第九章 磁路计算
- 格式:ppt
- 大小:1.43 MB
- 文档页数:51
电磁铁的基本公式及计算1.磁路基本计算公式B =μH,φ=ΛIW,∑φ=0IW=∑HL, Λ=μS/LB—磁通密度(T);φ—磁通〔Wb);IW—励磁安匝(A);Λ一磁导(H);L一磁路的平均长度(m) }S—与磁通垂直的截面积(m2);H一磁场强度(A/m);μ一导磁率(H/m) ,空气中的导磁率等于真空中的导磁率μ0=0 .4π×10-8 H/m。
2,电磁铁气隙磁导的计算电磁铁气隙磁导的常用计算公式列于表“气隙磁导的计算公式”中。
表中长度单位用crn,空气中的导磁率μ0为0 .4π×10-8 H/m。
气隙磁导的计算公式3·电磁铁吸力基本计算公式 (1)计算气隙较小时的吸力为10210S392.0⨯=φF式中:F —电磁铁吸力(N); φ—磁极端面磁通(Wb); S —磁极表面的总面积(cm 2)。
(2)计算气隙较大时的吸力为10210)a S(1392.0⨯+=δφF式中:a —修正系数,约为3~5;δ—气隙长度(cm )。
上式适用于直流和交流电磁铁的吸力计算。
交流时,用磁通有效值代入,所得的吸力为平均值。
例:某磁路如图所示。
已知气隙δ为0.04cm ,铁芯截面S 为4.4cm 2,线圈磁势IW 为1200安匝。
试求在气隙中所产生的磁通和作用在衔铁上的总吸力。
解:(1)一个磁极端面上的气隙磁导为000111004.04.4μμδμδ=⨯==S G 由于两个气隙是串联的,所以总磁导为G δ = G δ1/2=55μ0=55×0.4π×10-8=68.75×10-8(H ) (2)气隙中所产生的磁通为φδ=IW G δ =1 200×68.75×10-8 =8 .25×10-4 (Wb) (3)总吸力为)(1213104.425.8392.0210S 392.02102102N F =⨯⨯⨯=⨯⨯=δδφ 式中乘2是因为总吸力是由两个气隙共同作用所产生的。
磁路计算是用于计算磁场中磁路参数的过程,它是磁场分析和电磁设备设计中的重要步骤之一。
磁路计算可以帮助确定磁路的磁通量、磁势、磁阻和磁感应强度等参数。
下面是进行磁路计算的一般步骤:
⚫确定磁路几何形状:首先需要确定磁路的几何形状,包括磁心、线圈和气隙等部分。
这些部分的形状和尺寸对磁路参数的计算有重要影响。
⚫材料特性和参数:确定各个磁路部分的材料特性和参数,包括磁性材料的磁导率、导磁率以及其他相关参数。
这些参数是进行磁路计算的基础。
⚫磁路分析方程:根据磁路的几何形状和材料特性,建立磁路分析方程。
这些方程可以是基于法拉第电磁感应定律或安培环路定理等。
⚫边界条件和约束:根据具体情况,确定磁路中的边界条件和约束。
这些条件可以是给定的电流、磁通量或磁势值等。
⚫解方程和计算:使用数值方法或解析方法,求解磁路分析方程,
得到磁路中各个部分的磁通量、磁势和磁感应强度等参数。
⚫结果分析和优化:分析计算结果,评估磁路的性能,并根据需要进行优化调整。
这可以包括改变磁路的几何形状、材料选型或改变线圈的绕组方式等。
需要注意的是,磁路计算是一个复杂的过程,涉及到电磁学、数学和工程等知识领域。
在实际应用中,通常会借助电磁场仿真软件或计算工具来辅助进行磁路计算,以提高计算的准确性和效率。
1.2 磁路设计基本公式Kf*Bg*Sg = Bd*Sm (1) Kr*Hg*Lg = Hd*Lm (2) 相关说明如下:Bg: 工作气隙中的磁感应密度Bd: 磁体内部的磁感应密度Sg: 工作气隙截面积Sm: 磁体截面积Kf: 漏磁系数(总磁通与工作气隙磁通之比)Hg: 工作气隙中的磁场强度Hd: 磁体内部的磁场强度Lg: 工作气隙宽度Lm: 磁体高度Kr: 漏磁阻系数(总磁阻与工作气隙磁阻之比)这里所有单位均采用国际单位制,即千克、米、秒制。
1.3 一些参数的选取与设定对于内磁结构的磁路:Kr = 1.1~1.5K f = 1.8~2.5导磁板厚度:Tp = 5*Lg导磁板直径:Dp = 4.1*Tp对于外磁结构的磁路:Kr = 1.1~1.5Kf = 2.0~4.0华司厚度:Tp = 5*Lg中柱外径:Dp = 4.3*Tp华司外径 = 磁体外径-磁体厚度/2Sg =π*(Dp+Lg)*Tp* Hg (3) Bg =μoμo = 4π*10-7 H/m为真空磁导率.根据磁体材料退磁曲线和最大磁能积曲线,可以确定最佳工作点的Bd和Hd 值,在此工作点,磁体体积最小(给定Bg值时),工作气隙中的磁感应密度最大(给定磁体尺寸时)。
*Sm*Lm*Bd*Hd)/(Kr*Kf*Sg*Lg) (4) Bg2 = (μo1.4 磁路设计的验证选择了一种磁路结构后,验证很方便,只需将磁路充磁,测量其工作气隙中的磁感应密度Bg就行。
磁感应密度Bg的测量方法有两种:一是用带超薄霍尔探头的特斯拉计(高斯计)直接测量;二是用带标准线圈的韦伯表(磁通表)测量磁通φ,然后换算成磁感应密度, Bg =φ/S,这里的S为标准线圈在磁场中切割磁力线的有效面积。
回到楼主的问题,对于超重低音,个人以为倒相,闭箱,带通都未尝可,三种设计个有优缺点,闭箱设计简单,瞬态特性毋庸置疑,但遗憾的是相对而言截止频率较高,如结合电路EQ应该是个不错的选择,同样使用闭箱设计的超重低音通常扬声器单体口径也比较大;倒相的优点在于很好的利用反向辐射的声波,原则上对扬声器的口径没有太高的要求,但是考虑到倒相箱的位移响应特性,小口径扬声器在做倒相式超重低音时最好在电路部分能加上低切处理,同时要注意选择倒相管的口径,避免高速的气流噪声。
磁路与电感计算一个空心螺管线圈,或是带气隙的磁芯线圈,通电流后磁力线分布在它周围的整个空间。
对于静止或低频电磁场问题,可以根据电磁理论应用有限元分析软件进行求解,获得精确的结果,但是不能提供简单的、指导性的和直观的物理概念。
在开关电源中,为了用较小的磁化电流产生足够大的磁通(或磁通密度),或在较小的体积中存储较多的能量,经常采用一定形状规格的软磁材料磁芯作为磁通的通路。
因磁芯的磁导率比周围空气或其他非磁性物质磁导率大得多,把磁场限制在结构磁系统之内,即磁结构内磁场很强,外面很弱,磁通的绝大部分经过磁芯而形成一个固定的通路。
在这种情况下,工程上常常忽略次要因素,只考虑导磁体内磁场或同时考虑较强的外部磁场,使得分析计算简化。
通常引入磁路的概念,就可以将复杂的场的分析简化为我们熟知的路的计算。
3.1 磁路的概念从磁场基本原理知道,磁力线或磁通总是闭合的。
磁通和电路中电流一样,总是在低磁阻的通路流通,高磁阻通路磁通较少。
所谓磁路指凡是磁通(或磁力线)经过的闭合路径称为磁路。
3.2 磁路的欧姆定律以图3.1(a)为例,在一环形磁芯磁导率为μ的磁芯上,环的截面积A ,平均磁路长度为l ,绕有N 匝线圈。
在线圈中通入电流I ,在磁芯建立磁通,同时假定环的内径与外径相差很小,环的截面上磁通是均匀的。
根据式(1.7),考虑到式(1.1)和(1.3)有 F NI Hl BlAl R m =====μφμφ (3.1) 或φ=F /R m (3.2) 式中F =NI 是磁动势;而R m =lA μ (3.3)R m —称为磁路的磁阻,与电阻的表达式相似,正比于路的长度l ,反比于截面积A 和材料的磁导率μ;其倒数称为磁导G m m R A l==1μ (3.3a) 式(3.1)即为磁路的欧姆定律。
在形式上与电路欧姆定律相似,两者对应关系如表3.1所示。
磁阻的单位在SI 制中为安/韦,或1/亨;在CGS 制中为安/麦。