15滑动轴承全解
- 格式:ppt
- 大小:3.13 MB
- 文档页数:33
流体动压润滑径向滑动轴承计算举例
试设计一流体动压润滑径向滑动轴承。
其径向外载荷为 5000N ,轴颈转速为960r/min ,轴颈所允 许的最小直
径为20mm 。
解:
工作载荷HN 〕 ^000~
轴馬宽径叱引d
卷考值 [―TT ----- 1 轴颈直径贞mm]
歹且1 00 ▼ r 自定义'
轴转速
960
开赠i 计算
混合润滑计算
rt 十算结果显示
釉承压强(MPaJ 12.5000 釉頑速度〔“旳]1 0053 r 使用参考间隍计算
3)估算轴承间隙
卩间隙计算结果显示
直径间003
相对间隙
0.0015
计算间隙
4)选择材料
包角选择n iso
ZCuSn10P1
J
许用摄大压强〔忖pa] 许用摄丈速度丽畑 许用 pv®(Mpa x m/s ) 材料属性 15
10
15 踢音洞
材料适用场合
用于中速、重戟及受变载荷的轴承.用于中速、
承°
中载的轴 参考值
轴承平均压强12.500MPa 轴承平均速度
1. OOSm/s pv® 1
2.566M Pa.m/s
5)流体动压润滑计算结果
1) 选择轴承的内径
二
101
12.5663
0.00110
席自定文相对间隙
输入自定义相对间隙值: |0.0015
匚吝输入已知裁量
轴承相
(从
略)
6)根据计算结果需要重新设计,按“返回”按钮,即可以得到可行方案。
流体⼒学作业11.⼯程流体⼒学《科学出版社》18页,例1-3图1-5是滑动轴承⽰意图,直径60d mm =,长度140L mm =,间隙0.3mm δ=,间隙中充满了运动粘度6235.2810/m s ν-=?,密度3890/kg m ρ=的润滑油。
如果轴的转速500/min n r =,求轴表⾯磨擦阻⼒f F 和所消耗的功率p 的⼤⼩。
解:假设间隙是同⼼环形,因δ d ,间隙中的速度分布直线分布规律()u u r =,轴表⾯的速度梯度为60du rw dn dr πδδ== ⼜运动粘度µ=ργ=3.14ⅹ210-(Pa s ?)摩擦表⾯积 A dL π=根据⽜顿内摩擦定律,作⽤在轴表⾯的摩擦阻⼒为 f F =duA drµ?=4.33N 摩擦阻⼒消耗的功为 2260f f d n P F rw F π==?=6.8W 2. ⼯程流体⼒学《科学出版社》 46-47页,例2-4试推导装满液体的圆柱形容器,如图2-19所⽰,在下述条件下绕垂直轴作等⾓速度旋转时的压强表达ω式(a )容器的顶盖中⼼处开⼝(b )容器的顶盖边缘处开⼝解:等⾓速度旋转时压强的⼀般表达式为:22()2w r p g z c gρ=-+ (1)(a) 顶盖中⼼处开⼝则00,0r z p p ===时,,代⼊(1)式得0c p =,于是压强公式为:220()2w r p p g z gρ=+-(b )顶盖边缘开⼝,则0,0r R z p p ===时,得此时压强公式为2220()[]2w R r p p g z gρ-=-+3. ⼯程流体⼒学《科学出版社》 55-56页,例2-6如图2-26所⽰⼀弧形闸门,半径7.5R m =,挡着深度 4.8h m =的⽔,其圆⼼⾓43α=,旋转轴的位置距底为 5.8H m =,闸门的⽔平投影 2.7CB a m ==,闸门的宽度 6.4b m = 试求作⽤在闸门上的总压⼒的⼤⼩和压⼒中⼼。
习题与参考答案一、复习思考题1 设计液体动力润滑滑动轴承时,为保证轴承正常工作,应满足哪些条件?2 试述径向动压滑动轴承油膜的形成过程。
3 就液体动力润滑的一维雷诺方程30)(6h h h v x p-=∂∂η,说明形成液体动力润滑的必要条件。
4 液体动力润滑滑动轴承的相对间隙ψ的大小,对滑动轴承的承载能力、温升和运转精度有何影响?5 有一液体动力润滑单油楔滑动轴承、在两种外载荷下工作时,其偏心率分别为6.01=χ、8.02=χ,试分析哪种情况下轴承承受的外载荷大。
为提高该轴承的承载能力,有哪些措施可供考虑?(假定轴颈直径和转速不允许改变。
)6 不完全液体润滑滑动轴承需进行哪些计算?各有何含义?7 为了保证滑动轴承获得较高的承载能力,油沟应做在什么位置?8 何谓轴承承载量系数C p ?C p 值大是否说明轴承所能承受的载荷也越大?9 滑动轴承的摩擦状态有哪几种?它们的主要区别如何? 10 滑动轴承的主要失效形式有哪些?11 相对间隙ψ对轴承承载能力有何影响?在设计时,若算出的h min 过小或温升过高时,应如何调整ψ值?12 在设计液体动力润滑径向滑动轴承时,在其最小油膜厚度h min 不够可靠的情况下,如何调整参数来进行设计?二、选择题(从给出的A 、B 、C 、D 中选一个答案)1 验算滑动轴承最小油膜厚度h min 的目的是 。
