2020年高考物理一轮复习热点题型归纳与变式演练专题14 功能关系与能量守恒(解析版)
- 格式:doc
- 大小:569.00 KB
- 文档页数:17
第4节功能关系能量守恒定律一、功能关系1.功能关系(1)功是能量转化的量度,即做了多少功就有多少能量发生了转化。
功不是能,只是能量转化的途径,转化多少能量,就需要做多少功。
(2)做功的过程一定伴随着能量的转化,而且能量的转化必须通过做功来实现。
2.几种常见的功能关系几种常见力做功对应的能量变化数量关系式重力正功重力势能减少W G=-ΔE p 负功重力势能增加弹簧等的弹力正功弹性势能减少W弹=-ΔE p 负功弹性势能增加电场力正功电势能减少W电=-ΔE p 负功电势能增加合力正功动能增加W合=ΔE k 负功动能减少重力以外的其他力正功机械能增加W其=ΔE 负功机械能减少3.(1)滑动摩擦力与两物体间相对位移的乘积等于产生的内能,即F f x相对=Q。
(2)感应电流克服安培力做的功等于产生的电能,即W克安=E电。
二、能量守恒定律1.内容:能量既不会凭空产生,也不会凭空消失。
它只能从一种形式转化为另一种形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量保持不变。
2.表达式:ΔE减=ΔE增。
自然界中虽然能量守恒,但很多能源利用之后不可再重新利用,即能源品质降低,所以要节约能源。
[基础自测]一、判断题(1)力对物体做了多少功,物体就具有多少能。
(×)(2)能量在转移或转化过程中,其总量会不断减少。
(×)(3)在物体的机械能减少的过程中,动能有可能是增大的。
(√)(4)既然能量在转移或转化过程中是守恒的,故没有必要节约能源。
(×)(5)节约可利用能源的目的是为了减少污染排放。
(×)(6)滑动摩擦力做功时,一定会引起机械能的转化。
(√)(7)一个物体的能量增加,必定有别的物体的能量减少。
(√)二、选择题1.上端固定的一根细线下面悬挂一摆球,摆球在空气中摆动,摆动的幅度越来越小。
对此现象下列说法正确的是()A.摆球机械能守恒B.总能量守恒,摆球的机械能正在减少,减少的机械能转化为内能C.能量正在消失D.只有动能和重力势能的相互转化解析:选B由于空气阻力的作用,摆球的机械能减少,机械能不守恒,减少的机械能转化为内能,内能增加,能量总和不变,B正确。
2020年高考物理专题复习:能量守恒定律的应用技巧考点精讲1. 对能量守恒定律的理解(1)转化:某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等。
(2)转移:某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量相等。
2. 运用能量守恒定律解题的基本流程典例精讲例题1 如图所示,一物体质量m=2kg,在倾角θ=37°的斜面上的A点以初速度v0=3m/s下滑,A点距弹簧上端B的距离AB=4m。
当物体到达B点后将弹簧压缩到C点,最大压缩量BC=0.2m,然后物体又被弹簧弹上去,弹到的最高位置为D点,D点距A点的距离AD=3m。
挡板及弹簧质量不计,g取10m/s2,sin37°=0.6,求:(1)物体与斜面间的动摩擦因数μ。
(2)弹簧的最大弹性势能E pm。
【考点】能量守恒定律的应用【思路分析】(1)物体从开始位置A 点运动到最后D 点的过程中,弹性势能没有发生变化,动能和重力势能减少,机械能的减少量为ΔE =ΔE k +ΔE p =21mv 20+mgl AD sin37° ① 物体克服摩擦力产生的热量为Q =F f x ① 其中x 为物体运动的路程,即x =5.4m ① F f =μmg cos37°① 由能量守恒定律可得ΔE =Q①由①②③④⑤式解得μ≈0.52。
(2)由A 到C 的过程中,动能减少ΔE k =21mv 20 ① 重力势能减少ΔE p ′=mgl AC sin37° ① 摩擦生热Q ′=F f l AC =μmg cos37°l AC①由能量守恒定律得弹簧的最大弹性势能为 ΔE pm =ΔE k +ΔE p ′-Q ′①联立⑥⑦⑧⑨解得ΔE pm ≈24.46J 。
