MATLAB遗传工具箱核心函数
- 格式:pdf
- 大小:72.78 KB
- 文档页数:5
Matlab 中可以使用遗传算法工具箱(Genetic Algorithm Toolbox)来实现遗传算法。
该工具箱提供了许多参数可以用于调整算法的行为。
以下是一些常用的参数:1. `PopulationSize`:种群大小,即染色体数量。
通常设置为一个相对较大的数值,以保证算法的搜索能力和多样性。
2. `MaxGenerations`:最大迭代次数。
算法将根据指定的迭代次数进行搜索,直到达到最大迭代次数或找到满足条件的解。
3. `CrossoverFraction`:交叉概率。
在每一代中,根据交叉概率对染色体进行交叉操作,以产生新的染色体。
4. `MutationFcn`:变异函数。
该函数将应用于染色体上的基因,以增加种群的多样性。
5. `Elitism`:精英策略。
该参数决定是否保留最佳个体,以避免算法陷入局部最优解。
6. `PopulationType`:种群类型。
可以选择二进制、实数或整数类型。
7. `ObjectiveFunction`:目标函数。
该函数将用于评估染色体的适应度,以确定哪些染色体更有可能产生优秀的后代。
8. `Variableargin`:变量参数。
可以将需要优化的变量作为参数传递给目标函数和变异函数。
9. `Display`:显示设置。
可以选择在算法运行过程中显示哪些信息,例如每个迭代的最佳个体、平均适应度等等。
以上是一些常用的参数,可以根据具体问题进行调整。
在Matlab 中使用遗传算法时,建议仔细阅读相关文档和示例代码,以便更好地理解算法的实现细节和如何调整参数来获得更好的结果。
1 遗传算法的原理1.1 遗传算法的基本思想遗传算法(genetic algorithms,GA)是一种基于自然选择和基因遗传学原理,借鉴了生物进化优胜劣汰的自然选择机理和生物界繁衍进化的基因重组、突变的遗传机制的全局自适应概率搜索算法。
遗传算法是从一组随机产生的初始解(种群)开始,这个种群由经过基因编码的一定数量的个体组成,每个个体实际上是染色体带有特征的实体。
染色体作为遗传物质的主要载体,其内部表现(即基因型)是某种基因组合,它决定了个体的外部表现。
因此,从一开始就需要实现从表现型到基因型的映射,即编码工作。
初始种群产生后,按照优胜劣汰的原理,逐代演化产生出越来越好的近似解。
在每一代,根据问题域中个体的适应度大小选择个体,并借助于自然遗传学的遗传算子进行组合交叉和变异,产生出代表新的解集的种群。
这个过程将导致种群像自然进化一样,后代种群比前代更加适应环境,末代种群中的最优个体经过解码,可以作为问题近似最优解。
计算开始时,将实际问题的变量进行编码形成染色体,随机产生一定数目的个体,即种群,并计算每个个体的适应度值,然后通过终止条件判断该初始解是否是最优解,若是则停止计算输出结果,若不是则通过遗传算子操作产生新的一代种群,回到计算群体中每个个体的适应度值的部分,然后转到终止条件判断。
这一过程循环执行,直到满足优化准则,最终产生问题的最优解。
图1-1给出了遗传算法的基本过程。
1.2 遗传算法的特点1.2.1 遗传算法的优点遗传算法具有十分强的鲁棒性,比起传统优化方法,遗传算法有如下优点:1. 遗传算法以控制变量的编码作为运算对象。
传统的优化算法往往直接利用控制变量的实际值的本身来进行优化运算,但遗传算法不是直接以控制变量的值,而是以控制变量的特定形式的编码为运算对象。
这种对控制变量的编码处理方式,可以模仿自然界中生物的遗传和进化等机理,也使得我们可以方便地处理各种变量和应用遗传操作算子。
2. 遗传算法具有内在的本质并行性。
用MATLAB实现遗传算法程序一、本文概述遗传算法(Genetic Algorithms,GA)是一种模拟自然界生物进化过程的优化搜索算法,它通过模拟自然选择和遗传学机制,如选择、交叉、变异等,来寻找问题的最优解。
由于其全局搜索能力强、鲁棒性好以及易于实现并行化等优点,遗传算法在多个领域得到了广泛的应用,包括函数优化、机器学习、神经网络训练、组合优化等。
本文旨在介绍如何使用MATLAB实现遗传算法程序。
MATLAB作为一种强大的数学计算和编程工具,具有直观易用的图形界面和丰富的函数库,非常适合用于遗传算法的实现。
我们将从基本的遗传算法原理出发,逐步介绍如何在MATLAB中编写遗传算法程序,包括如何定义问题、编码、初始化种群、选择操作、交叉操作和变异操作等。
通过本文的学习,读者将能够掌握遗传算法的基本原理和MATLAB编程技巧,学会如何使用MATLAB实现遗传算法程序,并能够在实际问题中应用遗传算法求解最优解。
二、遗传算法基础遗传算法(Genetic Algorithm,GA)是一种模拟自然选择和遗传学机制的优化搜索算法。
它借鉴了生物进化中的遗传、交叉、变异等机制,通过模拟这些自然过程来寻找问题的最优解。
遗传算法的核心思想是将问题的解表示为“染色体”,即一组编码,然后通过模拟自然选择、交叉和变异等过程,逐步迭代搜索出最优解。
在遗传算法中,通常将问题的解表示为一个二进制字符串,每个字符串代表一个个体(Individual)。
每个个体都有一定的适应度(Fitness),适应度越高的个体在下一代中生存下来的概率越大。
通过选择(Selection)、交叉(Crossover)和变异(Mutation)等操作,生成新一代的个体,并重复这一过程,直到找到满足条件的最优解或达到预定的迭代次数。
