(完整版)第六章同化物的运输复习思考题及答案
- 格式:doc
- 大小:24.16 KB
- 文档页数:6
第六章植物体内同化物的运输与分配知识要点物质在维管束中运输的一般规律是:无机营养及信息物质在木质部中向上运输,而在韧皮部中向下运输;同化物在韧皮部中可向上或向下运输,而在木质部中向上运输;木质部和韧皮部间可侧向发生物质交换。
源叶中由光合作用形成的磷酸丙糖通过叶绿体被膜上磷运转器进入细胞质,并经过一系列酶促反应合成蔗糖,蔗糖是光合同化物的主要运输形式,它通过质外体和/ 或共质体的胞间短距离运输进入韧皮部薄壁细胞,然后又经过质外体和/ 或共质体装载进入筛管- 伴胞复合体,一旦光合同化物进入韧皮部,在压力梯度的驱动下,向库细胞侧运输。
在库端同化物从筛管- 伴胞复合体向周围细胞卸出。
源端的蔗糖装载和库端蔗糖卸出维持着源库两端蔗糖浓度差,由蔗糖浓度差引起的膨压差推动着韧皮部中的物质运输。
光合同化物进入库细胞或用于生长和呼吸,或进一步合成贮藏性物质,因此,光合同化物的形成、运输、分配直接关系到作物产量的高低和品质的好坏。
叶绿体中的磷酸丙糖及细胞质中合成的蔗糖的去向决定于源库间的相互协调和相互作用。
当光合同化物的形成能力大于对同化物的需求时,细胞质中蔗糖的合成受到抑制,用于输出的蔗糖的量减少,而进入液泡作临时性贮藏的量增加。
光合作用形成的磷酸丙糖滞留在叶绿体内用于合成淀粉,并通过某种( 些) 机理反馈抑制光合作用。
另外,通过促进库细胞有关蔗糖和淀粉合成代谢酶的合成或活性,最终使光合同化物的形成能力与同化物的需求间达到一种新的平衡。
当光合同化物的形成能力小于对同化物的需求时,磷酸丙糖优先进入细胞质用于合成蔗糖并向库细胞输送,细胞质中低浓度的蔗糖对源叶光合酶活性有反馈促进作用,从而两者达到一种新的平衡。
光合同化物分配的总规律是从源到库,源是合成和/或输出同化物的器官,而库是消耗和/ 或积累同化物的器官,源和库对同化物的运输和分配具有显著的影响,其影响的程度可用源强和库强来衡量。
一般来说,源强决定同化物分配的数量,而不影响同化物在不同库间的分配比例。
第六章植物体内同化物的运输与分配Ⅱ 习题一、名词解释转运细胞代谢库同化物的装卸出胞现象P- 蛋白源 - 库单位运输速度代谢源压力流动学说比集运量二、写出下列符号的中文名称SE-CC SMT SMTR三、填空题1. 植物体内同化物长距离运输的途径是(),而细胞内的运输主要是通过()和()。
2. 植物胞间运输包括()、(),器官间的长距离运输通过()。
3. 植物体内碳水化合物主要以()的形式运输,此外还有()糖、()糖和()糖等。
4. 筛管汁液中含量最多的有机物是(),含量最多的无机离子是()。
5. 用()法和()法可以证明,植物体内同化物长距离运输的途径是韧皮部筛管。
6. 同化物运输的方向有()和()两种。
7. ()在()年提出了关于韧皮部运输机理的压力流动学说。
8. 有机物总的分配方向是由()到()。
9. 植物体内同化物分配的特点是()、()、()、()()。
10. 载体参与和调节有机物质向韧皮部装载过程,其依据是();();()。
11. 根据源库关系,当源大于库时,籽粒增重受()的限制,库大于源时,籽粒增重受()的限制。
12. 影响同化物分配的外界条件有()、()、()和()。
13. 无机磷含量对同化物的运转有调节作用,当无机磷含量较高时,P i 与叶绿体内的()进行交换有利于光合产物从()运转到(),促进细胞内()的合成。
14. 植物在营养生长期,氮肥施用过多,体内()含量增多,()含量减少,不利于同化物在茎秆中积累。
15. 近年来发现,细胞内 K + /Na + 比调节淀粉 / 蔗糖的比值, K + /Na + 比高时,有利于()的积累, K + /Na + 比低时,有利于光合产物向()的转化。
16. 伴细胞与筛管细胞通过胞间连丝相联,伴细胞的作用是为筛管细胞(),(),()和()。
17. 有机物质从绿色细胞向韧皮部装载的途径,可能是从()→()→()(韧皮部筛管)。
18. 研究表明()、()和() 3 种植物激素可以促进植物体内有机物质的运输。