【答案】(1)0.52 (2)24.46J【规律总结】应用能量守恒定律解题的基本思路1. 分清有多少种形式的能(如动能、势能(包括重力势能、弹性势能、电势能)、内能等)在变化。
2024高考物理复习重难点解析—功能关系、能量守恒能量观点是解决物理问题的方法之一,做功的过程就是能量转化的过程,某种形式的能量的变化对应某种力的做功过程。
能量守恒定律是自然界的各种能量转化的遵守的规律。
在试题中,多以综合题形式出现,选择题计算题等题型均有出现,伴随多过程问题。
例题1.(多选)(2022·河北·高考真题)如图,轻质定滑轮固定在天花板上,物体P 和Q 用不可伸长的轻绳相连,悬挂在定滑轮上,质量Q P m m >,0=t 时刻将两物体由静止释放,物体Q 的加速度大小为3g。
T 时刻轻绳突然断开,物体P 能够达到的最高点恰与物体Q 释放位置处于同一高度,取0=t 时刻物体P 所在水平面为零势能面,此时物体Q 的机械能为E 。
重力加速度大小为g ,不计摩擦和空气阻力,两物体均可视为质点。
下列说法正确的是()A .物体P 和Q 的质量之比为1:3B .2T 时刻物体Q 的机械能为2EC .2T 时刻物体P 重力的功率为32E TD .2T 时刻物体P 的速度大小23gT 【答案】BCD【解析】A .开始释放时物体Q 的加速度为3g,则3Q T Q g m g F m -=⋅3T P P g F m g m -=⋅解得23T Q F m g =12P Q m m =选项A 错误;B .在T 时刻,两物体的速度13gT v =P 上升的距离2211236g gT h T ==细线断后P 能上升的高度2212218v gT h g ==可知开始时PQ 距离为21229gT h h h =+=若设开始时P 所处的位置为零势能面,则开始时Q 的机械能为2229Q Q m g T E m gh ==从开始到绳子断裂,绳子的拉力对Q 做负功,大小为2219Q F T m g T W F h ==则此时物体Q 的机械能22'92Q F m g T E E E W =-==此后物块Q 的机械能守恒,则在2T 时刻物块Q 的机械能仍为2E,选项B 正确;CD .在2T 时刻,重物P 的速度2123gT v v gT =-=-方向向下;此时物体P 重力的瞬时功率22232332Q Q G P m g m g T gT EP m gv T===选项CD 正确。
2020年高考物理热点:功能关系机械能守恒定律江苏张凌明本章内容是中学物理核心内容之一,是高考考查的重点章节。
功、功率、动能、势能等概念的考查,常以选择题型考查。
动能定理的综合应用,可能结合电场知识考查。
功能关系、机械能守恒定律的应用,往往以非选择题的形式显现,常综合牛顿运动定律、动量守恒定律、圆周运动知识、电磁学等内容。
特点是综合性强,难度大。
本部分的知识与生产、生活、科技相结合考查。
动能定理是一条适用范畴专门广的物理规律,解题的优越性专门多,相关于动量定理而言,它是比较容易同意的,全然缘故在于它省去了矢量式的专门多苦恼。
在应用动能定理的同时,还要结合牛顿运动定律,以功是能量变化的量度为依据。
解题范例:例题1一带电油滴在匀强电场E中的运动轨迹如以下图中虚线所示,电场方向竖直向下。
假设不计空气阻力,那么此带电油滴从A运动到B的过程中,能量是如何样变化的?解析:一、受力分析:油滴应该考虑重力〔竖直向下〕,假设带正电受电场力也向下不可能有如此的运动轨迹,因此此油滴带负电,所受电场力向上。
且要有如此的运动轨迹电场力要比重力大。
二、做功分析:重力做负功重力势能增加、电场力做正功电势能减小,电场力与重力的合力向上做正功动能增加。
进一步总结:减少的电势能转化为增加的重力势能和增加的动能。
