2020年高考理科数学考前押题卷 (15)
- 格式:doc
- 大小:1.06 MB
- 文档页数:25
2020年高考理科数学押题预测卷及答案(考试时间:120分钟试卷满分:150分)第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x∈N|x<3},B={x|x2–x≤0},则A∩B=A.{0,1} B.{1}C.[0,1] D.(0,1]2.在复平面内,复数z23ii+=对应的点的坐标为A.(3,2)B.(2,3)C.(–2,3)D.(3,–2)3.已知函数f(x)2333x xx x⎧≤=⎨->⎩,,,则f(f(1)–f(5))的值为A.1 B.2 C.3 D.–34.“牟合方盖”是我国古代数学家刘徽在探求球体体积时构造的一个封闭几何体,它由两等径正贯的圆柱体的侧面围成,其直观图如图(其中四边形是为体现直观性而作的辅助线)当“牟合方盖”的正视图和侧视图完全相同时,其俯视图可能为A.B.C.D.5.已知双曲线C:2222y xa b-=1(a>0,b>0)的一条渐近线方程为y=2x,则双曲线C的离心率为A.5B.55C.5D.256.现有甲、乙、丙、丁4名学生平均分成两个志愿者小组到校外参加两项活动,则乙、丙两人恰好参加同一项活动的概率为A.12B.13C.16D.1127.若实数x,y满足20x yy xy x b-≥⎧⎪≥⎨⎪≥-+⎩且2z x y=+的最小值为3,则实数b的值为A.1 B.2C.94D.528.在正方体ABCD–A1B1C1D1中,点O是四边形ABCD的中心,关于直线A1O,下列说法正确的是A.A1O∥D1C B.A1O⊥BCC.A1O∥平面B1CD1D.A1O⊥平面AB1D19.函数()ln1xf xx=+的图象大致是A.B.C .D .10.已知圆C :x 2+y 2+2x –3=0,直线l :x +2+a (y –1)=0(a ∈R ),则A .l 与C 相离B .l 与C 相交C .l 与C 相切D .以上三个选项均有可能11.已知函数f (x )=3sin (ωx +φ)(ω>0,0<φπ2<),f (π3-)=0,f (2π3x -)=f (x ),且函数f (x )的最小正周期为π,则()8f π=A .3B .3-C .3D .3-12.若函数f (x )=e x–ax 2在区间(0,+∞)上有两个极值点x 1,x 2(0<x 1<x 2),则实数a 的取值范围是 A .a 2e ≤B .a >eC .a ≤eD .a 2e >第Ⅱ卷二、填空题(本题共4小题,每小题5分,共20分)13.已知向量AB =u u u r(1,2),AC =u u u r (–3,1),则AB BC ⋅=u u u r u u u r _________.14.某学校初中部共120名教师,高中部共180名教师,其性别比例如图所示,已知按分层抽样抽方法得到的工会代表中,高中部女教师有6人,则工会代表中男教师的总人数为_________.15.设等差数列{a n }的前n 项和为S n ,且S 4=3S 2,a 7=15,则{a n }的公差为_________. 16.已知点P (2,–2)和抛物线C :y 214x =,过抛物线C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若PA PB ⋅=u u u r u u u r25,则k =_________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos A (b cos C +c cos B )3=a . (1)求角A ;(2)若a =1,△ABC 的周长为5+1,求△ABC 的面积. 18.(本小题满分12分)如图所示,在直三棱柱ABC –A 1B 1C 1中,AB =BC =2,AC =CC 1=22,其中点P 为棱CC 1的中点,Q 为棱CC 1上且位于P 点上方的动点.(1)求证:BP ⊥平面A 1B 1C ;(2)若平面A 1B 1C 与平面ABQ 所成的锐二面角的余弦值为251,求直线BQ 与平面A 1B 1C 所成角的正弦值.19.(本小题满分12分)某中学为研究学生的身体素质与体育锻炼时间的关系,对该校200名高三学生平均每天体育锻炼的时间进行调查,调查结果如下表:平均每天锻炼的时间/分钟[0,10) [10,20) [20,30) [30,40) [40,50) [50,60) 总人数203644504010将学生日均体育锻炼时间在[40,60)的学生评价为“锻炼达标”. (1)请根据上述表格中的统计数据填写下面2×2列联表;锻炼不达标锻炼达标合计 男 女 20 110 合计并通过计算判断,是否能在犯错误的概率不超过0.025的前提下认为“锻炼达标”与性别有关? (2)在“锻炼达标”的学生中,按男女用分层抽样方法抽出10人,进行体育锻炼体会交流, ①求这10人中,男生、女生各有多少人?②从参加体会交流的10人中,随机选出2人作重点发言,记这2人中女生的人数为X ,求X 的分布列和数学期望.参考公式:K 2()()()()2()n ad bc a b c d a c b d -=++++,其中n =a +b +c +d .临界值表P (K 2≥k 0)0.10 0.05 0.025 0.010 k 02.7063.8415.0246.63520.(本小题满分12分)已知椭圆C :22221(0)x y a b a b+=>>及点(2,1)D ,若直线OD 与椭圆C 交于点,A B ,且|||AB OD =(O 为坐标原点),椭圆C的离心率为2. (1)求椭圆C 的标准方程; (2)若斜率为12的直线l 交椭圆C 于不同的两点,M N ,求DMN △面积的最大值. 21.(本小题满分12分)已知函数2()ln f x x x x =--. (1)求函数()f x 的极值;(2)若12,x x 是方程2()ax f x x x +=-的两个不同的实数根,求证:12ln ln ln x x a ++2<0.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,曲线C 的参数标方程为e e e et t t tx y --⎧=+⎪⎨=-⎪⎩(其中t 为参数),在以O 为极点、x 轴的正半轴为极轴的极坐标系(两种坐标系的单位长度相同)中,直线l的极坐标方程为πsin()3ρθ-=(1)求曲线C 的极坐标方程;(2)求直线l 与曲线C 的公共点P 的极坐标. 23.(本小题满分10分)选修4-5:不等式选讲已知函数()|21|f x m x =--,m ∈R ,且1()02f x +≥的解集为{|11}x x -≤≤.(1)求m 的值;(2)若,,a b c 都为正数,且111232m a b c ++=,证明:239a b c ++≥.。
2020年高考数学(理)终极押题卷(试卷)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设3i12iz -=+,则z =A .2BCD .12.已知集合A ={(x ,y )|x ,y 为实数,且x 2+y 2=1},B =|(x ,y )|x ,y 为实数,且x +y =1},则A ∩B 的元素个数为 A .4B .3C .2D .13.已知命题2000:,10p x x x ∃∈-+≥R ;命题:q 若a b <,则11a b>,则下列为真命题的是 A .p q ∧B .p q ∧⌝C .p q ⌝∧D .p q ⌝∧⌝4.下图给出的是2000年至2016年我国实际利用外资情况,以下结论正确的是A .2010年以来我国实际利用外资规模逐年增大B .2000年以来我国实际利用外资规模与年份呈负相关C .2010年我国实际利用外资同比增速最大D .2008年我国实际利用外资同比增速最大5.等差数列{}n a 的首项为1,公差不为0,若2a ,3a ,6a 成等比数列,则数列{}n a 的前6项的和6S 为 A .24-B .3-C .3D .86.已知向量(3,2)a =-v ,(,1)b x y =-v 且a v ∥b v ,若,x y 均为正数,则32x y+的最小值是A .24B .8C .83D .537.(x +y )(2x −y )5的展开式中x 3y 3的系数为 A .-80B .-40C .40D .808.《九章算术》中有如下问题:“今有勾五步,股一十二步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边长分别为5步和12步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是 A .215πB .320π C .2115π-D .3120π-9.已知函数()f x 的图象如图所示,则函数()f x 的解析式可能是A .()()=44xxf x x -+ B .()()244log x x f x x -=-C .()2()44log||x xf x x -=+D .()12()44log x xf x x -=+ 10.已知函数sin()()xx f x a ωϕπ+=(0,0,)a ωϕπ><<∈R ,在[]3,3-的大致图象如图所示,则aω可取A .2π B .πC .2πD .4π11.如图,平面四边形ABCD 中,1AB AD CD ===,BD =,BD CD ⊥,将其沿对角线BD 折成四面体A BCD '-,使平面A BD '⊥平面BCD ,若四面体A BCD '-的顶点在同一个球面上,则该球的表面积为A .3πBC .4πD12.若函数22(31)3,0()ln ,0x m x x f x mx x x x ⎧-++≤=⎨+>⎩恰有三个极值点,则m 的取值范围是 A .11,23⎛⎫-- ⎪⎝⎭B .1,02⎛⎫- ⎪⎝⎭C .11,3⎛⎫-- ⎪⎝⎭D .11,2⎛⎫--⎪⎝⎭二、填空题:本题共4小题,每小题5分,共20分。
2020年高考数学(理)终极押题卷(全解全析)1.【答案】C 【解析】因为312iz i-=+,所以(3)(12)17(12)(12)55i i z i i i --==-+-,所以z ==C .2.【答案】C【解析】由题得221,1,x y x y ⎧+=⎨+=⎩∴1,0,x y =⎧⎨=⎩或0,1,x y =⎧⎨=⎩则A ∩B ={(1,0),(0,1)}.故选C.3.【答案】B【解析】因为222131331()44244x x x x x -+=-++=-+≥,所以命题p 为真;1122,,22-<-<∴Q 命题q 为假,所以p q ∧⌝为真,故选B.4.【答案】D【解析】由图表可知:2012年我国实际利用外资规模较2011年下降,可知A 错误;2000年以来,我国实际利用外资规模总体呈现上升趋势,可知B 错误; 2008年我国实际利用外资同比增速最大,高于2010年,可知C 错误,D 正确.本题正确选项:D . 5.【答案】A【解析】Q 设等差数列{}n a 的公差为d ,()0d ≠,11a =,且2a ,3a ,6a 成等比数列,2326a a a ∴=⋅,()()()211125a d a d a d ∴+=++,解得2d =-,{}n a ∴前6项的和为616562S a d ⨯=+()65612242⨯=⨯+⨯-=-. 故选:A. 6.【答案】B【解析】由a r ∥b r得3(1)2233y x x y -=-⇒+=,因此3232231491()(12)(128333x y x y x y x y y x ++=+⋅=++≥+=,当且仅当49x y y x=时取等号,所以选B. 7.【答案】C【解析】()()()()555222x y x y x x y y x y +-=-+-,由()52x y -展开式的通项公式()()515C 2rrr r T x y -+=-可得:当3r =时,()52x x y -展开式中33x y 的系数为()3325C 2140⨯⨯-=-; 当2r =时,()52y x y -展开式中33x y 的系数为()2235C 2180⨯⨯-=,则33x y 的系数为804040-=.故选C. 8.【答案】C【解析】如图所示,直角三角形的斜边长为2251213+=, 设内切圆的半径为r ,则51213r r -+-=,解得2r =. 所以内切圆的面积为24r ππ=, 所以豆子落在内切圆外部的概率42P 111155122ππ=-=-⨯⨯,故选C .9.【答案】C【解析】函数()f x 的图象如图所示,函数是偶函数,1x =时,函数值为0.()()44x x f x x -=+是偶函数,但是()10f ≠, ()()244log x x f x x -=-是奇函数,不满足题意. ()()244log x x f x x -=+是偶函数,()10f =满足题意;()()1244log x x f x x -=+是偶函数,()10f =,()0,1x ∈时,()0f x >,不满足题意.故选C 项. 10.【答案】B【解析】()f x 为[]3,3-上的偶函数,而xy a π=为[]3,3-上的偶函数,故()()sin g x x ωϕ=+为[]3,3-上的偶函数,所以,2k k πϕπ=+∈Z .因为0ϕπ<<,故2ϕπ=,()()sin cos 2x xx x f x a a πωωππ⎛⎫+ ⎪⎝⎭==. 因()10f =,故cos 0ω=,所以2k πωπ=+,k ∈N .因()02f =,故0cos 012a a π==,所以12a =. 综上,()21k aωπ=+,k ∈N ,故选B .11.【答案】A【解析】设BC 的中点是E ,连接DE ,A ′E , 因为AB =AD =1,BD, 由勾股定理得:BA ⊥AD ,又因为BD ⊥CD ,即三角形BCD 为直角三角形, 所以DE为球体的半径,2DE =,2432S ππ==, 故选A . 12.【答案】A【解析】由题可知2(31),0()2ln 1,0x m x f x mx x x -+≤++'⎧=⎨>⎩,当0x >时,令()0f x '=,可化为ln 12x m x +-=,令()ln 1x g x x +=,则()2ln xg x x-=',则函数()g x 在()0,1上单调递增,在(1,)+∞上单调递减,()g x 的图象如图所示,所以当021m <-<,即12m -<<时,()0f x '=有两个不同的解;当0x ≤,令()0f x '=,3102m x +=<,解得13m <-,综上,11,23m ⎛⎫∈-- ⎪⎝⎭.13.【答案】22【解析】作出不等式组表示的平面区域如下图中阴影部分所示,由3z x y =-可得3y x z =-,观察可知,当直线3y x z =-过点B 时,z 取得最大值,由2402x y y --=⎧⎨=⎩,解得82x y =⎧⎨=⎩,即(8,2)B ,所以max 38222z =⨯-=.故答案为:22. 14.【答案】乙【解析】根据甲与团支书的年龄不同,团支书比乙年龄小,得到丙是团支书, 丙的年龄比学委的大,甲与团支书的年龄不同,团支书比乙年龄小, 得到年龄从大到小是乙>丙>学委, 由此得到乙不是学委,故乙是班长. 故答案为乙. 15.