1997 道路车辆世界零件制造厂识别代号(WPMI) GB/T17349.1-1998 道路车辆汽车诊断系统词汇 GB/T4782-1984 道路车辆-操纵件、指示器及信号装置-词汇 GB/T4971-1985 汽车平顺性名词术语和定义 GB/T12549-1990 汽车操纵稳定性术语及其定义 GB/T15089-1994 机动车辆分类 QC/T34-1992 汽车的故障模式及分类 QC/T571-1999 汽车清洁度工作导则名词、术语 GB/T9417-1988 汽车新产品型号编制规则 GB/T17349.2-1998 道路车辆汽车诊断系统图形符号 GB4094-1999 汽车操纵件指示器及信号装置的标志 GB/T17676-1999 天然气汽车和液化石油气汽车标志 GB/T4781-1984 牵引车与全挂车的机械连接装置互换性 GB/T4606-1984 道路车辆半挂车鞍座50号牵引销主要尺寸和安装互换性尺寸GB/T4607-1984 道路车辆半挂车鞍座90号牵引销主要尺寸和安装互换性尺寸QC/T538-1999 载货汽车燃料消耗量限值 QC/T535-1999 重型载货汽车燃料消耗量限值 GB1495-1979 机动车辆允许噪声 GB16170-1996 汽车定置噪声限值 GB1589-1989 汽车外廓尺寸限界 GB11561-1989 汽车加速器控制系统的技术要求 GB11553-1989 汽车正面碰撞时对燃油泄漏的规定 GB/T7031-1986 车辆振动输入路面平度表示方法 GB7258-1997 机动车运行安全技术条件 GB17259-1998 机动车用液化石油气钢瓶 GB17258-1998 汽车用压缩天然气钢瓶 QC/T245-1998 压缩天然气汽车专用装置和安装要求 QC/T247-1998 液化石油气汽车专用装置和安装要求 QC/T251-1998 矿用自卸汽车应急转向性能要求 GB/T16887-1997 卧铺客车技术条件 QC/T635-2000 双层客车技术要求

QCT 572-1999汽车清洁度工作导则 测定方法

中华人民共和国汽车行业标准QC/T 572—1999 汽车清洁度工作导则测定方法代替JB 4072.2—85 本标准规定了汽车零件和总成、整车清洁度的测定方法。 注:铸、锻、焊接件毛坯清洁度的测定方法见附录A。 1 准备 1.1 按照JB 4072.3—85《汽车清洁度工作导则人、物和环境》的规定对人、物和环境做好测定前的准备。 1.2 按照JB 4072.4—85《汽车清洁度工作导则抽样规则》的规定抽样,并做好被测物测定前的准备。 2 清洗 2.1 在清洗过程中应保证操作一致,以使结果具有较高的重复性和再现性。2.2 清洗方法分人工清洗和压力冲洗,压力冲洗系统见附录C。 2.3 零件的清洗 2.3.1 将被测件用人工清洗(采用定量的清洗液)或用压力冲洗(采用定量定压力的清洗液)充分淋洗或冲洗清洗部位。 2.3.2 对被测件的被测内表面用预先浸湿清洗液的尼龙刷,以规定的方式 刷洗。 2.3.3 勿使非取样部位沾上清洗液,并防止清洗液以任何方式飞溅到容器 以外。 2.3.4 清洗部位如有润滑脂,可先在清洗液中浸泡,然后将其全部冲入容 器内。 2.3.5 用洁净的清洗液在一个容器内清洗所有用过的器具。 2.3.6 将清洗后的被测件进行防锈处理并提交保管或复装。

2.4 总成的清洗 2.4.1 向总成内加注洁净的、规定油种、规定体积的润滑油或工作液,按有 关总成或整车试验方法的磨合工况进行磨合,然后收集涧滑油或工作液于洁净的 容器内。 2.4.2 用一定量的洁净的清洗液冲洗总成、晃动总成,然后将其连同磨合后 的润滑油或工作液收集在一起。 3 过滤 3.1 过滤分全液过滤和抽样过滤。混浊液过多时,可以采用抽样过滤的方法, 当混浊液过稠时,可用洁净的清洗液稀释,清洗液加入量以能较快的通过滤膜为 限。 3.2 根据过滤速度和机械杂质粒度的大小,可采用单片滤膜或滤网加滤膜的方 法进行, 一般采用5微米滤膜或网孔尺寸为38微米的滤网)并分别按JB 1028.3—85中 2.1.2及2.2.2的方法进行恒重。 3.3 过滤带有润滑脂的混浊液时,应先注入用洗涤剂的蒸馏水配成的洗涤液, 然后用离心的方法脱脂,最后再进行过滤。 3.4 全液过滤: 3.4.1 采用已恒重的滤网加滤膜的方法,先将一部分混浊掖倒入滤网,然后 导入微孔滤膜过滤装置的漏斗中。 3.4.2 开动真空泵,当系统的真空度达到600毫米汞柱时进行过滤。 3.4.3 控制通过滤网的混浊液,使微孔滤膜过滤装置漏斗内的混浊液始终保 持一定的压头。 3.4.4 如果发现滤速突然变快或变慢,表示膜已破损或微孔被堵塞,应更换

汽车零部件清洁度检测和控制

汽车零部件清洁度检测和控制-如何更合理和有效 随着零件清洗在技术和应用领域的进步,汽车零部件的清洁度要求变得尤其严苛。对清洁度的要求,有时已经超越了实用性和功能性,带来的是更高的成本,更多的时间,和资源的浪费。因此,如何制定一个更加合理,更加有效,符合质量要求而不过激的清洁度规范和标准,变得越来越重要。 汽车零部件的清洁度规范和标准建立,涉及到五个步骤和问题:零件的尺寸,污染物性质,必要的清洁,清洁过程,和清洁度检测验证。 首先,零件的尺寸是设计一个高效的清洗过程的基础。清洗设备制造商要与客户共同工作,以了解零部件的精确尺寸,公差和材料组成。材料尤其不能被忽略,因为在清洗过程中,化学品会产生腐蚀,物理清洗会导致热膨胀而改变零部件的尺寸。 第二个问题是需要被清洗的污染物的性质和数量,这是清洁度工作的重要变量。在清洗之前,应该进行零部件清洁度的检测,比如用天平做称重法以检测污染物重量,用全自动清洁度检测扫描显微镜或激光粒度仪来检测无贪污颗粒的尺寸,数量,形状,性质等等。正确计算污染物性质,数量,尺寸,对清洗设备的设计或选购清洗设备非常重要,用清洗处理能力小的清洗机去清洗污染物过多或过大的零部件,清洗机会很快过载,这里要强调的是,尺寸小但污染物较多的零部件,反而可能需要更大的清洗槽。 精确全面地进行清洁度检测以确定污染物的性质和数量,不仅仅是对结果的抽检,更关系到合理正确的零部件清洗流程。比如清洗机

采用什么样的清洗剂,如果我们不知道需要清洗的污染物有哪些,那么清洗剂的选用可能是盲目的,其结果可到是无法清洗干净,或者过分的清洗,损伤零部件。了解污染物的性质好有助于更好地维护清洗机,延长其使用寿命。因此,在清洁度检测设备上的成本投入增加,也可以被认为是对清洗机投入成本的降低。 解决了这些问题后,现在是时候来确定基准水平的清洁度。绝对干净通常是没有必要的。汽车零部件的清洁度不需要和外科手术工具一样的清洁度等级。找出什么时候污染开始影响性能,并从那里工作。设置一个规格稍高一点的清洁度等级是必须的,但把它定得太高则是低效和浪费。 举个例子说,如果一个零部件的污染物重量为2毫克,且每个污染颗粒尺寸不大于200微米时能完美地工作,那就不必设定更高的清洁度标准。 一旦清洁度的基准确立了,那么就按照三个要素来设计你的清洁度控制流程:机械作用、化学反应和材料处理。找到一个有着丰富经验的清洗机制造商,尤其是曾经熟知你所生产的零部件和使用的材料,可能产生的污染物的供应商,这将使设计过程更为顺畅。 最后一步就是花时间做准确全面的清洁度检测。要使用清洁度检测设备对一个清洗过程做准确全面的测试,确保清洗机能达到清洁的目标,又没有损伤零部件。这时的清洁度检测,应该使用设计时同样的方法,设备,条件,参数,因此,清洁度检测设备是否能满足自动化,智能化,可编程,可自动记录并重复清洁度检测参数变得非常关

相关主题
文本预览
相关文档 最新文档