第六章同化物运输(一)填空1.根据运输距离的长短,可将高等植物体内的运输可分为距离运输和距离运输。
2.物质进出质膜的方式有三种:(1)顺浓度梯度的转运,(2)逆浓度梯度的转运,(3)依赖于膜运动的转运。
3.筛管中糖的主要运输形式是糖和糖。
4. 同化物长距离运输的通道是,最普遍的运输物质是。
5.质外体装载是指细胞输出的蔗糖先进入质外体,然后通过位于SE-CC复合体质膜上的蔗糖载体蔗糖浓度梯度进入伴胞,最后进入筛管的过程。
共质体装载途径是指细胞输出的蔗糖通过胞间连丝浓度梯度进入伴胞或中间细胞,最后进入筛管的过程。
6.韧皮部卸出的途径有两条:一条是途径,另一条是途径。
7.光合碳代谢形成的磷酸丙糖可继续参与卡尔文循环的运转,或滞留在内,并在一系列酶作用下合成淀粉;或者通过位于叶绿体被膜上的进入细胞质,再在一系列酶作用下合成蔗糖。
8.1930年E、Münch提出了解释韧皮部同化物运输的学说。
该学说的基本论点是,同化物在筛管内是随液流流动的,而液流的流动是由两端的膨压差引起的。
9.光合细胞中蔗糖的合成是在内进行的。
催化蔗糖降解代谢的酶有两类,一类是,另一类是。
10.淀粉合成酶有两种形式:一种位于淀粉体的可溶部分,称淀粉合成酶,另一种是和淀粉粒结合的,称淀粉合成酶。
11.根据同化物到达库以后的用途不同,可将库分成库和库两类。
另外,根据同化物输入后是否再输出,又可把库分为库和库。
12.同化物分配的总规律是由到,并具有以下的特点:(1)优先供应,(2)就近,(3)同侧。
13.植物体除了已经构成植物骨架的细胞壁等成分外,其他的各种细胞内含物当该器官或组织衰老时都有可能被,即被转移到其他器官或组织中去。
同化物再分配的途径除了走原有的输导系统,质外体与共质体外,细胞内的细胞器如核等可以解体后再撤离,也可不经解体直接,直至全部细胞撤离一空。
(二)选择题1.叶绿体中输出的糖类主要是。
A.磷酸丙糖 B.葡萄糖 C.果糖 D.蔗糖2.春天树木发芽时,叶片展开前,茎杆内糖分运输的方向是。
第五节同化物的运输与分配光合产物水、矿质元素瓜儿为什么那么大?那么甜?为什么有些植物植株大却结小果实,而有些植物植株小却能结大果实?•植物如何把有限的光合作用产物“定向”转移到果实/种子中?–高光合作用的植物是不是一定高产?•把什么物质运输到果实/种子中?–为什么西瓜积累糖分,而油菜籽积累油脂?•为什么是果实/种子而不是其它部位?–瓜甜,为什么叶不甜?Outline有机物运输的途径; 韧皮部装载;韧皮部卸出;韧皮部运输的机理; 同化物的配置与分配一有机物运输的途径;二韧皮部装载;三韧皮部卸出;四韧皮部运输的机理;五同化物的配置与分配一有机物运输的途径、溶质种类、方向和速率1、有机物运输的途径;2、有机物运输的溶质种类3、有机物运输的方向和速率(1 )证明植物有机物运输途径的经典实验树木枝条环割试验操作与现象:在树木生长季节,将枝条环割,把树皮(韧皮部)去除,几周后发现位于环割区上方的树皮逐渐膨大,形成树瘤,下方的树皮最终死亡,而环割的枝条上端仍可以长期继续生长。
结论:叶子同化的物质经韧皮部运输。
解释:当韧皮部通路被环割切断时,叶子的同化物下运受阻,停滞在环割切口上端,引起树皮膨大;而环割未破坏木质部的连续性,因而根系吸水和矿物质则通过木质部上运至环割枝条的上端而维持其生长。
1、有机物运输途径放射性同位素示踪法用含有放射性碳同位素的14CO饲喂特定叶片,利用植物光合作用固2将放射性同位素引入植物体内,数分钟后将叶柄切下并固定,对叶柄横定CO2切面进行放射性自显影,可看出14CO标记的同化物位于韧皮部。
22012年考研真题简述韧皮部P蛋白的特性与功能。
14孔。
SE-CC筛管分子-伴胞复合体(sieve element-companion cell complex):筛管分子和伴胞之间在结构和功能上的密切关系,通常把两者作为一个功能单位。
20伴胞:伴胞和筛管分子来源于同一个形成层细胞的分裂。
伴胞有细胞核、细胞质、核糖体、线粒体等。
第六章同化物的运输、分配及信号的传导(一)名词解释源(source) 即代谢源,是产生或提供同化物的器官或组织,如功能叶、萌发种子的子叶或胚乳。
