所以 Y ( y1 ,, yn )T 的各分量相互独立.
n 1 由于 x y1 , ( n 1) s 2 yi2 . x与s 2相互独立. n i 2
1 n 1 21 1 A 3 2 1 n( n 1)
n
( n 1) s 2 yi2,
i2
yi N (0, ), i 2,3, , n.
2
y2 ,, yn相互独立.
( n 1)
2
yi 2 s ~ (n 1). i 2
n
2
2
15
定理2:设( X 1 , X 2 ,, X n )是来自正态总体N ( , )的
1 n 1 21 1 3 2 1 n( n 1)
1 n 0
1 3 2 1 n( n 1)
0 0 1 n( n 1) 1 n
14
(3)
( n 1)
2
s 2 ~ 2 ( n 1).
2 i 1 2 i 2 1 2 2 n 2 n
服从自由度为n的 2分布, 记作 2 ~ 2 (n) . 注:服从 2分布的随机变量取值非负,其密度函数为 n x 1 1 x2 e 2 , x 0 n 2 n 2 ( x; n) 2 ( ) Γ ( s ) x s1e x dx , s 0, 2 0 0, x0
4
n=4
2 分布的性质:
n=6 n=10
1、随n的增大,其偏度越来越小。
2、 2分布表——P425 附表三
2
即是分布函数数值表.
2
n 1 3、 分布是Ga分布的特例,即有 ( n) Ga( , ) . 2 2 4、 2分布具有可加性: