7.取中间值:当两个数都比较接近某一个中间数时,若一个数比中 间数大,另一个数比中间数小,就可以比较出两个数的大小;
8.二次根式:被开方数越大,二次根式的值越大; 9.取特值法 10.缩放法 11.其它放法。
实数大小比较10种中的隐含条件
解析:
小结:该法适用于被开方数中含有字母的二次 根式和三次根式的大小比较.实质上此题是运 用了一个基本事实,即正数>负数
基本思路是:要比较的两个数都接近于一 个中间数,其中一个数大于中间数,另一 个数小于中间数,就可以比较出两个数的 大小
456 748 例5:比较998 和 1084 的大小
456 1 748 1 解: 998 <2 , 1084 >2
456 748 所以:998 < 1084
平方法的基本是思路是先将要比较的两个数分别平方, 再根据
小数-大数<0, 即a-b<0,则a<b; 4.a、b都为正数,则两数的商与两数的大小有下面的关系:
a/b>1,则a>b; a/b=1,则a=b; a/b<1,则a<b; 5.分数大小的比较: 分母相同,分子越大分数越大;分子相同,分母越小分数越大。
6.倒数法:对于正数a、b倒数大的反而小。 即:a>0,b>0,若1/a>1/b,则a<b.
差值比较法的基本思路是设a,b为 任意两个实数,先求出a与b的差, 再根据
当a-b﹥0时,得到a﹥b; 当a-b﹤0时,得到a﹤b。 当a-b=0时,得到a=b。
商值比较法的基本思路是设a,b为任意两个正 实数,先求出a与b得商。
倒数法的基本思路是设a,b为任意 两个正实数,先分别求出a与b的倒 数,再根据
注:这种方法常用于比较无理数的大小