库(sink) 即代谢库,是指消耗或积累同化物的器官或组织,如根、茎、果实、种子等。
共质体运输(symplastic transport) 物质在共质体中的运输称为共质体运输。
质外体运输(apoplastic transport) 物质在质外体中的运输称为质外体运输。
P蛋白(P-protein)即韧皮蛋白,位于筛管的内壁,当韧皮部组织受到损伤时,P-蛋白在筛孔周围累积并形成凝胶,堵塞筛孔以维持其他部位筛管的正压力,同时减少韧皮部内运输的同化物的外流。
转移细胞(transfer cells)在共质体-质外体交替运输过程中起转运过渡作用的特化细胞。
它的细胞壁及质膜内突生长,形成许多折叠片层,扩大了质膜的表面积,从而增加溶质内外转运的面积,能有效地促进囊泡的吞并,加速物质的分泌或吸收。
比集转运速率(specific mass transfer rate, SMTR) 单位时间单位韧皮部或筛管横切面积上所运转的干物质的数量。
韧皮部装载(phloem loading) 同化物从合成部位通过共质体或质外体胞间运输,进入筛管的过程。
韧皮部卸出(phloem unloading) 同化物从筛管分子-伴胞复合体进入库细胞的过程。
空种皮技术(empty seed coat technique,empty-ovule technique) 切除部分豆荚壳和远种脐端的半粒种子,并去除另半粒种子的胚性组织,制成空种皮杯。
短时间内,空种皮杯内韧皮部汁液的收集量与种子实际生长量相仿,此法适用于研究豆科植物的同化物运输。
源库单位(source-sink unit) 在同化物供求上有对应关系的源与库合称为源-库单位。
源强和库强源强(source strength)是指源器官同化物形成和输出的能力;库强 (sink strength) 是指库器官接纳和转化同化物的能力。
第六章同化物的运输、分配及信号的传导(一)名词解释源(source) 即代谢源,是产生或提供同化物的器官或组织,如功能叶、萌发种子的子叶或胚乳。
库(sink) 即代谢库,是指消耗或积累同化物的器官或组织,如根、茎、果实、种子等。
共质体运输(symplastic transport) 物质在共质体中的运输称为共质体运输。
质外体运输(apoplastic transport) 物质在质外体中的运输称为质外体运输。
P蛋白(P-protein)即韧皮蛋白,位于筛管的内壁,当韧皮部组织受到损伤时,P-蛋白在筛孔周围累积并形成凝胶,堵塞筛孔以维持其他部位筛管的正压力,同时减少韧皮部内运输的同化物的外流。
转移细胞(transfer cells)在共质体-质外体交替运输过程中起转运过渡作用的特化细胞。
它的细胞壁及质膜内突生长,形成许多折叠片层,扩大了质膜的表面积,从而增加溶质内外转运的面积,能有效地促进囊泡的吞并,加速物质的分泌或吸收。
比集转运速率(specific mass transfer rate, SMTR) 单位时间单位韧皮部或筛管横切面积上所运转的干物质的数量。
韧皮部装载(phloem loading) 同化物从合成部位通过共质体或质外体胞间运输,进入筛管的过程。
韧皮部卸出(phloem unloading) 同化物从筛管分子-伴胞复合体进入库细胞的过程。
空种皮技术(empty seed coat technique,empty-ovule technique) 切除部分豆荚壳和远种脐端的半粒种子,并去除另半粒种子的胚性组织,制成空种皮杯。
短时间内,空种皮杯内韧皮部汁液的收集量与种子实际生长量相仿,此法适用于研究豆科植物的同化物运输。
源库单位(source-sink unit) 在同化物供求上有对应关系的源与库合称为源-库单位。
源强和库强源强(source strength)是指源器官同化物形成和输出的能力;库强 (sink strength) 是指库器官接纳和转化同化物的能力。
信号转导(signal transduction)细胞内外的信号,通过细胞的转导系统转换,引起细胞生理反应的过程。
化学信号 (chemical signals) 细胞感受刺激后合成并传递到作用部位引起生理反应的化学物质。