【答案】985987【解析】由题1n a +=n a +n +2,∴12n n a a n +-=+,所以213a a -=,324a a -=,435a a -=,…,()112n n a a n n --=+≥,上式1n -个式子左右两边分别相加得()()1412n n n a a +--=,即()()122nn n a ++=,当n =1时,满足题意,所以111212n a n n ⎛⎫=- ⎪++⎝⎭,从而12985111111111985 (22334986987987)a a a L +++=-+-++-=. 故答案为985987. 16.【答案】y x =±【解析】设12,PF m PF n == ,可得2m n a -= ,可得22224m mn n a -+=(1), 在12PF F △中,由余弦定理可得2222242cos3c m n mn m n mn π=+-=+-(2),因为2PO b =,所以在1PFO △,2POF V 中分别利用余弦定理可得, ()2222221144cos ,44cos m c b b POF n c b b POF π=+-∠=+--∠,两式相加可得222228m n c b +=+ ,分别与(1)、(2)联立得22222222222284102,28462mn c b a b a mn c b c b a =+-=-=+-=-,消去mn 可得22a b =,a b = 所以双曲线的渐近线方程为by x a=±,即y x =±,故答案为y x =±.17.(12分)【解析】(1)因为sin sin sin sin sin B C b B c C a A A ⎛⎫+=+ ⎪ ⎪⎝⎭,由正弦定理可得:22b c a a ⎫+=⎪⎭,即222b c a +-=,再由余弦定理可得2cos bc A =,即cos A =所以4A π=.(6分)(2)因为3B π=,所以()sin sin C A B =+=由正弦定理sin sin a b A B=,可得b =13sin 24ABC S ab C ∆+==.(12分) 18.(12分)【解析】(1)证明:连接AC ,因为PB PC =,E 为线段BC 的中点, 所以PE BC ⊥.又AB BC =,60ABC ∠=︒,所以ABC ∆为等边三角形,BC AE ⊥. 因为AE PE E ⋂=,所以BC ⊥平面PAE ,又BC ⊂平面BCP ,所以平面PAE ⊥平面BCP .(5分) (2)解:设AB PA a ==,则PB PC ==,因为222PA AB PB +=,所以PA AB ⊥,同理可证PA AC ⊥,所以PA ⊥平面ABCD .如图,设AC BD O ⋂=,以O 为坐标原点,OB uuu v的方向为x 轴正方向,建立空间直角坐标系O xyz -.易知FOA ∠为二面角A BD F --的平面角,所以3cos 5FOA ∠=,从而4tan 3FOA ∠=.由432AFa=,得23AF a=.又由20,,23a a F⎛⎫-⎪⎝⎭,3,0,02B a⎛⎫⎪⎪⎝⎭,知32,,223a a aBF⎛⎫=--⎪⎪⎝⎭u u u v,20,,23a aOF⎛⎫=-⎪⎝⎭u u u v.设平面BDF的法向量为(),,n x y z=v,由n BF⊥u u u vv,n OFu u u vv⊥,得3223223a a ax y za ay z⎧--+=⎪⎪⎨⎪-+=⎪⎩,不妨设3z=,得()0,4,3n=v.又0,,2aP a⎛⎫-⎪⎝⎭,3,0,0D a⎛⎫-⎪⎪⎝⎭,所以3,,2a aPD a⎛⎫=--⎪⎪⎝⎭u u u v.设PD与平面BDF所成角为θ,则222232sin1031544n PD a an PDa a aθ⋅-===++u u u vvu u u vv.所以PD与平面BDF所成角的正弦值为210.(12分)19.(12分)【解析】(1)依题意得33,2cc aa==⇒=,又2231a b b-=⇒=∴椭圆C的方程为2214xy+=.(4分)(2)设直线l 的方程为()0y kx m m =+≠,()()1122,,,M x y N x y由2214y kx m x y =+⎧⎪⎨+=⎪⎩得()()222148410k x kmx m +++-=, ∴()2121222418,1414m km x x x x k k--+==++. 由题设知()()12212121212kx m kx m y y k k k x x x x ++=== ()212212km x x m k x x ++=+, ∴()2120km x x m ++=,∴22228014k m m k-+=+, ∵0m ≠,∴214k =. 此时()()()222221212224184,211414m km x x m x x m k k --⎛⎫+====- ⎪++⎝⎭则2222222222121122121144x x OM ON x y x y x x +=+++=+-++-()()2221212123322244x x x x x x ⎡⎤=⨯++=+-+⎣⎦()223441254m m ⎡⎤=--+=⎣⎦ 故直线l 的斜率为221,52k OM ON =±+=.(12分)20.(12分)【解析】(1)由频率分布直方图可知一台电脑使用时间在(]4,8上的概率为:()20.140.0620.45p =+⨯==, 设“任选3台电脑,至少有两台使用时间在(]4,8”为事件A ,则 ()23233323244·555125P A C C ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭.(4分) (2)(ⅰ)由a bxy e +=得ln y a bx =+,即t a bx =+,10110221110ˆ0i i i ii x t xtbx x =-=-=-∑∑279.7510 5.5 1.90.338510 5.5-⨯⨯==--⨯()1.90.3 5.53ˆ.55a=--⨯=,即0.3 3.55t x =-+,所以0.3 3.55ˆx y e -+=.(8分) (ⅱ)根据频率分布直方图对成交的二手折旧电脑使用时间在(]0,2,(]2,4,(]4,6,(]6,8,(]8,10上的频率依次为:0.2,0.36,0.28,0,12,0.04:根据(1)中的回归方程,在区间(]0,2上折旧电脑价格的预测值为 3.550.31 3.2526e e -⨯=≈, 在区间(]2,4上折旧电脑价格的预测值为 3.550.33 2.6514e e -⨯=≈, 在区间(]4,6上折旧电脑价格的预测值为 3.550.35 2.057.8e e -⨯=≈, 在区间(]6,8上折旧电脑价格的预测值为 3.550.37 1.45 4.3e e -⨯=≈, 在区间(]8,10上折旧电脑价格的预测值为 3.550.390.85 2.3e e -⨯=≈, 于是,可以预测该交易市场一台折旧电脑交易的平均价格为:0.2260.36140.287.80.12 4.30.04 2.313.032⨯+⨯+⨯+⨯+⨯=(百元)故该交易市场收购1000台折旧电脑所需的的费用为: 100013.0321303200⨯=(元)(12分) 21.(12分)【解析】(1)函数()f x 的定义域为(0,)+∞, 又221(1)[(1)]()1a a x x a f x x x x '----=-++=, 由()0f x '=,得1x =或1x a =-.当2a >即11a ->时,由()0f x '<得11x a <<-,由()0f x '>得01x <<或1x a >-;当2a =即11a -=时,当0x >时都有()0f x '≥;∴当2a >时,单调减区间是()1,1a -,单调增区间是()0,1,()1,a -+∞;当2a =时,单调增区间是()0,+?,没有单调减区间;(5分) (2)当21a e =+时,由(1)知()f x 在()21,e 单调递减,在()2,e +∞单调递增.