点评:此题考点: 功能关系思路分析: 受力分析然后做功分析再找出功与能量的关系例题2如下图,两根间距为L=1m的金属导轨MN和PQ,电阻不计,左端向上弯曲,其余水平,水平导轨左端有宽度为d=2m,方向竖直向上的匀强磁场i,右端有另一磁场ii,其宽度为d,但方向竖直向下,两者B均为1T,有两根质量均为m=1kg,电阻均为R=1Ω,的金属棒a与b与导轨垂直放置,b棒置于磁场ii中点C,D处,导轨除C,D外〔对应距离极短〕其余均为光滑,两处对棒可产生总的最大静摩擦力为自重的0.2倍,a棒从弯曲导轨某处由静止开释,当只有一根棒做切割磁感线运动时,它速度的减小量与它在磁场中通过的距离成正比,即Δv∝Δx 〔1〕假设棒a从某一高度开释,那么棒a进入磁场i时恰能使棒b运动,判定棒b运动方向并求出开释高度;(2)假设将棒a从高度为0.2m的某处开释结果棒a以1m/s的速度从磁场i 中穿出求两棒立即相碰时棒b所受的摩擦力; (3)假设将棒a从高度1.8m某处开释通过一段时刻后棒a从磁场i穿出的速度大小为4m/s,且棒a穿过磁场时刻内两棒距离缩短2.4m,求棒a 从磁场i 穿出时棒b 的速度大小及棒a 穿过磁场i 所需的时刻(左为a,右为b)解析:⑴由右手定那么能够得到棒a 的在靠近我们一侧,因此棒b 的电流向里。
第4讲 功能关系 能量守恒定律目标要求 1.熟练掌握几种常见的功能关系,并会用于解决实际问题.2.掌握一对摩擦力做功与能量转化的关系.3.会应用能量守恒观点解决综合问题.考点一 功能关系的理解和应用1.对功能关系的理解(1)做功的过程就是能量转化的过程,不同形式的能量发生相互转化是通过做功来实现的. (2)功是能量转化的量度,功和能的关系,一是体现在不同的力做功,对应不同形式的能转化,具有一一对应关系,二是做功的多少与能量转化的多少在数值上相等. 2.常见的功能关系能量功能关系表达式势能重力做功等于重力势能减少量 W =E p1-E p2=-ΔE p弹力做功等于弹性势能减少量静电力做功等于电势能减少量 分子力做功等于分子势能减少量动能 合外力做功等于物体动能变化量 W =E k2-E k1=12m v 2-12m v 02机械能 除重力和弹力之外的其他力做功等于机械能变化量W 其他=E 2-E 1=ΔE 摩擦 产生 的内能 一对相互作用的滑动摩擦力做功之和的绝对值等于产生的内能Q =F f ·x 相对电能 克服安培力做功等于电能增加量W 电能=E 2-E 1=ΔE1.一个物体的能量增加,必定有别的物体能量减少.( √ ) 2.合力做的功等于物体机械能的改变量.( × )3.克服与势能有关的力(重力、弹簧弹力、静电力等)做的功等于对应势能的增加量.( √ ) 4.滑动摩擦力做功时,一定会引起机械能的转化.( √ )1.功的正负与能量增减的对应关系(1)物体动能的增加与减少要看合外力对物体做正功还是做负功.(2)势能的增加与减少要看对应的作用力(如重力、弹簧弹力、静电力等)做负功还是做正功.(3)机械能的增加与减少要看重力和弹簧弹力之外的力对物体做正功还是做负功.2.摩擦力做功的特点(1)一对静摩擦力所做功的代数和总等于零;(2)一对滑动摩擦力做功的代数和总是负值,差值为机械能转化为内能的部分,也就是系统机械能的损失量;(3)说明:无论是静摩擦力还是滑动摩擦力,都可以对物体做正功,也可以做负功,还可以不做功.考向1功能关系的理解例1在奥运比赛项目中,高台跳水是我国运动员的强项.质量为m的跳水运动员进入水中后受到水的阻力而做减速运动,设水对他的阻力大小恒为F,当地的重力加速度为g,那么在他减速下降高度为h的过程中,下列说法正确的是()A.他的动能减少了FhB.他的重力势能增加了mghC.他的机械能减少了(F-mg)hD.他的机械能减少了Fh答案 D解析运动员进入水中后,克服合力做的功等于动能的减少量,故动能减少(F-mg)h,故A 错误;运动员进入水中后,重力做功mgh,故重力势能减小mgh,故B错误;运动员进入水中后,除重力外,克服阻力做功Fh,故机械能减少了Fh,故C错误,D正确.例2如图所示,弹簧的下端固定在光滑斜面底端,弹簧与斜面平行.在通过弹簧中心的直线上,小球P从直线上的N点由静止释放,在小球P与弹簧接触到速度变为零的过程中,下列说法中正确的是()A.小球P的动能一定在减小B.小球P的机械能一定在减少C.小球P与弹簧系统的机械能一定在增加D.小球P重力势能的减小量大于弹簧弹性势能的增加量答案 B解析小球P与弹簧接触后,刚开始弹力小于重力沿斜面向下的分力,合力沿斜面向下,随着形变量增大,弹力大于重力沿斜面向下的分力,合力方向沿斜面向上,合力先做正功后做负功,小球P的动能先增大后减小,A错误;小球P与弹簧组成的系统的机械能守恒,弹簧的弹性势能不断增大,所以小球P的机械能不断减小,B正确,C错误;在此过程中,根据系统机械能守恒,可知小球P重力势能的减小量与动能减小量之和等于弹簧弹性势能的增加量,即小球P重力势能的减小量小于弹簧弹性势能的增加量,D错误.