物理信号(physical signal) 细胞感受到刺激后产生的能够起传递信息作用的电信号和水力学信号等物理性因子。
G蛋白(G protein) 全称为GTP结合调节蛋白(GTP binding regulatory protein),此类蛋白由于其生理活性有赖于三磷酸鸟苷(GTP)的结合以及具有GTP水解酶的活性而得名。
在受体接受胞间信号分子到产生胞内信号分子之间往往要进行信号转换,通常认为是通过G蛋白偶联起来,故G蛋白又称为偶联蛋白或信号转换蛋白。
第二信使(second messenger) 能被胞外刺激信号激活或抑制的、具有生理调节活性的细胞内因子。
第二信使亦称细胞信号传导过程中的次级信号。
(二)写出下列符号的中文名称,并简述其主要功能或作用SE-CC 筛管分子-伴胞(sieve element-companion cell) 复合体,筛管通常与伴胞配对,组成筛管分子-伴胞复合体。
源库端的SE-CC是同化物装载和卸出的埸所,茎和叶柄等处中的筛管是同化物长距离运输的通道。
SMTR 比集转运速率(specific mass transfer rate) 单位时间单位韧皮部或筛管横切面积上所运转的干物质的量。
用其来衡量同化物运输快慢与数量。
PCMBS 对氯汞苯磺酸(parachloro-mercuribenzene sulfonate),质外体运输抑制剂。
? TPT 磷酸丙糖转运器(triose phosphate translocator),为叶绿体内被膜上的-种运转蛋白。
可输入输出磷酸、磷酸丙糖、磷酸甘油酸等磷化合物,故又称磷酸转运器(Pi- translocator,PT)。
TPT输入输出磷化合物时有严格的数量关系,向叶绿体运进1个磷化合物,也从叶绿体运出1个磷化合物。
如在进行光合作用时,通过TPT从叶绿体运出1个磷酸丙糖进入细胞质的同时,细胞质向叶绿体运进1个磷酸,这种通过TPT相互间的穿梭转运磷化合物的方式,既把Pi运进了叶绿体,又把光合产物与能量运出了叶绿体。
FBPase 果糖-1,6-二磷酸酯酶(fructose-1,6- bisphosphate phosphatase),催化F1,6BP水解形成F6P。
这一步反应是不可逆的,也是调节蔗糖合成的第一步反应。
F2,6BP 果糖-2,6-二磷酸(fructose-2,6-bisphosphate),是FBPase强抑制剂,能改变FBPase催化反应动力学特性,还能加强AMP对FBPase的抑制活性以及提高该酶对pH和Mg2+的依赖性。
因此,普遍认为F2,6BP在调节FBPase和蔗糖合成中起关键性的作用。
SPS 蔗糖磷酸合成酶(sucrose phosphate synthase),催化UDPG和F6P形成蔗糖-6-磷酸(S6P),是蔗糖合成途径中另一个重要的调节酶。
UDPG 尿二磷葡萄糖(uridine diphosphate glucose),合成蔗糖所需的葡萄糖供体。
ADPG 腺二磷葡萄糖(adenosine diphosphate glucose),合成淀粉所需的葡萄糖供体。
AGP ADPG焦磷酸化酶(ADP glucose pyrophosphorylase),催化葡萄糖供体ADPG的合成:G1P + ATP→ADPG + PPiAP 动作电波(action potential),也叫动作电位,指细胞和组织中发生的相对于空间和时间的快速变化的一类生物电位,它是植物的一种物理信号,可通过输导组织传递。
SC 蔗糖载体(sucrose carrier),存在于质膜或液胞膜上的内在蛋白,在质子电动势的驱动下运输蔗糖。
CaM 钙调素(calmodulin)是最重要的多功能Ca2+信号受体,为单链的小分子酸性蛋白。
当外界信号刺激引起胞内Ca2+浓度上升到一定阈值后,Ca2+与CaM结合,引起CaM构象改变。
而活化的CaM又与靶酶结合,使其活化而引起生理反应。
目前已知有十多种酶受Ca2+-CaM 的调控。
PI、PIP、PIP2 生物体内肌醇磷脂(inositol phospholipid) 的几种存在形式,即其肌醇分子六碳环上的羟基被不同数目的磷酸酯化,PI为磷脂酰肌醇,PIP为磷脂酰肌醇-4-磷酸,PIP2为磷脂酰肌醇-4,5-二磷酸,它们参与细胞胞内的信号转导。