A. 确定轴承是否能获得液体润滑B. 控制轴承的发热量C. 计算轴承内部的摩擦阻力D. 控制轴承的压强P2 在题2图所示的几种情况下,可能形成流体动力润滑的有 。
3 巴氏合金是用来制造 。
A. 单层金属轴瓦B. 双层或多层金属轴瓦C. 含油轴承轴瓦D. 非金属轴瓦 4 在滑动轴承材料中, 通常只用作双金属轴瓦的表层材料。
A. 铸铁 B. 巴氏合金 C. 铸造锡磷青铜 D. 铸造黄铜 5 液体润滑动压径向轴承的偏心距e 随 而减小。
A. 轴颈转速n 的增加或载荷F 的增大 B. 轴颈转速n 的增加或载荷F 的减少 C. 轴颈转速n 的减少或载荷F 的减少 D. 轴颈转速n 的减少或载荷F 的增大6 不完全液体润滑滑动轴承,验算][pv pv ≤是为了防止轴承 。
【机械设计基础】(第五版)课后习题答案15-18章答案15-1答滑动轴承按摩擦状态分为两种:液体摩擦滑动轴承和非液体摩擦滑动轴承。
液体摩擦滑动轴承:两摩擦表面完全被液体层隔开,摩擦性质取决于液体分子间的粘性阻力。
根据油膜形成机理的不同可分为液体动压轴承和液体静压轴承。
非液体摩擦滑动轴承:两摩擦表面处于边界摩擦或混合摩擦状态,两表面间有润滑油,但不足以将两表面完全隔离,其微观凸峰之间仍相互搓削而产生磨损。
15-2解(1)求滑动轴承上的径向载荷(2)求轴瓦宽度(3)查许用值查教材表15-1,锡青铜的,(4)验算压强(5)验算值15-3解(1)查许用值查教材表15-1,铸锡青铜ZCuSn10P1的,(2)由压强确定的径向载荷由得(3)由值确定的径向载荷得轴承的主要承载能力由值确定,其最大径向载荷为。
15-4解(1)求压强(5)求值查表15-1,可选用铸铝青铜ZCuAl10Fe3 ,15-5证明液体内部摩擦切应力、液体动力粘度、和速度梯度之间有如下关系:轴颈的线速度为,半径间隙为,则速度梯度为磨擦阻力摩擦阻力矩将、代入上式16-1解由手册查得6005 深沟球轴承,窄宽度,特轻系列,内径,普通精度等级(0级)。
主要承受径向载荷,也可承受一定的轴向载荷;可用于高速传动。
N209/P6 圆柱滚子轴承,窄宽度,轻系列,内径,6级精度。
只能承受径向载荷,适用于支承刚度大而轴承孔又能保证严格对中的场合,其径向尺寸轻紧凑。
7207CJ 角接触球轴承,窄宽度,轻系列,内径,接触角,钢板冲压保持架,普通精度等级。
既可承受径向载荷,又可承受轴向载荷,适用于高速无冲击, 一般成对使用,对称布置。
30209/P5 圆锥滚子轴承,窄宽度,轻系列,内径,5级精度。
能同时承受径向载荷和轴向载荷。
适用于刚性大和轴承孔能严格对中之处,成对使用,对称布置。
16-2解室温下工作;载荷平稳,球轴承查教材附表1,(1)当量动载荷时在此载荷上,该轴承能达到或超过此寿命的概率是90%。
第10章滑动轴承分析计算题1某一非液体摩擦径向滑动轴承,轴颈转速B/d=1.0,轴瓦表面粗糙度R z1=6.3 m m,轴颈粗糙度R z2=3.2 m m,轴转速n=500 r/min,径向载荷F r=50kN。
若要轴承达到液体摩擦,润滑油动力粘度为多少Pa s?【解】解题思路为:确定[h min]和h min;分别在最大和最小半径间隙情况下,δ→χ→C p→η,取η较大值。
1) 确定定允许的最小油膜厚度根据公式(10-23),取h min=[ h min]=S(R z1+ R z2)=2×(6.3+3.2)=19m m=0.019mm2)确定最大和最小相对间隙根据和偏心率,001475.02/200019.011max min ×−=ψ−=χr h =0.8711 4)确定轴承的承载量系数(索莫菲尔德数)根据轴承的宽径比,查表10-6得,C p 或S o =(4.408+7.772)/2=6.093 (线性插值)5)确定润滑油的粘度根据公式(10-21)vBF C p ηψ=22其中,轴承速度100060500200100060×××π=×π=dn v =5.236 m/s 得 2.0236.5093.62001475.050000222××××=ψ=ηvB C F p =0.00852MPa s 如果安全系数S 取3,重新计算如下1) 确定定允许的最小油膜厚度根据公式(10-23),取 h min =[ h min ]=S (R z1+ R z2)=3×(6.3+3.2)=19m m=0.0285 mm2)确定最大和最小相对间隙 根据 和思考:要求最小油膜厚度增大,则润滑油的粘度应增大。
