比特误码率仿真
- 格式:pdf
- 大小:162.58 KB
- 文档页数:4
通信电子中的误码率和误比特率测试技术误码率和误比特率是通信电子领域中非常重要的概念和参数,误码率通常使用 Bit Error Rate (BER) 表示,而误比特率则使用Symbol Error Rate (SER) 或者 Bit Error Ratio (BER) 表示,它们都是指在数字通信系统中传输的每个比特或每个符号中错误的比例。
误码率和误比特率的测试技术是通信电子领域中一项非常关键的技术,本文将从误码率和误比特率的概念入手,介绍这两个指标的测试技术。
一、误码率和误比特率的概念在数字通信系统中,误码率是指在比特流传输中,错误比特的比例。
误比特率则是指在符号流传输中,错误符号的比例。
误码率和误比特率通常用十的负幂次表示,在通信电子领域中严格的误码率和误比特率要求很高,航空航天、卫星通信、铁路通信、金融交易等领域所要求的误码率和误比特率甚至可达到 $10^{-12}$ 或更高的水平。
误码率和误比特率的测量方法包括直接法和间接法,其中在数字通信系统中更常用的是直接法。
一般的误码率和误比特率测量是在发射端和接收端之间进行的,这里我们重点介绍直接法误码率和误比特率测试的技术。
二、误码率测试技术一般情况下,误码率测试是在接收端进行的,接收端一般使用误码率测试仪进行测量。
误码率测试仪通常包括一个比特同步器、一个误码计数器和一个误码率计算器。
误码计数器的工作原理是通过比特同步器对接收到的比特串进行比对,识别出传输中的错误比特,并对这些错误比特进行计数。
误码率计算器则是将误码计数器的计数值和传输的比特数进行取比,计算出误码率。
误码率测试仪的工作原理是将测试仪的传输端和接收端连接起来,通过产生一个不同比特率、不同波特率、不同码型、不同幅度的测试波形,来模拟真实的通信环境,系统测试出误码率。
误码率测试仪的误码计数器一般采用硬件实现,这样可以大大提高测试的速度和准确度。
误码率测试仪一般适用于数字通信系统中的不同层次的传输介质,比如光纤、铜线等,同时还可以测量不同类型的数字信号,比如 ASK、FSK、PSK、QAM等等。
误码率matlab
误码率(Bit Error Rate,简称BER)是衡量数字通信系统性
能的重要指标之一。
在MATLAB中,我们可以使用各种方法来计算和
分析误码率。
一种常见的方法是使用通信系统工具箱(Communications System Toolbox)中提供的函数来进行误码率分析。
首先,我们需要生成一个适当的信号来模拟数字通信系统。
可
以使用随机数生成函数来创建数字信号,然后将其调制为模拟信号。
接下来,我们可以加入信道模型,例如高斯噪声信道,以模拟实际
通信环境中的噪声影响。
然后,我们可以使用接收端的解调器对接
收到的信号进行解调,并与发送端的原始信号进行比较,以计算误
码率。
在MATLAB中,可以使用通信系统工具箱中的函数如awgn(添
加高斯噪声)、modulate(调制)、demodulate(解调)等来实现
上述步骤。
一旦接收到解调后的信号,我们可以使用比特比特比函
数(biterr)来计算误码率。
除了这种基本方法外,MATLAB还提供了许多其他用于误码率分
析的工具和函数。
例如,可以使用误码率曲线(BER curve)来可视
化不同信噪比下的误码率表现,以便更直观地了解系统性能。
此外,还可以利用MATLAB的并行计算功能来加速大规模误码率仿真的计算
过程。
总之,MATLAB提供了丰富的工具和函数来进行误码率分析,可
以根据具体的通信系统模型和需求选择合适的方法进行计算和分析。
希望这些信息能够帮助你更好地理解在MATLAB中进行误码率分析的
方法。
prbs误码率单位-回复PRBS误码率单位主要包括bit error rate(比特误码率)和symbol error rate(符号误码率)。
一、比特误码率(BER):比特误码率是指在数字通信系统中,接收到的比特流中错误比特的占比。
它通常以每秒错误比特数量来衡量,并用单位“比特每秒”(bits per second)表示。
要计算比特误码率,需要在发送端和接收端之间建立一个模拟测试环境。
首先,发送器利用伪随机二进制序列(PRBS)生成一个固定长度的比特流。
该比特流包括有限长度的1s和0s,以产生一个已知的比特序列。
然后,该比特流通过信道传输到接收端。
在接收端,从信道中接收到的比特流与原始发送的比特流进行比较。
如果接收的比特与发送的比特不匹配,就被认为是一个错误比特。
通过统计错误比特的数量以及发送的总比特数,可以计算出比特误码率。