从而()f x 在[)1,+∞上的最小值为22()3f e e =--. 对任意[)11,x ∈+∞,存在[)21,x ∈+∞,使()()2212g x f x e ≤+,即存在[)21,x ∈+∞,使的值不超过()22f x e +在区间[)1,+∞上的最小值23e -.由222e 32e e 3xmx --+≥+-得22xmx e e +≤,22xe e m x-∴≤. 令22()xe e h x x-=,则当[)1,x ∈+∞时,max ()m h x ≤. ()()()22223222()x x x x e x e e xxe e e h x x x ---+-'==-Q ,当[1,2]x ∈时()0h x '<;当[2,)x ∈+∞时,()22e 20xxxx xe exee +->-≥,()0h x '<.故()h x 在[1,)+∞上单调递减,从而2max ()(1)h x h e e ==-,从而实数2m e e ≤-得证.(12分) 22.[选修4−4:坐标系与参数方程](10分)【解析】(1)1C 的普通方程为2213x y +=,2C 的直角坐标方程为40x y +-=.(4分)(2)由题意,可设点P的直角坐标为,sin )αα,因为2C 是直线,所以||PQ 的最小值即为P 到2C 的距离()d α的最小值,π()sin()2|3d αα==+-.当且仅当π2π()6k k α=+∈Z 时,()d αP 的直角坐标为31(,)22.(10分)23.[选修4−5:不等式选讲](10分)【解析】(1)由题意, ()2,12,112,1x f x x x x -≤-⎧⎪=-⎨⎪≥⎩<<,①当1x ≤-时,()21f x =-<,不等式()1f x ≥无解; ②当11x -<<时,()21f x x =≥,解得12x ≥,所以112x ≤<. ③当1x ≥时,()21f x =≥恒成立,所以()1f x ≥的解集为1,2⎡⎫+∞⎪⎢⎣⎭.(5分)(2)当x ∈R 时,()()11112f x x x x x =+--≤++-=; ()()222222g x x a x b x a x b a b =++-≥+--=+.而()()()22222222222a b a b a b a b ab a b ++⎛⎫+=+-≥+-⨯== ⎪⎝⎭, 当且仅当1a b ==时,等号成立,即222a b +≥,因此,当x ∈R 时, ()()222f x a b g x ≤≤+≤,所以,当x R ∈时, ()()f x g x ≤.(10分)。
2020高考数学经典押题(含答案)满分:100分,时间:60分钟一、选择题:本大题共8个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数满足,则()A . BCD . 2.已知,则A ∩B =()A .B .C .D . 3. 在中,角的对边分别为,若且,则()A .B .C .D . 4.某几何体的三视图如图所示,网格纸上小正方形的边长为1,则该几何体的表面积为()A. B . C .D .5. 设满足约束条件,则的取值范围是()A .B .C .D . 6. 函数的部分图象大致是() z ()(1)1z i i +-=z =21222{|log (31)},{|4}A x y x B y x y ==-=+=1(0,)31[2,)3-1(,2]31(,2)3ABC ∆,,A B C ,,a b c sin 3sin ,A B c ==5cos 6C =a =348+6+6+8+,x y 22026020x y x y y --≤⎧⎪+-≥⎨⎪-≤⎩2y x z x y =-7[,1]2-7[2,]2-77[,]23--3[,1]2-()22x xe ef x x x --=+-7. 过双曲线的右焦点且垂直于轴的直线与双曲线交于两点,为虚轴上的一个端点,且为钝角三角形,则此双曲线离心率的取值范围为()A .B .C .D .8. 已知函数,若成立,则的最小值为() A . B . C . D .二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设平面向量与向量互相垂直,且,若,则.14.在二项式的展开式中,其3项为,则.15.如图,是正方体的棱上的一点,且平面,则异面直线与所成角的余弦值为.16. 已知点是抛物线上一点,为坐标原点,若是以点为圆心,的长为半径的圆与抛物线的两个公共点,且为等边三角形,则的值是.22221(0,0)x y a b a b-=>>x ,A B D ABD∆2))+∞U ()()231,ln 42x x f x eg x -==+()()f m g n =n m -1ln 22+ln 212ln 22+2ln 2m u r n r 2(11,2)m n -=-u r r 5m =u r n =r 6120x =E 1111ABCD A B C D -11C D 1//BD 1B CF 1BDCE A 2:2(0)C x py p =>O ,A B (0,8)M OA C ABO ∆p三、解答题(本大题共2小题,共40分.解答应写出文字说明、证明过程或演算步骤.)17. 已知正项数列满足,数列的前项和满足.(1)求数列,的通项公式;(2)求数列的前项和.18.在平面直角坐标系中,曲线的参数方程为为参数),曲线的参数方程为为参数) (1)将,的方程化为普通方程,并说明它们分别表示什么曲线;(2)以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,已知直线的极坐标方程为,若上的点对应的参数为,点上在,点为的中点,求点到直线距离的最小值.{}n a 221111,n n n n a a a a a ++=+=-{}n b n n S 2n n S n a =+{}n a {}n b 11{}n n a b +n n T xOy 1C cos (1sin x y θθθ=⎧⎨=+⎩2C 2cos (sin x y ϕϕϕ=⎧⎨=⎩1C 2C x l (cos 2sin )4ρθθ-=1C P 2πθ=Q 2C M PQ M l2020高考数学经典押(答案)一、选择题1-5: ACB CA 6-8: D D A二、填空题13. 14. 15. 16. 三、解答题17.解:(1)因为,所以,,因为,所以,所以, 所以是以为首项,为公差的等差数列,所以,当时,,当时也满足,所以.(2)由(1)可知, 所以. 18.解:(1)的普通方程为,它表示以为圆心,为半径的圆,的普通方程为,它表示中心在原点,焦点在轴上的椭圆. (2)由已知得,设,则, 直线,点到直线的距离为 , 所以 ,即到直线的距离的最小值为. 52232211n n n n a a a a +++=-()()1110n n n n a a a a +++--=10,0n n a a +>>10n n a a ++≠11n n a a +-={}n a 11n a n =2n ≥12n n n b S S n -=-=1n =12b =2n b n =111111()2(1)21n n a b n n n n +==-++11111111[(1)()()()]22233412(1)n n T n n n =-+-+-++-=++L 1C 22(1)1x y +-=(0,1)12C 2214x y +=x (0,2)P (2cos ,sin )Q θθ1(cos ,1sin )2M θθ+:240l x y --=Ml d ==5d ≤=Ml 5。