IP3 肌醇-1,4,5-三磷酸(inositol-1,4,5-triphosphate),植物细胞内信号分子,通过调节Ca2+浓度来传递信息。
DG(DAG)二酰甘油(diacylglycerol),植物细胞内信号分子,通过激活蛋白激酶C(PKC)来传递信息。
PKC 蛋白激酶C(protein kinase C),激活的PKC可催化蛋白质(酶)的磷酸化,导致细胞产生相应的反应。
CAMP 环腺苷酸(cyclic AMP),胞内信号分子,参与受体G蛋白之后的下游信号转导过程。
(三) 问答题1.如何证明高等植物的同化物长距离运输是通过韧皮部途径的?答:可用以下实验证明同化物的运输途径是由韧皮部担任的:(1) 环割试验剥去树干(枝)上的一圈树皮(内有韧皮部),这样阻断了叶片形成的光合同化物的向下运输,而导致环割上端韧皮部组织因光合同化物积累而膨大,环割下端的韧皮部组织因得不到光合同化物而死亡。
(2)放射性同位素示踪法让叶片同化14CO2,数分钟后将叶柄切下并固定,对叶柄横切面进行放射性自显影,可看出14CO2标记的光合同化物位于韧皮部。
2.维管束系统对植物的生命活动具有哪些功能?答:通常认为维管束系统具有以下功能:(1) 物质长距离运输的通道一般情况下水和无机营养由木质部输送,同化物由韧皮部输送。
其中,韧皮部最基本的功能是在源端把同化物装入筛管,在库端把同化物卸至生长细胞或贮藏细胞,以及提供同化物长距离运输的通道。
(2)信息物质传递的通道如根部合成的细胞分裂素和脱落酸等可通过木质部运至地上部分,而茎端合成的生长素则通过韧皮部向下极性运输。
植物受环境刺激后产生的电波也主要在维管束中传播。
(3)两通道间的物质交换木质部和韧皮部通过侧向运输可相互间运送水分和养分。
如筛管中的膨压变化就是由于导管与筛管间发生水分交流引起的。
(4)对同化物的吸收和分泌这不仅发生在源库端,在运输途中也能与周围组织发生物质交换。
(5)对同化物的加工和储存在维管束中的某些薄壁细胞内,可将运输中的同化物合成淀粉,并储存下来。
需要时淀粉则可水解再转运出去。
(6)外源化学物质以及病毒等传播的通道外源化学物质以及病毒等可通过筛管传播,另外筛管本身也存在一定的防卫机制。
(7)植物体的机械支撑植物的长高加粗与维管束有密切关系,若树木没有木质部形成的心材,就不可能长至几米、几十米、甚至一百多米的高度。
3.你认为韧皮部运输机理的研究应包括哪些内容?答:韧皮部运输机理的研究应包括以下几个方面的内容:(1) 韧皮部运输的速度和方向。
(2)韧皮部运输的动力。
(3)同化物从叶肉细胞进入筛管(装载)的机理和调节。
(4)同化物在筛管中运输的机理。
(5)同化物从筛管向库细胞释放(卸出)的机理和调节。
(6)影响上述这些过程的因素等。
4.如何理解蔗糖是高等植物韧皮部光合同化物运输的主要形式?答:蔗糖是韧皮部运输物质的主要形式,其原因可能是:(1)蔗糖是非还原糖,化学性质比还原糖稳定。
(2)蔗糖水解时能产生相对高的自由能。
(3)蔗糖分子小、移动性大,运输速率高,适合进行长距离的韧皮部运输。
5.试述同化物韧皮部装载的途径。
答:同化物从周围的叶肉细胞转运进韧皮部SE-CC复合体的过程中存在着两种装载途径:(1)质外体装载途径光合细胞输出的蔗糖进入质外体后通过位于SE-CC复合体质膜上的蔗糖载体逆浓度梯度进入伴胞,最后进入筛管的过程。
(2)共质体装载途径光合细胞输出的蔗糖通过胞间连丝顺蔗糖浓度梯度进入伴胞或中间细胞,最后进入筛管的过程。
6.如何判别同化物韧皮部装载是通过质外体途径还是通过共质体途径的?答:可根据以下实验进行判断:(1)若叶片SE-CC复合体与周围薄壁细胞间无胞间连丝连接,即表明同化物韧皮部装载是通过质外体途径;若SE-CC复合体与周围薄壁细胞间存在紧密的胞间连丝,则表明同化物韧皮部装载可能是通过共质体途径。
(2)若SE-CC复合体内的蔗糖浓度明显高出周围叶肉细胞中的蔗糖浓度,则表明同化物韧皮部装载可能是通过质外体途径,反之装载是通过共质体途径。