比特误码率可以表示为每秒比特数中的错误比特数量。
例如,如果接收器每秒接收到1,000,000个比特,其中有100个错误比特,则比特误码率为100/1,000,000=0.0001。
通常,比特误码率以指数形式表示,即10的负指数幂。
在此示例中,比特误码率可以表示为1E-4,或0.0001。
二、符号误码率(SER):符号误码率是指在数字通信系统中,接收到的符号序列中错误符号的占比。
符号是指数字通信系统中的基本单位,它可以代表一个或多个比特。
符号误码率通常以每秒错误符号数量来衡量,并用单位“符号每秒”(symbols per second)表示。
计算符号误码率的方法与计算比特误码率类似。
需要建立一个模拟测试环境,在发送端和接收端之间传输已知的符号序列。
在接收端,接收到的符号序列与原始发送的符号序列进行比较,统计错误符号的数量以及发送的总符号数,从而计算出符号误码率。
与比特误码率类似,符号误码率也可以表示为每秒错误符号数中的错误符号数量。
例如,如果接收器每秒接收到1,000个符号,其中有10个错误符号,则符号误码率为10/1,000=0.01,即1。
数字通信系统的误码率性能仿真与
实现
数字通信系统的误码率性能仿真与实现,是指使用计算机来进行数字通信系统的性能测试,其中包括误码率、带宽分配、延迟时间等。
通常而言,在使用数字通信系统前,采取性能仿真技术,即使用计算机模拟实际环境,并对系统进行性能测试,以确保系统的正常工作。
这种方法不仅可以减少实际实施系统时可能遇到的风险,而且可以提高系统的性能水平。
误码率(BER)是指在进行数字通信时,传输的数据信息中出现的错误率。
误码率的测定是一种标准的数字通信系统测试,用于衡量系统的质量和可靠性。
为了测试误码率性能,需要使用计算机模拟系统的操作环境,并设置所需的参数,以测量系统在特定情况下的误码率。
当系统的性能符合要求时,可以实施系统。
因此,数字通信系统的误码率性能仿真和实现是一种重要的测试手段,可以帮助系统开发者检测系统的性能,并确保系统的功能和安全。
目录一、概述 (2)二、课程设计要求 (3)三、SystemView动态系统仿真软件 (3)1、SystemView系统的特点 (3)2、使用Systemview进行通信系统仿真的步骤 (4)四、数字调制系统BER测试的仿真设计与分析 (5)五、仿真系统组成及对应结果 (8)一、低频相干调制解调系统组成与分析 (8)二、高频相干调制解调系统BER测试仿真模型建立与分析 (10)三、低频差分相干调制解调仿真模型建立与分析 (14)四、高频差分相干调制解调BER测试仿真模型建立与分析 (16)六、心得体会 (21)七、参考文献 (22)一、概述现代社会通信技术迅速发展,对于通信技术人才的需求也日益增加。
因此通信专业人才的培养被提上日程。
而通信原理课是通信专业的核心课,通信实验在通信原理课中起着举足轻重的作用。
传统教学以实验箱类硬件教学为主。
而硬件教学一般为验证性实验,学生无法从中理解和掌握具体的模块组成和系统原理。
通信课程概念多、系统的模型多不易于理解,加之抽象的特点,使得学生丧失学习兴趣,对于问题的认知处于一种表面状态。
因此一些虚拟实验受到越来越多的关注。
Systemview是ELANIX公司推出的一个完整的动态系统设计、模拟和分析的可视化仿真平台。
从滤波器设计、信号处理、完整通信系统的设计与仿真,直到一般的系统数学模型建立等各个领域, Systemview 在友好而且功能齐全的窗口环境下,为用户提供了一个精密的嵌入式分析工具。
它作为一种强有力的基于个人计算机的动态通信系统真工具,可达到在不具备先进仪器的条件下也能完成复杂的通信系统设计与仿真仿的目的,特别适合于现代通信系统的设计、仿真和方案论证,尤其适合于无线电话、无绳电话、寻呼机、调制解调器、卫星通讯等通信系统;并可进行各种系统时域和频域分析、谱分析,及对各种逻辑电路、射频/模拟电路(混合器、放大器、RLC电路、运放电路等)进行理论分析和失真分析。
3G移动通信实验报告实验名称:数字通信系统误码率仿真分析学生姓名: 学生学号: 学生班级: 所学专业:实验日期:1. 实验目的1. 掌握几种典型数字通信系统误码率分析方法。
2. 掌握误码率对数字通信系统的影响及改进方法2. 实验原理1、数字通信系统的主要性能指标通信的任务是传递信息,因此信息传输的有效性和可靠性是通信系统的最主要的质量 指标。
有效性是指在给定信道内能传输的信息内容的多少,而可靠性是指接收信息的准确程度。
为了提高有效性,需要提高传输速率,但是可靠性随之降低。
因此有效性和可靠性是相 互矛盾的,又是可交换的。
