(整理)弯矩剪力轴力图
- 格式:doc
- 大小:110.50 KB
- 文档页数:6
弯矩,材料力学概念弯矩------“可变形固体”材料构成的工程结构,在承受弯曲载荷时产生的一种内力。
弯矩是杆件的端部力乘以作用长度,比如说一个悬壁梁,当梁端力为2N,梁长为3M,刚固端弯矩为-6KN.M,而梁的跨中弯矩为-3KN.M,按这个主法可以简单算,不过更深的算法要见《材料力学》了,正负是上部受拉为负,下部受拉为正。
提问者评价几个都说得比较好,还是采纳你得吧,谢谢哈。
是结构最重要的内力之一,就是力和力臂之积弯矩的本质是一种力,是指作用在构件的截面上的内力。
作用的倾向是是受力构件弯曲——以此区别于轴力和剪力。
简单的说是抵抗弯曲的一种内力,在力学上称之为弯矩。
也就是力和力距之积,比如两人用一根杠子抬重物,受力的作用杠子中间就会产生向下弯曲,在不加重重量的情况下弯曲会静止,两人产生反力,杠子产生抵抗内力这种现象就是正弯矩。
单一人挑担,受力的作用扁担两端向下,中间弯曲向上,人产生反力,扁担产生抵抗内力这种现象就是负弯矩。
静定梁有三种形式:简支梁、悬臂梁、外伸梁。
这三种梁的支座反力和弯矩、剪力只要建立平衡方程,就可以求解。
图 1.5.1左右两列分别是简支梁在均布荷载和集中荷载作用下的计算简图、弯矩图和剪力图。
图1.5.2左右两列分别是简支梁在2个对称集中荷载作用和一个非居中集中荷载作用下的计算简图、弯矩图和剪力图。
图1.5.3左右两列分别是悬臂梁在均布荷载作用和一个端点集中荷载作用下的计算简图、弯矩图和剪力图。
图1.5.4左右两列分别是外伸梁在集中荷载均布荷载作用和均布荷载作用下的计算简图、弯矩图和剪力图。
从图1.5.1~图1.5.4,我们看到,正确的弯矩图和正确的剪力图之间有如下对应关系:每个区段从左到右,弯矩下坡,剪力为正;弯矩上坡,剪力为负;弯矩为水平线时,对应区段的剪力为零;在均布荷载作用下,剪力为零所对应的截面,弯矩最大;在集中荷载作用下,弯矩最大值一般在集中荷载作用点,该点的剪力有突变,突变的绝对值之和等于集中荷载的大小。
ANSYS绘制弯矩、剪力、轴力图命令流完全教程1.绘制弯矩图建立弯矩单元表。
例如梁单元i节点单元表名称为imom,j节点单元表名称为jmom,ETABLE,NI,SMISC,1 !单元I点轴力ETABLE,NJ,SMISC,7 !单元J点轴力ETABLE,QI,SMISC,2 !单元I点剪力ETABLE,QJ,SMISC,8 !单元J点剪力ETABLE,MI,SMISC,6 !单元I点弯矩ETABLE,MJ,SMISC,12 !单元J点弯矩plls,MI,MJ2.标注弯矩图PLOTCTRLS>>NUMBERING>>SVAL ON即可在画出弯矩图的同时在图上标出弯矩值的大小3.调整弯矩图如果弯矩图方向错误,则绘制弯矩图命令为plls,imom,jmom,-1同一个节点处两边的单元内力有细微差别,导致内力数字标注出现重影。
观察上面整体轴力图也可以发现,一段一段的,好像马赛克,其实上面整体弯矩图也是,不过不是很明显罢了。
这是EULER-BEONOULI梁理论以及ANSYS输出定义造成的(详细原因就不展开了,看看梁理论的书和ANSYS的说明吧)。
为了修正重影和节点两边内力值不一样的问题,遍制了宏文件ITFAVG.MAC命令文件内容如下:!---------------------------------------------------------------------!宏:ITFAVG.MAC(INTERNAL FORCE AVERAGE MACRO)!获取线性单元内力,并对单元边界处的内力进行平衡!输入信息!内力类型:MFORX,MFORY,MFORZ,MMOMX,MMOMY,MMOMZ*ASK,ITFTYPE,'PLEASE INPUT THE TYPE OF INTERNAL FORCE','MMOMY'!需处理的单元包*ASK,EASSEMBLY,'PLEASE INPUT THE COMPONENT NAME OF ELEMENTS TO BE PROCESSED!','EOUTER'!需处理的节点包*ASK,NASSEMBLY,'PLEASE INPUT THE COMPONENT NAME OF NODE TO BE PROCESSED!','NOUTER'!无需处理的节点包*ASK,UNASSEMBLY,'PLEASE INPUT THE COMPONENTNAME OF THE UNCHANGED NODE!(NONE IF THERE'S NO SUCH COMPONENT)','NONE'/POST1!