一、选择题(本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.已知双曲线()222:10x C y a a-=>与圆224x y +=恰好有2个不同的公共点,F 是双曲线C的右焦点,过点F 的直线与圆224x y +=切于点A ,则A 到C 左焦点的距离为() A 3B .455C 5D 172.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+B .A =12A +C .A =112A+D .A =112A+3.在直角坐标系xOy 中,一个质点从()12,A a a 出发沿图中路线依次经过()34,B a a ,()56,C a a ,()78,D a a ,…按此规律一直运动下去,则201320142015a a a ++=()A .1006B .1007C .1008D .10094.某面粉供应商所供应的某种袋装面粉质量服从正态分布()210,0.1N (单位:kg )现抽取500袋样本,X 表示抽取的面粉质量在()10,10.2kg 的袋数,则X 的数学期望约为()附:若()2,Z N μσ~,则()0.6826P Z μσμσ-<≤+≈,()220.9544P Z μσμσ-<≤+≈A .171B .239C .341D .4775.已知C z ∈,且1,z i i -=为虚数单位,则35z i --的最大值是() A .5B .6C .7D .86.如图所示,在正方体1111ABCD A B C D -中,M 是BC 的中点,则异面直线1D B 与1B M 所成角的余弦值为()A .15 B .15-C .15 D .15-7.已知,,(0,)a b c ∈+∞且a b c ≥≥,12a b c ++=,45ab bc ca ++=,则a 的最小值为() A .5B .10C .15D .208.在ABC V 中,内角,,A B C 所对的边分别为,,a b c .若5,4,cos 63B cC π===,则b =() A .33B .3C .32D .439.棋盘上标有第0、1、2、100站,棋子开始位于第0站,棋手抛掷均匀硬币走跳棋游戏,若掷出正面,棋子向前跳出一站;若掷出反面,棋子向前跳出两站,直到跳到第99站或第100站时,游戏结束.设棋子位于第n 站的概率为n P ,设01P =.则下列结论正确的有() ①112P =;2335,48P P ==; ②数列{}1n n P P --(199n ≤≤)是公比为12-的等比数列;③10099982P P P <<;④10013P >. A .1个 B .2个 C .3个 D .4个10.若函数()ln f x x =与函数2()2(0)g x x x a x =++<有公切线,则实数a 的取值范围是() A .1(ln,)2e+∞ B .(1,)-+∞ C .(1,)+∞ D .(ln 2,)-+∞11.如图,正方形ABCD 中,M N 、分别是BC CD 、的中点,若,AC AM BN λμ=+u u u v u u u u v u u u v则λμ+=( )A .2B .83C .65D .8512.设U 为全集,M ,P 是U 的两个子集,且P P M C U =I )(,则=P M I A .MB .PC .P C UD .φ二、填空题(本题共4小题,每小题5分,共20分。
2020届全国高考仿真押题试卷(十五)理科数学本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
8、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
9、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设a R∈,i为虚数单位.若复数是纯虚数,则复数32a ii--在复面上对应的点的坐标为()A.18(,)55-B.74(,)55--C.47(,)55-D.74(,)55-【解析】解:复数是纯虚数,∴2010aa-=⎧⎨+≠⎩,则2a=.∴,∴复数32a i i --在复面上对应的点的坐标为74(,)55-. 【答案】D . 2.已知集合,若B A ⊆,则实数m 的取值范围为( ) A .(4,)+∞B .[4,)+∞C .(2,)+∞D .[2,)+∞【解析】解:解一元二次不等式得:1x <-或4x >,即(A =-∞,1)(4-⋃,)+∞, 解一元二次不等式得2m x m <<,即(,2)B m m =,又B A ⊆,所以210m m -⎧⎨>⎩…或40m m ⎧⎨>⎩…,解得4m …, 【答案】B .3.美国总统伽菲尔德利用图给出了种直观、简捷、易懂、明了的证明勾股定理的方法,该图利用三个直角三角形拼成了个直角梯形,后人把此证法称为“总统证法”.现已知3a =,4b =,若从该直角梯形中随机取一点,则该点也在CDE ∆的内切圆内部的概率为( )A .B .449πC .D .249π 【解析】解:由图可知:,直角三角形CDE 的内切圆半径为,,设“该点也在CDE ∆的内切圆内部”为事件A , 由几何概型中的面积型可得:P (A ),【答案】C .4.已知为锐角,则sin()αβ+的值为( )AB C D 【解析】解:1cos 3β=,β是锐角,,又11cos 32β=<,∴32ππβ<<,则223πβπ<<α是锐角,02πα∴<<,,,∴,,且,则,【答案】D .5.执行如图所示的程序框图,若输入0x =,0y =,1n =,则输出的x ,y 的值满足()A .109y x -=B .169xy =C .19y x -=D .2xy =【解析】解:由题意,模拟程序的运行,可得0x =,0y =,1n = 执行循环体,x =,112y =⨯, 不满足条件269x y +…,执行循环体,2n =,,,不满足条件269x y +…,执行循环体,3n =,,,不满足条件269x y +…,执行循环体,4n =,1x =,45y =,不满足条件269x y +…,执行循环体,5n =,1x =,56y =,⋯不满足条件269x y +…,执行循环体,8n =,,89y =, 此时,满足条件269x y +…,退出循环,输出x 的值为2,y 的值为89,可得此时x ,y 的值满足169xy =. 【答案】B .6.已知命题p :数列{}n a 的通项公式为,b ,c 为实数,*)n N ∈,且2017k a +,2018k a +,2019(0)k a k +>恒为等差数列;命题q :数列{}n b 的通项公式为时,数列{}n b 为递增数列.若p q ∨为真,则实数a 的取值范围为( ) A .(,0)-∞B .[0,)+∞C .(0,)+∞D .(-∞,0]【解析】解:若2017k a +,2018k a +,2019(0)k a k +>恒为等差数列,,即,整理得20a -=,即0a =.即:0p a =, 若数列{}n b 的通项公式为时,则0a >,即:0q a >,若p q ∨为真,则p ,q 至少有一个为真命题, 即,)+∞,【答案】B .7.一个几何体的三视图如图所示,则该几何体的表面积为( )A .2B .52C .2D .1【解析】解:由题意,几何体的直观图如图,是正方体的一部分,四棱锥P ABCD -, 几何体的表面积为:.【答案】C .8.已知抛物线的准线与圆相切,则抛物线的方程为( ) A .24x y =-B .28x y =-C .22x y =D .24x y =-或24x y =【解析】解:圆,抛物线的准线为2p y =-, 抛物线的准线与圆相切,112p∴--=,解得4p =-. 抛物线方程为:28x y =-. 【答案】B .9.