选择操作是根据个体的适应度,选择出适应度较高的个体作为父母,参与下一代的生成。
常见的选择算法有轮盘赌选择(Roulette Wheel Selection)、锦标赛选择(Tournament Selection)等。
matlab核函数在MATLAB中,核函数主要用于支持向量机(SVM)和其他机器学习算法。
这些函数用于计算两个向量之间的相似性或距离。
以下是一些常见的核函数:1. **线性核函数(Linear Kernel)**:```matlabK = x * y';```2. **多项式核函数(Polynomial Kernel)**:```matlabK = (gamma * x * y' + coef0)^degree;```3. **高斯径向基函数(Gaussian RBF Kernel)**:```matlabK = exp(-gamma * (x - y)' * (x - y));```4. **Sigmoid核函数(Sigmoid Kernel)**:```matlabK = tanh(gamma * x * y' + coef0);```其中,`x` 和`y` 是输入向量,`gamma` 和`coef0` 是核函数的参数,`degree` 是多项式核函数的度数。
在MATLAB的机器学习工具箱中,你可以使用`fitcknn` 函数来训练一个基于核的k近邻(KNN)分类器,其中你可以选择不同的核函数类型。
例如:```matlab% 创建一些数据X = [randn(100, 2) randn(100, 2)]; % 创建两个类别Y = [ones(100, 1) -1*ones(100, 1)]; % 对应的标签% 使用'rbf' 核函数训练一个基于核的KNN分类器SVMModel = fitcknn(X, Y, 'KernelFunction', 'rbf');```请注意,选择哪种核函数通常取决于你的具体应用和数据特性。
不同的核函数可能会产生不同的结果,因此需要根据你的问题进行适当的调整和实验。
matlab遗传算法工具箱导出数据的方法-回复如何使用MATLAB遗传算法工具箱导出数据MATLAB是一种广泛使用的数值计算和数据可视化软件,其遗传算法工具箱(Genetic Algorithm Toolbox)是一款强大的用于解决优化问题的工具。
在使用遗传算法工具箱时,可能会遇到需要导出数据的情况。
本文将详细介绍如何使用MATLAB遗传算法工具箱导出数据,并提供一步一步的操作指南。
第一步:加载遗传算法工具箱首先,打开MATLAB软件并加载遗传算法工具箱。
在命令窗口输入"ga"命令,即可加载遗传算法工具箱。
第二步:定义适应度函数在使用遗传算法工具箱前,需要定义一个适应度函数。
适应度函数用于度量个体对问题的适应程度,其中最佳适应程度对应最优解。
在定义适应度函数时,可以根据特定问题的要求进行自定义。
第三步:设置遗传算法参数在使用遗传算法工具箱之前,还需要设置一些遗传算法的参数。
这些参数包括种群数量、迭代次数、交叉概率、变异概率等。
根据具体问题的要求,选择合适的参数值。
第四步:运行遗传算法在完成适应度函数和参数设置后,就可以运行遗传算法了。
在命令窗口输入"ga"命令,并将适应度函数和参数作为输入参数传递给该命令。
第五步:导出数据使用遗传算法工具箱进行优化后,可能需要将优化结果导出。
下面介绍几种常用的导出数据的方法。
方法一:使用内置函数MATLAB提供了一些内置函数用于导出数据,其中比较常用的是"save"和"xlswrite"函数。
1. 使用"save"函数"save"函数用于保存变量和工作空间中的数据。
通过在命令窗口输入"save"命令,再将需要保存的变量名作为参数传递给该命令,即可将变量保存为.mat文件。
例如,要将名为"result"的变量保存为.mat文件,可以使用以下命令:save('result.mat', 'result')2. 使用"xlswrite"函数"xlswrite"函数用于将数据写入Excel文件。
GADS--Matlab遗传算法工具箱使用总结e-mail:978299005@一、GADS简介与启动MATLAB是矩阵实验室(Matrix Laboratory)的简称,是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。
遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。
在Matlab平台上主要有三个遗传算法(GA)的工具箱,分别是:GAOT,美国北卡罗来纳大学开发;GATBX,英国谢菲尔德大学开发;GADS,Matlab7以后的版本中自带的。
GATBX可以包含GAOT,而GADS显然年代又近了一些。
这里主要讲的是GADS。
GADS(Genetic Algorithm and Direct Search Toolbox)遗传算法与直接搜索工具箱。
可以在命令行中直接使用,在M文件的程序中调用ga函数,或在GUI 界面中使用它来解决实际问题。
在不同的Matlab版本中启动方法稍有区别。
以笔者的Matlab 2010b为例,启动有两种方法:1、在Matlab命令行中输入optimtool回车,在出现的对话框左上角找到Solver,选择ga- Genetic Algorithm即可。
2、Matlab界面中单击左下角Start,选择toolboxes,选择其中的optimization再点击optimization tool即可打开对话框,然后如1中,选择ga即可。