输入信息:内力类型,欲处理单元的集合,欲处理节点的集合!ITFTYPE='MMOMY'!EASSEMBLY='EOUTER'!NASSEMBLY='NOUTER'!按内力类型确定ANSYS输出信息SMISC的编号*IF,ITFTYPE,EQ,'MFORX',THENITFINUM=1ITFJNUM=7*ELSEIF,ITFTYPE,EQ,'MFORY',THENITFINUM=2ITFJNUM=8*ELSEIF,ITFTYPE,EQ,'MFORZ',THENITFINUM=3ITFJNUM=9*ELSEIF,ITFTYPE,EQ,'MMOMX',THENITFINUM=4ITFJNUM=10*ELSEIF,ITFTYPE,EQ,'MMOMY',THENITFINUM=5ITFJNUM=11*ELSEIF,ITFTYPE,EQ,'MMOMZ',THENITFINUM=6ITFJNUM=12*ELSE*ENDIF!对不需平均的节点进行处理*IF,UNASSEMBLY,NE,'NONE',THEN!选出不进行处理的节点包并获取不进行处理节点的数目CMSEL,S,UNASSEMBLY*GET,UNNODNUM,NODE,0,COUNT!定义长度为UNNODNUM的数组(UNNOD),以存放选中单元的单元编号*DIM,UNNOD,ARRAY,UNNODNUM!将选中单元的编号按顺序存入数组UNNOD*DO,I,0,UNNODNUM-1,1UNNOD(I+1)=NDNEXT(I)*ENDDO*ELSEUNNODNUM=0*ENDIF!选出所需的单元和节点包CMSEL,S,EASSEMBLYCMSEL,S,NASSEMBLY!获得当前选中单元总数(存入变量SELELENUM)*GET,SELELENUM,ELEM,0,COUNT!定义长度为SELELENUM的数组(ELENUM),以存放选中单元的单元编号*DIM,ELENUM,ARRAY,SELELENUM!将选中单元的编号按顺序存入数组ELENUM*DO,I,0,SELELENUM-1,1ELENUM(I+1)=ELNEXT(I)*ENDDO!获得当前选中节点总数(存入变量SELNODNUM)*GET,SELNODNUM,NODE,0,COUNT!定义长度为SELNODNUM的数组(NODNUM),以存放选中单元的单元编号*DIM,NODNUM,ARRAY,SELNODNUM!将选中单元的编号按顺序存入数组NODNUM*DO,I,0,SELNODNUM-1,1NODNUM(I+1)=NDNEXT(I)*ENDDO!定义所需的线性单元内力ETABLE,节点I的内力存入数组ITNFI,!节点J的内力存入数组ITNFJETABLE,ITNFI,SMISC,ITFINUMETABLE,ITNFJ,SMISC,ITFJNUM!定义所需的结果数组,并将其置零ETABLE,ITNFINEO,SMISC,5SADD,ITNFINEO,ITNFI,,1ETABLE,ITNFJNEO,SMISC,11SADD,ITNFJNEO,ITNFJ,,1*DO,K,1,SELNODNUM,1!处理不需平均的节点INDEX=0*IF,UNNODNUM,GE,1,THEN*DO,J,1,UNNODNUM*IF,NODNUM(K),EQ,UNNOD(J),THENINDEX=1*ELSE*ENDIF*ENDDO*ELSE*ENDIF*DO,J,1,SELELENUM,1!选出和节点K相连的线性单元中,I节点(对线性单元而言)为节点K的单元编号*IF,NELEM(ELENUM(J),1),EQ,NODNUM(K),THENELEI=ELENUM(J)*EXIT*ELSE*ENDIF*ENDDO*DO,J,1,SELELENUM,1!选出和节点K相连的线性单元中,J节点(对线性单元而言)为节点K的单元编号*IF,NELEM(ELENUM(J),2),EQ,NODNUM(K),THENELEJ=ELENUM(J)*EXIT*ELSE*ENDIF*ENDDO*IF,INDEX,EQ,0,THEN*IF,ELEJ,NE,0,THEN !有可能出现ELEJ为0的情况!取出I节点为节点K的单元的I节点端的内力放入参数ETELEI *GET,ETELEI,ELEM,ELEI,ETAB,ITNFI!取出J节点为节点K的单元的J节点端的内力放入参数ETELEJ *GET,ETELEJ,ELEM,ELEJ,ETAB,ITNFJ!平均节点K的单元的I节点端的内力和节点K的单元的J节点端的内力ETAVE=(ETELEI+ETELEJ)/2!将平均后的内力存入结果数组中DETAB,ELEI,ITNFINEO,ETAVEDETAB,ELEJ,ITNFJNEO,ETAVE*ELSE*ENDIF*ELSE*ENDIF*ENDDO/UDOC,1,LOGO,OFFPLLS,ITNFINEO,ITNFJNEO!END OF ITFAVG.MAC(2)对体和面来说,ANSYS默认的结果输出格式是云图格式,而这种彩色云图打印为黑白图像时对比很不明显,无法表达清楚,对于发表文章非常不便。
