燃料电池+蓄电池电动汽车动力系统的结构
- 格式:docx
- 大小:37.83 KB
- 文档页数:4
电动汽车动力储能装置包括所有动力蓄电池、超级电容、飞轮电池和燃料电池等储能元件及其以上各类电池的组合。
一、电池的基本组成电池通常由电极(正极和负极)、电解质、隔膜和外壳(容器)四部分组成。
电极是电池的核心部分,通常由活性物质和导电骨架组成。
活性物质是指可以通过化学反应释放出电能的物质,要求其电化学活性高、在电解液中的化学稳定性高以及电子导电性好。
活性物质是决定化学电源基本特性的重要部分。
导电骨架主要起传导电子及支撑活性物质的作用。
当电池通过外部电路(负载)放电时,电池的正极从外电路得到电子,而负极则向外电路输出电子;对于电池内部而言恰好相反。
电解质在电池内部阴、阳极之间担负传递电荷(带电离子)的作用。
电解质一般为液体或固体。
液体电解质常称为电解液,通常是酸、碱、盐的水溶液;固体电解质通常为盐类,由固体电解质组成的电池即称为干电池。
对电解液的要求是电导率高、溶液欧姆电压较小。
对一于固体电解质,要求具有离子导电性,而不具有电子导电性。
电解质的化学性质必须稳定,使其在储存期间与活性物质界面间的电化学反应速率小,这样电池自放电时容量损失减小。
为了避免电池内阴、阳极之间的距离较近而产生内部短路,产生严重的自放电现象,需要在其阴、阳极之间加放绝缘的隔膜,隔膜的形状一般为薄膜、板材或胶状物等。
对隔膜的要求是化学性质稳定,有一定的机械强度,对电解质离子运动的阻力小,是电的良好绝缘体,并可以阻挡从电极上脱落的活性物质微粒和枝晶的生长。
电池的外壳是盛放和保护电池电极、电解质、隔膜的容器。
通常要求外壳具有足够的机械强度和化学稳定性,耐振动、耐冲击、耐腐蚀。
二、电池的基础知识(1)电池的组合蓄电池作为动力源.通常要求有较高的电压和电流,因此需要将若干个单体电池通过串联、并联与复联的方式组合成电池组使用:电池组合中对单体电池性能具有严格的要求,在同一组电池中必须选择同一系列、同一规格、性能尽量一致的单体电池。
(2)电池的放电电池的放电是将电池内储存的化学能以电能方式释放出来的过程,即电池向外电路释放电流。
1.电动汽车的组成电动汽车由电力驱动系统、电源系统和辅助系统等三部分组成。
电力驱动系统包括电子控制器、功率转换器、电动机、机械传动装置和车轮,其功用是将存储在蓄电池中的电能高效地转化为车轮的动能,并能够在汽车减速制动时,将车轮的动能转化为电能充入蓄电池。
后一种功能称作再生制动。
电源系统包括电源、能量管理系统和充电机,其功用主要是向电动机提供驱动电能、监测电源使用情况以及控制充电机向蓄电池充电。
辅助系统包括辅助动力源、动力转向系统、导航系统、空调器、照明及除霜装置、刮水器和收音机等等,借助这些辅助设备来提高汽车的操纵性和乘员的舒适性。
1.1 电机与驱动控制针对电动汽车驾驶模式多变、路况复杂等特点,对电动汽车的电机与驱动控制方面进行了深入的研究,首次将鲁棒控制方法应用于电动汽车的驱动控制和永磁直流电机的再生制动,取得了满意的效果。
图2所示为XJ TUEV21电动汽车控制系统的电压电流双死循环结构,并通过对电机驱动电流进行控制来提高系统的性能。
理论仿真和实验表明,在车辆运行过程中,虽然系统参数变化较大,但因控制算法的鲁棒性强,因此控制效果明显优于传统的PID控制。
图1.电动汽车的工作原理电机驱动控制器采用DSP2407芯片,控制一个IGBT的半桥结构,实现电动汽车的驱动与再生制动。
倒车通过倒车挡来实现,使电机由4象限运行变成2象限运行,因此节约了控制器的成本。
油门踏板与剎车踏板分别给出控制电机的驱动电流与能量回馈电流的指令,通过电流传感器与电压传感器构成死循环系统,实现电机驱动力矩的控制与回馈电流的控制。
1.2 再生制动控制系统制约电动汽车发展的一个关键因素是它的续驶里程问题,而再生制动可以节约能源、提高续驶里程,具有显著的经济价值和社会效益。