二、GADS的具体使用【1】先介绍ga函数的格式。
Ga函数可以在命令行中直接使用。
在命令行中键入命令type ga可以打印出ga函数的代码。
键入help ga,就打印出ga函数的帮助提示。
以下是help ga的输出:GA Constrained optimization using genetic algorithm.GA attempts to solve problems of the form:min F(X) subject to: A*X <= B, Aeq*X = Beq (linear constraints)X C(X) <= 0, Ceq(X) = 0 (nonlinear constraints)LB <= X <= ubX = GA(FITNESSFCN,NVARS) finds a local unconstrained minimum X to theFITNESSFCN using GA. NVARS is the dimension (number of designvariables) of the FITNESSFCN. FITNESSFCN accepts a vector X of size1-by-NVARS, and returns a scalar evaluated at X.X = GA(FITNESSFCN,NVARS,A,b) finds a local minimum X to the functionFITNESSFCN, subject to the linear inequalities A*X <= B. Linearconstraints are not satisfied when the PopulationType option is set to'bitString' or 'custom'. See the documentation for details.X = GA(FITNESSFCN,NVARS,A,b,Aeq,beq) finds a local minimum X to thefunction FITNESSFCN, subject to the linear equalities Aeq*X = beq aswell as A*X <= B. (Set A=[] and B=[] if no inequalities exist.) Linearconstraints are not satisfied when the PopulationType option is set to'bitString' or 'custom'. See the documentation for details.X = GA(FITNESSFCN,NVARS,A,b,Aeq,beq,lb,ub) defines a set of lower andupper bounds on the design variables, X, so that a solution is found inthe range lb <= X <= ub. Use empty matrices for lb and ub if no boundsexist. Set lb(i) = -Inf if X(i) is unbounded below; set ub(i) = Inf ifX(i) is unbounded above. Linear constraints are not satisfied when thePopulationType option is set to 'bitString' or 'custom'. See thedocumentation for details.X = GA(FITNESSFCN,NVARS,A,b,Aeq,beq,lb,ub,NONLCON) subjects theminimization to the constraints defined in NONLCON. The functionNONLCON accepts X and returns the vectors C and Ceq, representing thenonlinear inequalities and equalities respectively. GA minimizesFITNESSFCN such that C(X)<=0 and Ceq(X)=0. (Set lb=[] and/or ub=[] ifno bounds exist.) Nonlinear constraints are not satisfied when thePopulationType option is set to 'bitString' or 'custom'. See thedocumentation for details.X = GA(FITNESSFCN,NVARS,A,b,Aeq,beq,lb,ub,NONLCON,options) minimizeswith the default optimization parameters replaced by values in thestructure OPTIONS. OPTIONS can be created with the GAOPTIMSET