一级注册结构工程师基础考试结构力学教程第一节平面体系的几何组成分析按照机械运动及几何学的观点,对平面结构或体系的组成情况进行分析,称为平面体系的几何组成分析。
一、名词定义(一)刚片和刚片系不会产生变形的刚性平面体称为刚片。
在体系的几何组成分析中,不考虑杆件微小的应变,这种不计应变的平面杆件就是刚片,由刚片组成的体系称为刚片系。
(二)几何可变体系和几何不变体系当不考虑材料的应变时,体系中各杆的相对位置或体系的形状可以改变的体系称为几何可变体系。
否则,体系就称为几何不变体系。
一般的实际结构,都必须是几何不变体系。
(三)自由度、约束和对象物体运动时的独立几何参数数目称为自由度。
例如一个点在平面内的自由度为2,一个刚片在平面内的自由度为3。
减少体系独立运动参数的装置称为约束,被约束的物体称为对象。
使体系减少一个独立运动参数的装置称为一个约束。
例如一根链杆相当于一个约束;一个连接两个刚片的单铰相当于二个约束;一个连接n个刚片的复铰相当于n—1个单铰;一个连接二个刚片的单刚性节点相当于三个约束;一个连接n个刚片的复刚性节点相当于n—1个单刚性节点。
一个平面体系的自由度w可按下式确定W=3n—2H—R其中n为体系中的刚片总数,H、R分别为体系中的单铰总数和支杆总数。
例如图1-1所示体系的自由度分别为1和0。
自由度大于零的体系一定是几何可变的。
自由度等于零及小于零的体系,可能是几何不变的也可能是几何可变的,要根据体系中的约束布置情况确定。
(a) (b)图1-1(四)必要约束和多余约束如果在体系中增加一个约束,体系减少一个独立的运动参数,则此约束称为必要约束。
如果在体系中增加一个约束,体系的独立运动参数并不减少,则此约束称为多余约束。
平面内一个无铰的刚性闭合杆(或称单闭合杆)具有三个多余约束。
(五)等效代替1.等效刚片几何组成分析时,一个内部几何不变的平面体系,可用一个相应的刚片来代替,此刚片称为等效刚片。
2.等效链杆几何组成分析时,一根两端为铰的非直线形杆件,可用一根相应的两端为铰的直线形链杆来代替,此直线形链杆称为等效链杆。
第六章弯曲变形知识要点1、弯曲变形的概念1)、挠曲线弯曲变形后梁的轴线变为挠曲线。
平面弯曲时,挠曲线为外力作用平面内的平面曲线。
2)、平面弯曲时的变形在小变形情况下,梁的任意二横截面绕各自的中性轴作相对转动,杆件的轴线变为平面曲线,其变形程度以挠曲线的曲率来度量。
1》纯弯曲时,弯矩—曲率的关系(由上式看出,若弯曲刚度EI为常数则曲率为常数,即挠曲线为圆弧线)2》横力弯曲时,弯矩—曲率的关系3)、平面弯曲时的位移1》挠度——横截面形心在垂直于梁轴线方向上的线位移,以表示。
2》转角——横截面绕其中性轴旋转的角位移,以表示。
挠度和转角的正负号由所选坐标系的正方向来确定。
沿y轴正方向的挠度为正。
转角的正负号判定规则为,将x轴绕原点旋转90°而与y轴重合,若转角与它的转向相同,则为正,反之为负。
4)、挠曲线近似微分方程5)、受弯曲构件的刚度条件,2、积分法求梁的挠度和转角由积分常数C、D由边界条件和连续性条件确定。
对于梁上有突变载荷(集中力、集中力偶、间断性分布力)的情况,梁的弯矩M(x)不是光滑连续函数,应用上式时,应分段积分,每分一段就多出现两个积分常数。
因此除了用边界条件外,还要用连续性条件确定所有的积分常数。
边界条件:支座对梁的位移(挠度和转角)的约束条件。
连续条件:挠曲线的光滑连续条件。
悬臂梁边界条件:固定端挠度为0,转角为0连续条件:在载荷分界处(控制截面处)左右两边挠度相等,转角相等简支梁边界条件:固定绞支座或滑动绞支座处挠度为0连续条件:在载荷分界处(控制截面处)左右两边挠度相等,转角相等连接铰链处,左右两端挠度相等,转角不等3、叠加原理求梁的挠度和转角1)、叠加原理各载荷同时作用下梁任一截面的挠度和转角等于各个载荷单独作用时同一截面挠度和转角的代数和。
2)、叠加原理的限制叠加原理要求梁某个截面的挠度和转角与该截面的弯矩成线性关系,因此要求:1》弯矩M和曲率成线性关系,这就要求材料是线弹性材料2》曲率与挠度成线性关系,这就要求梁变形为小变形4、弯曲时的超静定问题——超静定梁1)、超静定梁约束反力数目多于可应用的独立的静力平衡方程数的梁称为超静定梁,它的未知力不能用静力平衡方程完全确定,必须由变形相容条件和力与变形间的物理关系建立补充方程,然后联立静力平衡方程与补充方程,求解所有的未知数。