或者说明润滑油的粘度增大,滑动轴承的承载能力提高了。
如果安全系数S取3,按照最小相对间隙计算如下1) 确定定允许的最小油膜厚度根据公式(10-23),取h min=[ h min]=S(R z1+ R z2)=3×(6.3+3.2)=19m m=0.0285 mm2)确定最大和最小相对间隙根据和。
滑动轴承广义雷诺方程的一维快速解法
一维滑动轴承广义雷诺方程(Generalized Reynolds Equation)是一种描述
液体在滑动轴承中流动规律时常用到的方程,它包括物理、流变、传热和磨损方面的考虑。
它具有复杂的非线性特点,一般各种计算方法耗时长。
而一维快速解法则可以有效解决这一问题。
一维快速解法是把雷诺方程拆分为多个一维算式,以此减少满足边界条件的计
算量,以节省解程的计算量。
首先,用离散差分方法离散来求解雷诺方程。
然后,根据分区节点的数值,求得雷诺方程的解。
利用这种方法,液体在滑动轴承中的流动压力和流速可以在较短的时间内求得。
此外,快速解法还能根据滑动轴承的特点,把计算的负担分配到各个分区节点。
比如,可以把计算负担分配到靠近轴承节点的分区,使负荷1/2时间较为均匀,从而减轻计算量。
总之,一维快速解法可以有效减少滑动轴承中液体流动传热磨损等模型计算工
作量,从而提升效率。
相比传统计算方法,所求得的解更接近实际,能及时准确得到真实结果,是一种有效而且快捷的模拟方法。
第一章 绪论[例1]:一可动和一不动平板别离置于液体中,间距h =0.5mm 。
可动板V =0.25m/s ,水平右移,维持V 不变,加在动板上的外力为2Pa 。
求μ。
解:由dv dyτμ= 由坐标系,按牛顿粘性定律:dv Vdy h=(线性散布) 32410dv V dyhτμ-===⨯ [例2]:[1-15]滑动轴承直径D =20cm,宽b =30cm,液膜厚t =0.08cm,μ=·s ,消耗功率 N e =,求 n =? 若是n =1000rpm ,求 N e =? 解: A =πDb =×10-1 m 2,N e =切力消耗的功率(1)2e f v v N F v A v A t tμμ=⋅=⋅= ,112()9.3810m /s e N t v A μ-==⨯60Dnv π=608.9610rpm 1.49rad /s vn Dπ==⨯= (2)1000rpm n =1.0510m/s 60Dnv π==⨯236.3510W e f v N vF A tμ===⨯注:一、消耗功率全数用于克服粘性阻力;二、应用牛顿粘性定律时,用切向速度。
第二章 流体静力学[例1]:测压计测A 中水的压强。
0.5m h =,10.2m h =,20.25m h =,30.22m h =,酒精相对密度8.0=al d ,水银相对密度6.13=mc d 。
真空计读数500.2510Pa p =⨯真空度,求p 。
解:由等压面:21p p =,43p p =,65p p =,由静压强散布取得:Vyo603mc p p gh ρ=+,254gh p p al ρ-=,132gh p p mc ρ+=,1w p p gh ρ=-联立以上方程,有:ghgh h h g p p w al mc ρρρ--++=2310)(5.081.91025.081.9108.0)2.022.0(81.9106.131025.03335⨯⨯-⨯⨯⨯-+⨯⨯+⨯-= =(计示压强)注:因p o 为计示压强,计算时,未计h 3以上空气压强。
多角度解析滑动轴承
Ullrich Hoeltkemeier
【期刊名称】《《现代制造》》
【年(卷),期】2008(000)004
【摘要】关于滑动轴承的市场情况,产品优点以及更多的信息,德国 GGB公司总经理 Klaus Hofmann,市场营销部经理和亚洲销售经理 MathiasSenghaas 做了详细论述。
【总页数】3页(P45-47)
【作者】Ullrich Hoeltkemeier
【作者单位】
【正文语种】中文
【中图分类】F272.91
【相关文献】
1.解析汽轮机滑动轴承检修过程及模型结构 [J], 陈智
2.圆与椭圆的相伴--2014年高考广东解析几何题的多角度解析 [J], 刘护灵
3.考虑进油孔有限长滑动轴承油膜力的近似解析解 [J], 黑棣;郑美茹
4.织构化动压滑动轴承非线性油膜力解析模型 [J], 毛亚洲;杨建玺;李庆林;徐文静;刘永刚
5.表面织构动压滑动轴承油膜力解析模型 [J], 毛亚洲; 杨建玺; 徐文静; 李庆林; 刘永刚
因版权原因,仅展示原文概要,查看原文内容请购买。