可以用降低有效性的办法提高可靠性, 也可以用降低可靠性的办法提高有效性。
数字通信系统的有效性通常用信息传输速率来衡量。
当信道一定时,传输速率越高, 有效性就越好。
传输速率有三种定义:码元速率(Rs ):单位时间内传输的码元数目,单位是波特( Baud ),因此又称为波特率;信息速率(Rb ):单位时间内传输的信息量(比特数),单位是比特/秒(b/s ),因此又 称为比特率;消息速率(R M):单位时间内传输的消息数目。
对于M 进制通信系统,码元速率与信息速率的关系为:R b R s log 2 M b/s R bR s - baud log 2 M特别说明的是,在二进制数字通信系统中信源的各种可能消息的出现概率相等时,码 元速率和信息速率相等。
在实际应用中,通常都默认这两个速率相等, 所以常常简单地把一个二进制码元称为一个比特。
数字通信系统的可靠性的衡量指标是错误率。
它也有三种不同定义: 误码率(Fe ):指错误接收码元数目在传输码元总数中所占的比例,即误比特率(Fb ):指错误接收比特数目在传输比特总数中所占的比例,即P e错误接收码元数 传输总码元数错误接收比特数 传输总比特数误字率(PW ):指错误接收字数在传输总字数中所占的比例。
若一个字由 k 比特组成,每比特用一码元传输,则误字率等于kP W i i P e对于二进制系统而言,误码率和误比特率显然相等。
matlab误码率仿真代码以下是一个简单的 MATLAB 误码率仿真代码示例,用于模拟二进制传输系统的误码率。
在这个示例中,我们将使用 BPSK(二进制相移键控)调制来进行仿真。
matlab.% 设置参数。
SNR_dB = 0:1:10; % 信噪比范围。
numBits = 1e6; % 要传输的比特数。
ber = zeros(size(SNR_dB)); % 初始化误码率向量。
for i = 1:length(SNR_dB)。
% 生成随机的二进制数据。
txBits = randi([0,1],1,numBits);% BPSK调制。
txSignal = 2txBits 1;% 添加高斯噪声。
noiseVar = 10^(-SNR_dB(i)/10);noise =sqrt(noiseVar/2)(randn(1,numBits)+1irandn(1,numBits)); rxSignal = txSignal + noise;% BPSK解调。
rxBits = real(rxSignal) > 0;% 计算误码率。
ber(i) = sum(rxBits ~= txBits)/numBits;end.% 绘制误码率曲线。
semilogy(SNR_dB,ber,'o-');xlabel('SNR (dB)');ylabel('Bit Error Rate');title('BPSK误码率仿真');grid on;在这个示例中,我们首先设置了信噪比范围和要传输的比特数。
然后我们使用 for 循环来遍历不同的信噪比值。
在每个循环中,我们生成随机的二进制数据,并将其进行 BPSK 调制。
接着我们添加高斯噪声,并进行 BPSK 解调。
最后我们计算误码率,并将结果绘制成误码率曲线。
这个示例代码可以帮助你了解如何使用 MATLAB 进行简单的误码率仿真。
《MATLAB实践》报告——QPSK系统的误码率和星座图仿真一、引言数字调制就是把数字基带信号的频谱搬移到高频处,形成适合在信道中传输的带通信号。
基本的数字调制方式有振幅键控(ASK)、频移键控(FSK)、绝对相移键控(PSK)、相对(差分)相移键控(DPSK)。
在接收端可以采用想干解调或非相干解调还原数字基带信号。
数字信号的传输方式分为基带传输和带通传输。
然而,实际中的大多数信道(如)无线信道具有丰富的低频分量。
为了使数字信号在带通信道中传输,必须用数字基带信号对载波进行调制,以使信号与信道的特性相匹配。
通信系统的抗噪声性能是指系统克服加性噪声影响的能力。
在数字通信系统中,信道噪声有可能使传输码元产生错误,错误程度通常用误码率来衡量。
因此,与分析数字基带系统的抗噪声性能一样,分析数字调制系统的抗噪声性能,也就是求系统在信道噪声干扰下的总误码率。
误码率(BER:bit error ratio)是衡量数据在规定时间内数据传输精确性的指标。
误码率是指错误接收的码元数在传输总码元数中所占的比例,更确切地说,误码率是码元在传输系统中被传错的概率,即误码率=错误码元数/传输总码元数。
如果有误码就有误码率。
误码的产生是由于在信号传输中,衰变改变了信号的电压,致使信号在传输中遭到破坏,产生误码。