已知O 为ABC ∆外接圆的圆心,||3AB =,||5AC =,则(AO BC = ) A .2B .4C .8D .16【解析】解:如图,取AC 中点D ,AB 中点E ,并连接OD ,OE ,则:OD AC ⊥,OE AB ⊥;∴,;∴25922=- 8=.【答案】C .10.公元前5世纪下半叶开奥斯地方的希波克拉底解决了与化圆为方有关的化月牙形为方.如图,以O 为圆心的大圆直径为1,以AB 为直径的半圆面积等于AO 与BO 所夹四分之一大圆的面积,由此可知,月牙形(图中阴影部分)区域的面积可以与一个正方形的面积相等.现在在两个圆所围成的区域内随机取一点,则该点来自于阴影所示月牙形区域的概率是( )A .13πB .121π+ C .11π+ D【解析】解:阴影部分面积等于,所以根据几何概型得.【答案】B .11.ABC ∆中,BD 是AC 边上的高,4A π=,cos B =,则(BD AC = ) A .14B .12C .23D .34【解析】解:ABC ∆中,BD 是AC 边上的高,4A π=,在等腰直角三角形ABD 中,设BD h =, 可得AD h =,在直角三角形BDC 中,,即有,则, 可得,即,则14BD AC =. 【答案】A . 12.函数有且只有一个零点,则实数a 的取值范围是( )A .(,1)4eB .(1,C .3(0,)2eD .3(,)2e -∞【解析】解:,1x =时不成立,1x ≠时,化为:..可得:1x <时,()0g x '>,函数()g x 单调递增; 13x <<时,()0g x '<时,函数()g x 单调递减;3x >时,()0g x '>,函数()g x 单调递增. 画出图象.g (3)32e =.可得:当且仅当302e a <<时,函数y a =与函数()y g x =由且仅有一个交点.即函数有且只有一个零点,则实数a 的取值范围是3(0,)2e .【答案】C .第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人 来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为58.【解析】解:红灯持续时间为40秒,至少需要等待15秒才出现绿灯,∴一名行人前25秒来到该路口遇到红灯, ∴至少需要等待15秒才出现绿灯的概率为255408=. 【答案】58.14.在ABC ∆中,已知,当6A π=时,ABC ∆的面积为16. 【解析】解:,6A π=,∴,【答案】1615.设等比数列{}n a 的前n 项和为n S ,若63:3S S =,则96:S S =73. 【解析】解:因为等比数列{}n a 的前n 项和为n S ,则n S ,2n n S S -,32n n S S -成等比,(0)n S ≠所以,又633S S =,即3613S S =, 所以,整理得9673S S =. 【答案】7316.已知点(0,1)A ,抛物线的焦点为F ,连接FA ,与抛物线C 相交于点M ,延长FA ,与抛物线C 的准线相交于点N ,若,则实数a【解析】解:依题意得焦点F 的坐标为:(2a,0),设M 在抛物线的准线上的射影为K ,连接MK ,由抛物线的定义知||||MF MK =,因为,所以,又,,所以4a=a =三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知数列{}n a 的前n 项和为n S ,满足:11a =,,数列{}n b 为等比数列,满足134b b =,2114b b =<,*n N ∈. (Ⅰ)求数列{}n a ,{}n b 的通项公式; (Ⅱ)若数列11{}n n a a +的前n 项和为n W ,数列{}n b 的前n 项和为n T ,试比较n W 与1nT 的大小. 【解析】解:(Ⅰ)11a =,,可得11n n a a +=+,即数列{}n a 为首项和公差均为1的等差数列, 可得n a n =;数列{}n b 为等比数列,满足134b b =,2114b b =<,*n N ∈. 设公比为q ,可得2114b b q =,可得12q =±,即有12q=时,11124b=,可得11124b=>;12q=-不成立,舍去,则1()2nnb=;(Ⅱ),;,则11 nT>,即有1nnWT<.18.如图,在多面体ABCDE中,AE⊥平面ABC,平面BCD⊥平面ABC,ABC∆是边长为2的等边三角形,,2AE=.(Ⅰ)证明:平面EBD⊥平面BCD;(Ⅱ)求二面角A EB D--的余弦值.【解析】证明:(Ⅰ)取BC的中点O,连结AO,DO,,DO BC∴⊥,,DO⊂平面BCD,平面DBC⋂平面ABC BC=,平面BCD⊥平面ABC,DO∴⊥平面ABC,AE⊥平面ABC,//AE DO∴,又2DO AE==,∴四边形AODE是平行四边形,//ED AO∴,ABC∆是等边三角形,AO BC∴⊥,又AO⊂平面ABC,平面BCD⋂平面ABC BC=,平面BCD⊥平面ABC,AO∴⊥平面BCD,BD∴⊥平面BCD,ED⊂平面EBD,∴平面EBD⊥平面BCD.解:(Ⅱ)由(Ⅰ)得AO⊥平面BCD,AO DO∴⊥,又DO BC⊥,AO BC⊥,∴分别以OB,OA,OD所在直线为x,y,z轴,建立空间直角坐标系,则(0A,0),(1B,0,0),(0D,0,2),(0E,2),设平面ABE的一个法向量为(m x=,y,)z,(1AB=0),(1BE=-,2),则,取x=,设平面BED的一个法向量为(n x=,y,)z,(1BD=-,0,2),(1BE=-,2),则,取2x=,得(2n=,0,1),设二面角A EB D--的平面角为θ,由题意θ为钝角,则.∴二面角A EB D--的余弦值为.19.已知椭圆的离心率为12,A,B分别为椭圆C的左、右顶点,F为椭圆C的右焦点,过F 的直线l 与椭圆C 交于不同的两点P ,Q ,当直线l 垂直于x 轴时,四边形APBQ 的面积为6. (Ⅰ)求椭圆C 的方程;(Ⅱ)若直线l 的斜率为(0)k k ≠,线段PQ 的垂直平分线与x 轴交于点M ,求证:||||MF PQ 为定值. 【解析】解:(Ⅰ)由:22221x y a b +=,令x c =可得2b y a =±,则22||b PQ a=,则,可得23b =12c e a ==,2a c ∴=,222a b c =+, 24a ∴=∴椭圆C 的方程为22143x y +=.证明:(Ⅱ)由题意可知(1,0)F ,直线l 的方程为(1)y k x =-, 由22143(1)x y y k x ⎧+=⎪⎨⎪=-⎩, 设1(P x ,1)y ,2(Q x ,2)y ,,,,设PQ 的中点为N ,则224(43k N k +,23)43kk -+,则MN 的过程为,令0y =,可得22(43k M k +,0),,,∴||1||4MF PQ =为定值.20.某食品厂为了检查甲、乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取100件产品作为样本称出它们的质量(单位:毫克),质量值落在(175,225]的产品为合格品,否则为不合格品.如表是甲流水线样本频数分布表,如图是乙流水线样本的频率分布直方图.(Ⅰ)由以上统计数据完成下面22⨯列联表,能否在犯错误的概率不超过0.15的前提下认为产品的包装合格与两条自动包装流水线的选择有关?附表:(参考公式:12.2),(Ⅱ)由乙流水线的频率分布直方图可以认为乙流水线生产的产品质量指标z服从正态分布(200N,2求质量指标z落在上的概率;参考公式:,.(Ⅲ)若以频率作为概率,从甲流水线任取2件产品,求至少有一件产品是合格品的概率.【解析】解:(Ⅰ)由乙流水线样本的频率分布直方图可知,合格品的个数为所以,22⨯列联表是:所以,所以在犯错误的概率不超过0.15的前提下不能认为产品的包装合格与两条自动包装流水线的选择有关.12.2),(Ⅱ)乙流水线的产品生产质量指标z服从正态分布(200N,2所以,,所以,即:,所以质量指标落在[187.8,224.4)的概率是0.8185.(Ⅲ)若以频率作概率,则从甲流水线任取一件产品是不合格品的概率0.08P=,设“任取两件产品,至少有一件合格品“为事件A,则A为”任取两件产品,两件均为不合格品“,且,所以P (A ),所以任取两件产品至少有一件为合格品的概率为0.9936.21.已知函数.(Ⅰ)当0a …时,证明:函数()f x 只有一个零点; (Ⅱ)若函数()f x 的极大值等于0,求实数a 的取值范围.【解析】解:(Ⅰ)由题知:f ’x .令,所以,当0a …时,,即()g x 在(0,)+∞上单调递减.又因为f ’(1)g =(1)0=,所以,当01x <<时,f ’ ()0x >;当1x >时,f ’ ()0x <. 所以,()f x 在(0,1)上单调递增,在(1,)+∞上单调递减,所以()f x f …(1)0=. 所以()f x 只有一个零点.(Ⅱ)由(Ⅰ)知:当0a …时,()f x 的极大值等于0,符合题意.①当01a <<时,因为当(0,)x a ∈时,g ’ ()0x >;当(,)x a ∈+∞时,g ’ ()0x <; 且g (1)0=,.故存在11(,)ax e a -∈,满足,又(,1)x a ∈,f ’ ()0x >;(1,)x ∈+∞,f ’ ()0x <;所以,此时1x =是()f x 的唯一极大值点,且f (1)0=.,符合题意. ②当1a =时,因为(0,1)x ∈,()0g x >;(1,)x ∈+∞,()0g x <,且g (1)0=, 所以()0g x …,即()f x 在(0,)+∞上单调递减无极值点,不合题意.③当1a >时,因为当(0,)x a ∈时,g ’ ()0x >;当(,)x a =+∞时,()0g x '<;且g (1)0=,.令,则;所以W (a )W <(1)1<,所以21a a e +<,即()0a g e <. 又因为,故存在0(,)a x a e ∈,满足,此时1x =是()f x 的唯一极小值点,0x x =是()f x 的唯一极大值点,0()f x f >(1)0=.因此不合题意. 综上可得:1a <.请考生在第22、23题中任选一题做答,如果多做,则按所做的第一题记分.做答时,用2B 铅笔在答题卡上把所选题目对应的题号后的方框涂黑.[选修4-4:坐标系与参数方程]22.直角坐标系xOy 中,曲线1C 的参数方程为其中α为参数);以O 为极点,以x 轴的非负半轴为极轴建立极坐标系,直线l 的极坐标方程为,曲线.(Ⅰ)求曲线1C 的普通方程和极坐标方程;(Ⅱ)已知直线l 与曲线1C 和曲线2C 分别交于M 和N 两点(均异于点)O ,求线段MN 的长.【解析】解:(Ⅰ)因为曲线1C 的参数方程为为参数),所以C 1的普通方程为①,在极坐标系中,将cos sin x y ρθρθ=⎧⎨=⎩代入①得,化简得,1C 的极坐标方程为:②.(Ⅱ)因为直线l 的极坐标方程为,且直线l 与曲线1C 和和曲线2C 分别交于M ,N ,可设1(M ρ,3)4π,2(N ρ,3)4π, 将1(M ρ,3)4π代入②得,将2(N ρ,3)4π代入曲线得.所以.[选修4-5:不等式选讲] 23.已知函数,a R ∈.(Ⅰ)若1a =,解不等式()0f x x +>;(Ⅱ)对任意x R ∈,()3f x …恒成立,求实数a 的取值范围. 【解析】解:(Ⅰ)1a =时,函数,①当1x -…时,,不等式()0f x x +>可化为30x +>, 解得3x >-,所以31x -<-…; ②当12x -<<时,,不等式()0f x x +>可化为10x -+>, 解得1x <,所以11x -<<; 当2x …时,,不等式()0f x x +>可化为30x ->, 解得3x >,所以1x >;综上,不等式()0f x x +>的解集为{|31x x -<<或3}x >; (Ⅱ)因为,所以,对任意x R ∈,()3f x …恒成立, 所以|2|3a +…,所以323a -+剟,解得51a -剟, 所以实数a 的取值范围是[5-,1].。
一、选择题(本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)
1.阅读下面的程序框图,如果输出的函数值()1,24f x ⎡⎤∈⎢⎥⎣⎦,那么输入的实数x 的取值范围是()
A .[]1,2-
B .[]2,1-
C .(][),12,-∞+∞U
D .(](),12,-∞+∞U
2.已知双曲线22
22x y a b
-=1(a >0,b >0)的渐近线被圆C :x 2+y 2﹣12x =0截得的弦长为8,
双曲线的右焦点为C 的圆心,则该双曲线的方程为()
A .2212016x y -=
B .2211620x y -=
C .22
11224x y -= D .2212412
x y -= 3.已知从1开始的连续奇数蛇形排列形成宝塔形数表,第一行为1,第二行为3,5,第三行为7,9,11,第四行为13,15,17,19,如图所示,在宝塔形数表中位于第i 行,第j 列的数记为,i j a ,比如3,29a =,4,215a =,5,423a =,若,2019i j a =,则i j +=()
A .72
B .71
C .66
D .65
4.某学生将语文、数学、英语、物理、化学、生物6科的作业安排在周六、周日完成,要求每天至少完成两科,且数学,物理作业不在同一天完成,则完成作业的不同顺序种数为()
A .600
B .812
C .1200
D .1632
5.已知复数1223,z i z a bi =+=+(,R,0a b b 且∈≠),其中i 为虚数单位,若12z z 为实数,则a b
的值为() A .32- B .23- C .23 D .32
6.某几何体的三视图如图所示(单位:cm ),则该几何体的体积是()
A .323cm
B .3223
cm C 32cm D .322cm 7.(2015秋•宁德期末)若函数f (x )唯一的零点同时在(1,1.5),(1.25,1.5),(1.375,1.5),(1.4375,1.5)内,则该零点(精确度为0.01)的一个近似值约为()
A .1.02
B .1.27
C .1.39
D .1.45
8.对数列{}{},n n a b ,若区间[],n n a b 满足下列条件:
①[]11,n n a b ++≠
⊂[]()*,n n a b n N ∈;②()lim 0n n n b a →∞-=, 则称{}
,n n a b ⎡⎤⎣⎦为区间套.下列选项中,可以构成区间套的数列是()
A .12,23n n n n a b ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭;
B .21,31n n n n a b n ⎛⎫== ⎪+⎝⎭
C .11,13n n n n a b n -⎛⎫==+ ⎪⎝⎭
D .32,21
n n n n a b n n ++==++ 9.数列{}n a 的通项222ππcos sin 33n n n a n ⎛⎫=- ⎪⎝
⎭,其前n 项和为n S ,则30S 为() A .470 B .490 C .495 D .510
10.定义在R 上的偶函数()f x 满足(2)()f x f x -=,且当[1,2]x ∈时,()ln 1f x x x =-+,若函数()()g x f x mx =+有7个零点,则实数m 的取值范围为().