function.See GAOPTIMSET for details.X = GA(PROBLEM) finds the minimum for PROBLEM. PROBLEM is a structurethat has the following fields:fitnessfcn: <Fitness function>nvars: <Number of design variables>Aineq: <A matrix for inequality constraints>bineq: <b vector for inequality constraints>Aeq: <Aeq matrix for equality constraints>beq: <beq vector for equality constraints>lb: <Lower bound on X>ub: <Upper bound on X>nonlcon: <nonlinear constraint function>options: <Options structure created with GAOPTIMSET>rngstate: <State of the random number generator>[X,FVAL] = GA(FITNESSFCN, ...) returns FVAL, the value of the fitnessfunction FITNESSFCN at the solution X.[X,FVAL,EXITFLAG] = GA(FITNESSFCN, ...) returns EXITFLAG whichdescribes the exit condition of GA. Possible values of EXITFLAG and thecorresponding exit conditions are1 Average change in value of the fitness function overoptions.StallGenLimit generations less than options.TolFun andconstraint violation less than options.TolCon.3 The value of the fitness function did not change inoptions.StallGenLimit generations and constraint violation lessthan options.TolCon.4 Magnitude of step smaller than machine precision and constraintviolation less than options.TolCon. This exit condition appliesonly to nonlinear constraints.5 Fitness limit reached and constraint violation less thanoptions.TolCon.0 Maximum number of generations exceeded.-1 Optimization terminated by the output or plot function.-2 No feasible point found.-4 Stall time limit exceeded.-5 Time limit exceeded.[X,FVAL,EXITFLAG,OUTPUT] = GA(FITNESSFCN, ...) returns astructure OUTPUT with the following information:rngstate: <State of the random number generator before GA started>generations: <Total generations, excluding HybridFcn iterations>funccount: <Total function evaluations>maxconstraint: <Maximum constraint violation>, if anymessage: <GA termination message>[X,FVAL,EXITFLAG,OUTPUT,POPULATION] = GA(FITNESSFCN, ...) returns thefinal POPULATION at termination.[X,FVAL,EXITFLAG,OUTPUT,POPULATION,SCORES] = GA(FITNESSFCN, ...) returnsthe SCORES of the final POPULATION.Example:Unconstrained minimization of 'rastriginsfcn' fitness function ofnumberOfVariables = 2x = ga(@rastriginsfcn,2)Display plotting functions while GA minimizesoptions = gaoptimset('PlotFcns',...{@gaplotbestf,@gaplotbestindiv,@gaplotexpectation,@gaplotstopping});[x,fval,exitflag,output] = ga(@rastriginsfcn,2,[],[],[],[],[],[],[],options)An example with inequality constraints and lower boundsA = [1 1; -1 2; 2 1]; b = [2; 2; 3]; lb = zeros(2,1);% Use mutation function which can handle constraintsoptions = gaoptimset('MutationFcn',@mutationadaptfeasible);[x,fval,exitflag] = ga(@lincontest6,2,A,b,[],[],lb,[],[],options);FITNESSFCN can also be an anonymous function:x = ga(@(x) 3*sin(x(1))+exp(x(2)),2)If FITNESSFCN or NONLCON are parameterized, you can use anonymousfunctions to capture the problem-dependent parameters. Suppose you wantto minimize the fitness given in the function myfit, subject to thenonlinear constraint myconstr, where these two functions areparameterized by their second argument a1 and a2, respectively. Heremyfit and myconstr are MATLAB file functions such asfunction f = myfit(x,a1)f = exp(x(1))*(4*x(1)^2 + 2*x(2)^2 + 4*x(1)*x(2) + 2*x(2) + a1);andfunction [c,ceq] = myconstr(x,a2)c = [1.5 + x(1)*x(2) - x(1) - x(2);-x(1)*x(2) - a2];% No nonlinear equality constraints:ceq = [];To optimize for specific values of a1 and a2, first assign the valuesto these two parameters. Then create two one-argument anonymousfunctions that capture the values of a1 and a2, and call myfit andmyconstr with two arguments. Finally, pass these anonymous functions toGA:a1 = 1; a2 = 10; % define parameters first% Mutation function for constrained minimizationoptions = gaoptimset('MutationFcn',@mutationadaptfeasible);x = ga(@(x)myfit(x,a1),2,[],[],[],[],[],[],@(x)myconstr(x,a2),options)解释如下:ga函数最完整的格式是[X,FVAL,EXITFLAG,OUTPUT,POPULATION,SCORES]= GA(FITNESSFCN,NVARS,A,b,Aeq,beq,lb,ub,NONLCON,options)。
matlab中的遗传算法【原创版】目录一、引言二、遗传算法的基本原理1.种群概念2.适应度函数3.选择操作4.交叉操作5.变异操作三、MATLAB 中遗传算法的实现1.准备工作2.遗传算法的实现四、遗传算法的应用案例1.旅行商问题2.装载问题五、遗传算法的优缺点六、结论正文一、引言遗传算法(Genetic Algorithm,GA)是一种模拟自然界生物进化过程的优化算法,其主要思想是将进化过程中的自然选择、交叉和变异等遗传操作应用到问题的求解过程中,从而实现对问题的优化求解。
遗传算法在解决复杂问题、非线性问题以及大规模问题等方面具有较强的优势,因此在各个领域得到了广泛的应用。
本文将介绍遗传算法的基本原理以及在MATLAB 中的实现。
二、遗传算法的基本原理1.种群概念遗传算法以一个种群作为优化过程的载体。
种群中的个体代表问题的解,每个个体由一组参数表示。
在优化过程中,种群会不断进化,最终收敛到问题的最优解。
2.适应度函数适应度函数是遗传算法的核心部分,用于评价种群中个体的优劣。
适应度函数的取值范围为 [0, 1],其中 1 表示最优解,0 表示最劣解。
在遗传算法的优化过程中,适应度函数用于选择优秀的个体,从而指导种群的进化。
3.选择操作选择操作是基于适应度函数的一种选择策略,用于选择下一代的父代个体。
常见的选择方法有轮盘赌选择、锦标赛选择等。
4.交叉操作交叉操作是遗传算法中产生新个体的主要方式,通过将选中的优秀个体进行交叉操作,产生具有更好适应度的新个体。