噪音、交流电或闪电造成的脉冲、传输设备故障及其他因素都会导致误码(比如传送的信号是1,而接收到的是0;反之亦然)。
误码率是最常用的数据通信传输质量指标。
它表示数字系统传输质量的式是“在多少位数据中出现一位差错”。
误信率,又称误比特率,是指错误接收的比特数在传输总比特数中所占的比例,即误比特率=错误比特数/传输总比特数。
在数字通信系统中,可靠性用误码率和误比特率表示。
数字调制用“星座图”来描述,星座图中定义了一种调制技术的两个基本参数:(1)信号分布;(2)与调制数字比特之间的映射关系。
星座图中规定了星座点与传输比特间的对应关系,这种关系称为“映射”,一种调制技术的特性可由信号分布和映射完全定义,即可由星座图来完全定义。
[键入文字]通信工程专业《通信原理》课程设计题目 QPSK的误码率仿真分析学生姓名谭夕林学号 **********所在院(系)陕西理工学院物理与电信工程学院专业班级通信工程专业 1102 班指导教师魏瑞完成地点陕西理工学院物理与电信工程学院实验室2014年 3 月 12 日通信工程专业课程设计任务书院(系) 物理与电信工程学院专业班级通信工程专业1102班学生姓名谭夕林一、课程设计题目 QPSK的误码率仿真分析二、课程设计工作自 2014 年 2 月 24 日起至 2014 年 3 月 16 日止三、课程设计进行地点: 物理与电信工程学院实验室四、课程设计的内容要求:利用仿真软件等工具,结合所学知识和各渠道资料,对QPSK在高斯通道下的误码率进行研究分析指导教师魏瑞系(教研室)通信工程系接受任务开始执行日期2014年2月24日学生签名谭夕林QPSK的误码率仿真分析谭夕林陕西理工学院物理与电信工程学院通信1102班,陕西汉中723003)指导教师:魏瑞【摘要】为实现QPSK应用到无线通信中,该文对QPSK系统性能进行了理论研究。
介绍了QPSK调制解调原理,对高斯白噪声信道的系统性能进行了研究,分析对比了在高斯白噪声信道下的系统误码性能。
为基于副载波QPSK无线激光通信系统的研究奠定了理论基础。
使用MATLAB中M语言完成QPSK的蒙特卡罗仿真,得出在加性高斯白噪声的信道下,传输比特错误率以及符号错误率。
并将比特错误率与理论值相比较,并得出关系曲线。
使用simulink搭建在加性高斯白噪声信道下的QPSK调制解调系统,其中解调器使用相关器接收机。
并计算传输序列的比特错误率。
通过多次运行仿真得到比特错误率与信噪比之间的关系。
【关键词】: QPSK,误码率,仿真,星座图【中图分类号】 TN702 [文献标志码] AQPSK BER simulation analysisTan Xilin(Grade11,Class2,Major of Communication Engineering,School of Physics and telecommunication Engineering of Shaanxi University of Technology, Hanzhong 723003,China)Tutor:Wei Rui[Abstract]For the application of the QPSK (Phase-Shift-Keying) to the wireless laser communication, this paper emphasizes the system of QPSK's performance, theoretically. In the paper, the principle of the QPSK's modulation and demodulation were introduced in brief and the performance of the system at white Gaussian noise (AWGN) channel was also analyzed carefully. The above results provide the theoretical foundation for the wireless laser communication system based on the QPSK with e the MATLAB language to complete Monte Carlo simulation of QPSK, and to obtain the transmission sequence bit error rate and symbol error rate in the additive white Gaussian noise