A .1ln 21ln 2ln 21ln 21,,8668----⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭U
B .ln 21ln 21,6
8--⎛⎫ ⎪⎝⎭ C .1ln 21ln 2,86--⎛⎫ ⎪⎝⎭ D .1ln 2ln 21,86--⎛⎫ ⎪⎝⎭
11.如图,等边ABC ∆的边长为2,顶点,B C 分别在x 轴的非负半轴,y 轴的非负半轴上滑
动,M 为AB 中点,则OA OM ⋅u u u v u u u u v 的最大值为()
A .7
B .572+
C .72
D .333+ 12.若
,,定义,
则
A .
B .
C .
D .
二、填空题(本题共4小题,每小题5分,共20分。
)
13.若三个点()2,1-,()2,3-,()2,1-中恰有两个点在双曲线C :()2
2210x y a a
-=>上,则双曲线C 的离心率为______.
14.如图,在直四棱柱1111ABCD A B C D -中,//AB CD ,12AB AA ==,1AD CD BC ===,,M N 分别为11,CC DD 的中点,平面ABM ⋂平面1111A B C D l =.给出以下几个说法:
①11//A B l ;
②直线AN 与l 的夹角为45︒;
③l 与平面11BB C C 所成的角为60︒;
④平面11ADD A 内存在直线与l 平行.
其中正确命题的序号是__________.
15.设()P n 表示正整数n 的个位数字,记()()()32n P n P n ψ=-,M 是(){}n ψ的前4038项的和,
函数()1ln 1f x x x =++,若函数()g x 满足()2282Mx Mx f g x Mx Mx ⎡⎤---=⎢⎥+⎣
⎦,则数列(){}g n 的前2020项的和为________.
16.在数列{}n a 中,1a 2=,若平面向量(2,1)n b n =+u u r 与1(1,)n n n n c a a a +=-+-u u r 平行,则{}n a 的
通项公式为__________.
三、解答题(共70分。
解答应写出文字说明、证明过程或演算步骤。
第17-21题为必考题,每个考题考上都必须作答。
第22、23题为选考题,考生根据要求作答。
)
(一)必考题:共60分。
17.已知定点M(0,2),N(-2,0),直线l :kx -y -2k +2=0(k 为常数).
(1)若点M ,N 到直线l 的距离相等,求实数k 的值;
(2)对于l 上任意一点P ,∠MPN 恒为锐角,求实数k 的取值范围.
18.如图,在直四棱柱1111ABCD A B C D -中,,AB CD P 11,AA =3,AB k =4AD k =,
5,BC k =6DC k =(0)k >:
(1)求证:CD ⊥平面11ADD A ;
(2)现将与四棱柱1111ABCD A B C D -形状和大小完全相同的两个四棱柱拼成一个新的四棱柱,规定:若拼成的新四棱柱形状和大小完全相同,则视为同一种拼接方案,问共有几种不同的拼接方案?在这些拼接成的新四棱柱中,记其中最小的表面积为()f k ,写出()f k 的解析式;(直接写出答案,不必说明理由)
19.设数列{}()1,2,n a n =L 是等差数列,且公差为d ,若数列{}n a 中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.
(1)若14,2a d ==,求证:该数列是“封闭数列”;
(2)试判断数列()*27N n a n n =-∈是否是“封闭数列”,为什么?
(3)设n S 是数列{}n a 的前n 项和,若公差11,0d a =>,试问:是否存在这样的“封闭数列”,使1
211111lim
9n n S S S →∞⎛⎫+++= ⎪⎝⎭L ;若存在,求{}n a 的通项公式,若不存在,说明理由. 20.如图,某小区准备将闲置的一直角三角形地块开发成公共绿地,图中
,,32AB a B BC a π
=∠==.设计时要求绿地部分(如图中阴影部分所示)有公共绿地走道MN ,
且两边是两个关于走道MN 对称的三角形(AMN ∆和A MN '∆).现考虑方便和绿地最大化原则,要求点M 与点,A B 均不重合,A '落在边BC 上且不与端点,B C 重合,设AMN θ∠=.
(1)若3πθ=,求此时公共绿地的面积;
(2)为方便小区居民的行走,设计时要求,AN A N '的长度最短,求此时绿地公共走道MN 的长度.
21.设f (x )=a x ﹣1,g (x )=b x ﹣1(a ,b >0),记h (x )=f (x )﹣g (x )
(1)若h (2)=2,h (3)=12,当x ∈[1,3]时,求h (x )的最大值
(2)a=2,b=1,且方程有两个不相等实根m ,n ,求mn 的取值范围
(3)若a=2,h (x )=c x ﹣1(x >1,c >0),且a ,b ,c 是三角形的三边长,求出x 的范围.
(二)选考题:共10分,请考生在22、23题中任选一道题作答。
如果多做,则按所做的第一题计分。
22.在直角坐标系xOy 中,曲线1C 的参数方程是3cos sin x y αα
⎧=⎪⎨=⎪⎩(α是参数).以原点O 为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程是sin 424πρθ⎛⎫ ⎪⎭=⎝
+. (1)求曲线1C 的普通方程与曲线2C 的直角坐标方程;
(2)设P 为曲线1C 上的动点,过P 点且与x 垂直的直线交2C 于点A ,求||PA 的最小值,并求此时点P 的直角坐标.
23.如图,⊙1O 与⊙2O 相交于点A 和B ,经过A 作直线与⊙1O 相交于D ,与⊙2O 相交于C ,设弧BC 的中点为M ,弧BD 的中点为N ,线段CD 的中点为K.
求证:.MK KN ⊥
【参考答案】
一、选择题(本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)。