常见的交叉方法有单点交叉、多点交叉、均匀交叉等。
5.变异操作变异操作是在遗传算法中引入随机性的一种方式,通过随机改变某些基因的值,使新个体在进化过程中具有一定的多样性。
变异操作的强度由变异概率控制。
三、MATLAB 中遗传算法的实现1.准备工作在 MATLAB 中实现遗传算法,首先需要定义适应度函数、选择操作、交叉操作和变异操作等。
此外,还需要设置遗传算法的参数,如迭代次数、种群大小、交叉概率、变异概率等。
MATLAB常用工具箱与函数库介绍1. 统计与机器学习工具箱(Statistics and Machine Learning Toolbox):该工具箱提供了各种统计分析和机器学习算法的函数,包括描述统计、概率分布、假设检验、回归分析、分类与聚类等。
可以用于进行数据探索和建模分析。
2. 信号处理工具箱(Signal Processing Toolbox):该工具箱提供了一系列信号处理的函数和算法,包括滤波、谱分析、信号生成与重构、时频分析等。
可以用于音频处理、图像处理、通信系统设计等领域。
3. 控制系统工具箱(Control System Toolbox):该工具箱提供了控制系统设计与分析的函数和算法,包括系统建模、根轨迹设计、频域分析、状态空间分析等。
可以用于控制系统的设计和仿真。
4. 优化工具箱(Optimization Toolbox):该工具箱提供了各种数学优化算法,包括线性规划、非线性规划、整数规划、最优化等。
可以用于寻找最优解或最优化问题。
5. 图像处理工具箱(Image Processing Toolbox):该工具箱提供了图像处理和分析的函数和算法,包括图像滤波、边缘检测、图像分割、图像拼接等。
可以用于计算机视觉、医学影像处理等领域。
6. 神经网络工具箱(Neural Network Toolbox):该工具箱提供了神经网络的建模和训练工具,包括感知机、多层前馈神经网络、循环神经网络等。
可以用于模式识别、数据挖掘等领域。
7. 控制系统设计工具箱(Robust Control Toolbox):该工具箱提供了鲁棒控制系统设计与分析的函数和算法,可以处理不确定性和干扰的控制系统设计问题。
8. 信号系统工具箱(Signal Systems Toolbox):该工具箱提供了分析、设计和模拟线性时不变系统的函数和算法。
可以用于信号处理、通信系统设计等领域。
9. 符号计算工具箱(Symbolic Math Toolbox):该工具箱提供了符号计算的功能,可以进行符号表达式的运算、求解方程、求解微分方程等。
基于Matlab遗传算法工具箱的优化计算实现一、概述随着科技的发展和社会的进步,优化问题在众多领域,如工程设计、经济管理、生物科学、交通运输等中扮演着越来越重要的角色。
优化计算的目标是在给定的约束条件下,寻找一组变量,使得某个或某些目标函数达到最优。
许多优化问题具有高度的复杂性,传统的数学方法往往难以有效求解。
寻求新的、高效的优化算法成为了科研人员的重要任务。
遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传学机制的搜索算法,通过模拟自然界的进化过程,寻找问题的最优解。
自20世纪70年代初由美国密歇根大学的John Holland教授提出以来,遗传算法因其全局搜索能力强、鲁棒性好、易于与其他算法结合等优点,被广泛应用于各种优化问题中。
1. 遗传算法简介遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传学机制的优化搜索算法。
该算法起源于对生物进化过程中遗传机制的研究,通过模拟自然选择和遗传过程中的交叉、突变等操作,在搜索空间内寻找最优解。
自20世纪70年代初由John Holland教授提出以来,遗传算法已在多个领域取得了广泛的应用,包括函数优化、机器学习、模式识别、自适应控制等。
遗传算法的基本思想是将问题的解表示为“染色体”,这些染色体在算法中通过选择、交叉和突变等操作进行演化。
选择操作模仿了自然选择中“适者生存”的原则,根据适应度函数对染色体进行筛选交叉操作则模拟了生物进化中的基因重组过程,通过交换染色体中的部分基因,生成新的个体突变操作则是对染色体中的基因进行小概率的随机改变,以维持种群的多样性。
在遗传算法中,种群初始化是算法的起点,通过随机生成一组初始解作为初始种群。
根据适应度函数对种群中的个体进行评估,选择出适应度较高的个体进行交叉和突变操作,生成新的种群。
这个过程不断迭代进行,直到满足终止条件(如达到最大迭代次数或找到满足精度要求的最优解)为止。
核心函数:
(1)function
[pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始种群的生成函数
【输出参数】
pop--生成的初始种群
【输入参数】
num--种群中的个体数目
bounds--代表变量的上下界的矩阵
eevalFN--适应度函数
eevalOps--传递给适应度函数的参数
options--选择编码形式(浮点编码或是二进制编码)[precision F_or_B],如
precision--变量进行二进制编码时指定的精度
F_or_B--为1时选择浮点编码,否则为二进制编码,由precision指定精度)
(2)function[x,endPop,bPop,traceInfo]= ga(bounds,evalFN,evalOps,startPop,opts,...