同时,再生制动还可以减少剎车片的磨损,降低车辆故障率及使用成本。
图3所示为XJ TUEV21电动汽车再生制动控制系统的结构图,该系统由超级电容或飞轮及其控制器组成,而利用超级电容或飞轮吸收再生制动能量,具有非常突出的优点。
燃料电池和蓄电池是现代电动汽车动力系统中重要的组成部分,它们各自发挥着不同的作用,共同构成了高效、环保的动力系统。
本文将从燃料电池和蓄电池的组成结构、工作原理及优缺点等方面展开详细介绍,希望能够为读者对电动汽车动力系统有更深入的了解。
一、燃料电池的结构
1. 电解质膜:作为燃料电池中的主要组件之一,电解质膜起着将氢气和氧气分离开的作用,同时还能传导质子和电子。
2. 阳极:燃料电池的阳极为氢气的氧化反应提供了场所,并且促进了电子的运动,使其向阴极流动。
3. 阴极:阴极是氧气还原的场所,其表面覆盖着催化剂,促进氧气在此处与质子和电子结合,生成水。
4. 增湿板:增湿板用于控制燃料电池中的水分平衡,使得电解质膜的温度和湿度保持在适宜的范围内。
5. 氢气供应系统:燃料电池中需要氢气作为燃料,氢气供应系统会将氢气从储罐中引入燃料电池中进行反应。
二、燃料电池的工作原理
1. 氢氧反应:在阳极,氢气会发生氧化反应,生成氢离子和电子。
2. 电子流动:电子会沿着外部电路流向阴极,产生电流。
3. 氧还原:在阴极,氧气会与生成的氢离子和电子结合,生成水,释放出能量。
4. 电化学反应:整个过程是一个电化学反应,通过氢气、氧气在阳极
和阴极的反应,将化学能转化为电能。
三、燃料电池的优缺点
1. 优点:
1) 高能量密度:相比传统的锂电池,燃料电池具有更高的能量密度,能够提供更长的续航里程。
2) 快速加氢:与充电电池相比,燃料电池的加氢速度更快,且使用
过程更加便捷。
3) 长期使用寿命:燃料电池具有较长的使用寿命,且不会出现充放
电次数增加而引起的寿命下降。
2. 缺点:
1) 基础设施不完善:目前氢气加氢站的建设还比较少,用户在使用
燃料电池车辆时可能会受到基础设施限制。
2) 成本较高:燃料电池的制造成本较高,且目前的生产规模较小,
导致单车成本较高。
3) 能源转化率较低:燃料电池的能源转化率(氢气到电能)较低,依然存在能源浪费的问题。
四、蓄电池的结构
1. 正极:蓄电池的正极通常由氧化物制成,具有较高的氧化还原能力。
2. 负极:负极常由金属锂制成,锂的还原能力较强,能够提供电子。
3. 电解质:电解质是负极和正极之间的隔离层,能够传导锂离子。
4. 外壳:外壳作为蓄电池的保护层,能够固定电解质和正负极,同时
防止外界环境对蓄电池的影响。
五、蓄电池的工作原理
1. 充电过程:在充电过程中,正极的氧化物会释放出氧离子,同时负
极的锂会释放出电子,经过电解质,电子和氧离子会在正极和负极重
新结合,形成稳定的氧化物和金属锂结构。
2. 放电过程:在放电过程中,氧化物会吸收负极释放出的电子和离子,同时金属锂会释放锂离子,形成氧化物和金属锂的结构。
六、蓄电池的优缺点
1. 优点:
1) 成本较低:蓄电池的制造成本较低,且生产规模较大,能够降低
单车成本。
2) 能源转化效率高:蓄电池的能源转化效率较高,能够更好地利用
储存的电能。
3) 充放电次数多:蓄电池能够进行多次充放电循环,不会因为充放
电次数增加而影响使用寿命。
2. 缺点:
1) 能量密度低:相比燃料电池,蓄电池的能量密度较低,续航里程
相对较短。
2) 充电时间长:和燃料电池相比,蓄电池的充电时间较长,需要较
长时间才能够完成充电。
3) 重量较大:由于蓄电池的结构和材质,其重量较大,会对车辆的整体重量和能效比产生影响。
燃料电池和蓄电池分别具有各自的优势和劣势,在电动汽车动力系统中各自发挥着重要的作用。
未来随着技术的不断发展和完善,相信这两种动力系统都会得到更好的应用和推广,为汽车行业的可持续发展做出更大的贡献。