线性规划基础
- 格式:doc
- 大小:231.00 KB
- 文档页数:28
知识详解1.线性规划的有关概念:①线性约束条件:在上述问题中,不等式组是一组变量x,y的约束条件,这组约束条件都是关于x,y的一次不等式,故又称线性约束条件.②线性目标函数:关于x,y的一次式z=2x+y是欲达到最大值或最小值所涉及的变量x,y的解析式,叫线性目标函数.③线性规划问题:一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.④可行解、可行域和最优解:满足线性约束条件的解(x,y)叫可行解.由所有可行解组成的集合叫做可行域.使目标函数取得最大或最小值的可行解叫线性规划问题的最优解.2.用图解法解决简单的线性规划问题的基本步骤:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解3.解线性规划实际问题的步骤:(1)列出约束条件与目标函数;(2)根据求最值方法:①画:画可行域;②移:移与目标函数一致的平行直线;③求:求最值点坐标;④答;求最值;(3)验证.4. 主要的目标函数的几何意义:(1)-----直线的截距;(2)-----两点的距离或圆的半径;(3)-----直线的斜率一.二元一次不等式(组)表示的平面区域例1.不等式组⎩⎪⎨⎪⎧x -3y +6≥0,x -y +2<0表示的平面区域是( )例2. (2020·汉中质检)不等式组⎩⎪⎨⎪⎧x +y -2≤0,x -y -1≥0,y ≥0所表示的平面区域的面积等于________.二.目标函数形如z=ax+by 型:例1(2008.全国Ⅱ)设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值是( )A .2-B .4-C .6-D .8-解:画出可行域(如图1),由y x z 3-=可得331z x y -=,所以3z -表示直线331zx y -=的纵截距,由图可知当直线过点A (-2,2)时,z 的最小值是-8,选D.三.目标函数形如ax by z --=型::画出可行域(如图2),yx表示可行域内的点(x,y=6,KOC =59,所以6≤,选A.1.已知变量满足约束条件,则的最大值为( )2. (2012年高考·辽宁卷 理8)设变量满足,则的最大值为4. A.⎣⎡C .6A .C .7. 8如果点P 在平面区域⎪⎩⎨≥-≤-+01202y y x 上,点O 在曲线的那么上||,1)2(22PQ y x=++最小值为____9.设,x y 满足约束条件3602000x y x y x y --≤⎧⎪-+≥⎪⎨≥⎪⎪≥⎩,若目标函数,(0,0)z ax by a b =+>>的最大值为6,则46a b +的最小值为_______、10.某糖果厂生产A 、B 两种糖果,A 种糖果每箱获利润40元,B 种糖果每箱获利润50元,其生产过程分为混,x y 241y x y x y ≤⎧⎪+≥⎨⎪-≤⎩3z x y =+()A 12()B 11()C 3()D -1,x y -100+20015x y x y y ≤⎧⎪≤≤⎨⎪≤≤⎩2+3x y合、烹调、包装三道工序,下表为每箱糖果生产过程中所需平均时间(单位:分钟)每种糖果的生产过程中,混合的设备至多能用12机器小时,烹调的设备至多只能用机器30机器小时,包装的设备只能用机器15机器小时,试用每种糖果各生产多少箱可获得最大利润.11.某工厂利用两种燃料生产三种不同的产品A、B、C,每消耗一吨燃料与产品A、B、C有下列关系:现知每吨燃料甲与燃料乙的价格之比为3:2,现需要三种产品A、B、C各50吨、63吨、65吨.问如何使用两种燃料,才能使该厂成本最低?。
线性规划基本知识线性规划是一种数学优化方法,用于在给定限制条件下最大或最小化线性目标函数。
它是现代数学、工程学和运筹学的基础之一,被广泛应用于制造业、金融、交通、物流等领域。
本文将介绍线性规划的基础知识,包括线性规划问题的表达方式、标准形式、单纯形法求解以及对偶理论等。
一、线性规划问题的表达方式线性规划问题的表达方式通常包含以下部分:1. 决策变量:表示求解问题时需要确定的变量,通常用x1、x2、......、xn表示。
2. 目标函数:表示优化的目标,通常是一个线性函数,用c1x1+c2x2+......+cnxn表示。
3. 约束条件:表示限制决策变量的取值范围,通常是线性等式或不等式,用a11x1+a12x2+......+a1nxn≤b1、a21x1+a22x2+......+a2nxn≤b2、......、am1x1+am2x2+......+amnxn≤bm 表示。
其中,决策变量x1、x2、......、xn的取值范围可以是非负实数集合、整数集合或者其他特定取值范围。
二、线性规划的标准形式通常情况下,线性规划问题都可以通过一些变换,转化为标准形式进行求解。
标准形式的线性规划问题包括以下三个部分:1. 最大化或最小化的目标函数2. 约束条件,所有约束条件都是小于等于号3. 决策变量的取值范围,所有决策变量都是非负实数三、单纯形法求解线性规划问题单纯形法是线性规划问题最常用的求解方法之一,它是一种迭代的过程,通过一系列基本变换(基本可行解、进入变量、离开变量、更新表格)逐步接近最优解。
单纯形法求解线性规划问题的步骤如下:1. 将线性规划问题转化为标准形式。
2. 确定一个初始可行解。
3. 计算第一行表格的系数,并找出最小的系数所在的列,作为进入变量。
4. 确定离开变量,通过将所有正数元素对应的值除以对应进入变量的系数,找到最小的元素所在的行,作为离开变量所在行。
5. 更新表格,完成一次迭代。
6. 重复第三至第五步,直至得到最优解或者确定问题无可行解或是无界问题。