termFN,termOps,selectFN,selectOps,xOverFNs,xOver Ops,mutFNs,mutOps)--遗传算法函数
【输出参数】
x--求得的最优解
endPop--最终得到的种群
bPop--最优种群的一个搜索轨迹
【输入参数】
bounds--代表变量上下界的矩阵
evalFN--适应度函数
evalOps--传递给适应度函数的参数
startPop-初始种群
opts[epsilon prob_ops display]--opts(1:2)等同于initializega 的options参数,第三个参数控制是否输出,一般为0。
如[1e-6 10]
termFN--终止函数的名称,如['maxGenTerm']
termOps--传递个终止函数的参数,如[100]
selectFN--选择函数的名称,如['normGeomSelect']
selectOps--传递个选择函数的参数,如[0.08]
xOverFNs--交叉函数名称表,以空格分开,如['arithXover heuristicXover simpleXover']
xOverOps--传递给交叉函数的参数表,如[20;23;20] mutFNs--变异函数表,如['boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation'] mutOps--传递给交叉函数的参数表,如[400;61003;4100 3;400]
注意】matlab工具箱函数必须放在工作目录下
【问题】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08
【程序清单】
%编写目标函数
function[sol,eval]=fitness(sol,options)
x=sol(1);
eval=x+10*sin(5*x)+7*cos(4*x);
%把上述函数存储为fitness.m文件并放在工作目录下
initPop=initializega(10,[09],'fitness');%生成初始种群,大小为10
[x endPop,bPop,trace]=ga([09],'fitness',[],initPop,[1e-61 1],'maxGenTerm',25,'normGeomSelect',...
[0.08],['arithXover'],[2],'nonUnifMutation',[2253])%25次遗传迭代
运算借过为:x=
7.856224.8553(当x为7.8562时,f(x)取最大值24.8553)
注:遗传算法一般用来取得近似最优解,而不是最优解。
遗传算法实例2
【问题】在-5<=Xi<=5,i=1,2区间内,求解
f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2+x2.^2)))-exp(0.5*(c os(2*pi*x1)+cos(2*pi*x2)))+22.71282的最小值。
【分析】种群大小10,最大代数1000,变异率0.1,交叉率0.3【程序清单】
%源函数的matlab代码
function[eval]=f(sol)
numv=size(sol,2);
x=sol(1:numv);
eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos (2*pi*x))/numv)+22.71282;
%适应度函数的matlab代码
function[sol,eval]=fitness(sol,options)
numv=size(sol,2)-1;
x=sol(1:numv);
eval=f(x);
eval=-eval;
%遗传算法的matlab代码
bounds=ones(2,1)*[-55];
[p,endPop,bestSols,trace]=ga(bounds,'fitness')
注:前两个文件存储为m文件并放在工作目录下,运行结果为p=
0.0000-0.00000.0055
大家可以直接绘出f(x)的图形来大概看看f(x)的最值是多少,也可是使用优化函数来验证。
matlab命令行执行命令:
fplot('x+10*sin(5*x)+7*cos(4*x)',[0,9])
evalops是传递给适应度函数的参数,opts是二进制编码的精度,termops是选择maxGenTerm结束函数时传递个maxGenTerm 的参数,即遗传代数。
xoverops是传递给交叉函数的参数。
mutops是传递给变异函数的参数。