channel, comparing it with the theoretical value, then get curve. The second aspect is to learn how to use Simulink and the functions and principles of various modules. Then we use Simulink to create the model of QPSK through additive white Gaussian noise channel. And take the advantage of the Correlator receiver to complete the operation of demodulation. Then calculate the transmission sequence bit error rate. By running the simulation repeatedly, we can get the relationship between the bit error rate and SNR.Keywords: QPSK, BER, simulation, constellation目录摘要 (3)Abstract (4)一绪论 (6)1.1 课题背景及仿真 (6)1.1.1QPSK系统的应用背景简介 (6)1.1.2QPSK实验仿真的意义 (6)1.1.3仿真平台和仿真内容 (6)二系统实现框图和分析 (7)2.1QPSK调制部分 (7)2.2QPSK解调部分 (8)三QPSK特点及应用领域 (9)3.1QPSK特点 (9)3.2误码率 (10)3.3QPSK时域信号 (10)3.4扩充认知QPSK-OQPSK (10)3.5QPSK的应用领域 (11)四使用simulink搭建QPSK调制解调系统 (12)4.1信源产生 (12)4.2QPSK系统理论搭建 (13)五仿真模型参数设置及结果 (15)5.1仿真附图及参数设置 (15)5.2仿真结果 (16)5.3误码率曲线程序及其仿真结果 (17)六仿真结果分析 (19)七总结与展望 (20)致谢 (21)参考文献 (21)一.绪论1.1课题背景及仿真:1.1.1QPSK系统的应用背景简介QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。
误码率和信噪比摘要:比特误码率(RBE)是衡量一个通信系统优劣的重要指标之一。
对如何利用System View仿真软件测试和生成一个通信系统的RBE测试曲线的实例进行了研究,并对此次仿真过程中的关键问题加以论述。
关键词:比特误码率;BCH码;卷积码;仿真2误码率测试仿真原理及其仿真的关键问题2.1误码率测试仿真原理在仿真系统中,信道模拟成一个高斯噪声信道(AWGN),输入信号经过AWGN信道后在输出端进行硬判断,当带有噪声的接收信号大于判决电平时,输出判为1,此时的原参照信号如果为0,则产生误码。
为了便于对各个系统进行比较,通常将信噪比用每比特所携带的能量除以噪声功率谱密度来表示,即Eb/N0,对基带信号,定义信噪比为:这里的A为信号的幅度(通常取归一化值),R=1/T是信号的数据率。
在仿真过程中,为了能得到一个通信系统的RBE曲线,通常需要在信号源或噪声源后边加入一个增益图符来控制信噪比的大小,System View仿真时应用此种方法(在噪声源后面加入增益图符)。
受控的增益图符需要在系统菜单中设置全局关联变量,以便每一个测试循环完成后将系统参数改变到下一个信噪比值,全局关联变量的设置方法在下述内容中介绍。
2.2全局关联变量的设置当一个高斯噪声信道的RBE测试模型设置基本完毕后,并不能绘出完整正确的RBE/RSN 曲线,还必须将噪声增益控制与系统循环次数进行全局变量关联,使信道的信噪比(RSN)由0 dB开始逐步加大,即噪声逐步减小,噪声每次减小的步长与循环次数相关。
设置的方法是:单击System View主菜单中的“Tools”选项,选择“Globa l Parameter Links”,这时出现如图1所示参数设置栏,在“SelectSystem T oken”中选择要关联的全局变量,图中选择了Gain 图符,如果设定每次循环后将信噪比递增1 dB,即噪声减小1 dB,则应在算术运算关系定义栏“Define Algebraic Relation F[Gi,Vi]”内将F [Gi,Vi]的值设置为-c1,这里c1为系统变量“Current System Loop”的系统循环次数。