考向2功能关系与图像的结合例3(多选)(2020·全国卷Ⅰ·20)一物块在高3.0 m、长5.0 m的斜面顶端从静止开始沿斜面下滑,其重力势能和动能随下滑距离s的变化如图中直线Ⅰ、Ⅱ所示,重力加速度取10 m/s2.则()A.物块下滑过程中机械能不守恒B.物块与斜面间的动摩擦因数为0.5C.物块下滑时加速度的大小为6.0 m/s2D.当物块下滑2.0 m时机械能损失了12 J答案AB解析由E-s图像知,物块动能与重力势能的和减小,则物块下滑过程中机械能不守恒,故A正确;由E-s图像知,整个下滑过程中,物块机械能的减少量为ΔE=30 J-10 J=20 J,重力势能的减少量ΔE p=mgh=30 J,又ΔE=μmg cos α·s,其中cos α=s2-h2s=0.8,h=3.0m,g=10 m/s2,则可得m=1 kg,μ=0.5,故B正确;物块下滑时的加速度大小a=g sin α-μg cosα=2 m/s2,故C错误;物块下滑2.0 m时损失的机械能为ΔE′=μmg cos α·s′=8 J,故D错误.考向3摩擦力做功与摩擦生热的计算例4(多选)如图所示,一个长为L,质量为M的木板,静止在光滑水平面上,一个质量为m的物块(可视为质点),以水平初速度v0,从木板的左端滑向另一端,设物块与木板间的动摩擦因数为μ,当物块与木板相对静止时,物块仍在长木板上,物块相对木板的位移为d,木板相对地面的位移为s,重力加速度为g.则在此过程中()A.摩擦力对物块做功为-μmg(s+d)B.摩擦力对木板做功为μmgsC.木板动能的增量为μmgdD.由于摩擦而产生的热量为μmgs答案AB解析根据功的定义W=Fs cos θ,其中s指物体对地的位移,而θ指力与位移之间的夹角,可知摩擦力对物块做功W1=-μmg(s+d),摩擦力对木板做功W2=μmgs,A、B正确;根据动能定理可知木板动能的增量ΔE k=W2=μmgs,C错误;由于摩擦而产生的热量Q=F f·Δx =μmgd,D错误.例5(多选)(2019·江苏卷·8)如图所示,轻质弹簧的左端固定,并处于自然状态.小物块的质量为m,从A点向左沿水平地面运动,压缩弹簧后被弹回,运动到A点恰好静止.物块向左运动的最大距离为s,与地面间的动摩擦因数为μ,重力加速度为g,弹簧未超出弹性限度.在上述过程中()A.弹簧的最大弹力为μmgB.物块克服摩擦力做的功为2μmgsC.弹簧的最大弹性势能为μmgsD.物块在A点的初速度为2μgs答案BC解析 物块处于最左端时,弹簧的压缩量最大,然后物块先向右加速运动再减速运动,可知弹簧的最大弹力大于滑动摩擦力μmg ,选项A 错误;物块从开始运动至最后回到A 点过程,由功的定义可得物块克服摩擦力做功为2μmgs ,选项B 正确;物块从最左侧运动至A 点过程,由能量守恒定律可知E p =μmgs ,选项C 正确;设物块在A 点的初速度为v 0,对整个过程应用动能定理有-2μmgs =0-12m v 02,解得v 0=2μgs ,选项D 错误.考点二 能量守恒定律的理解和应用1.内容能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变. 2.表达式 ΔE 减=ΔE 增.3.应用能量守恒定律解题的步骤(1)首先确定初、末状态,分清有几种形式的能在变化,如动能、势能(包括重力势能、弹性势能、电势能)、内能等.(2)明确哪种形式的能量增加,哪种形式的能量减少,并且列出减少的能量ΔE 减和增加的能量ΔE 增的表达式.例6 (2020·浙江1月选考·20)如图所示,一弹射游戏装置由安装在水平台面上的固定弹射器、竖直圆轨道(在最低点E 分别与水平轨道EO 和EA 相连)、高度h 可调的斜轨道AB 组成.游戏时滑块从O 点弹出,经过圆轨道并滑上斜轨道.全程不脱离轨道且恰好停在B 端则视为游戏成功.已知圆轨道半径r =0.1 m ,OE 长L 1=0.2 m ,AC 长L 2=0.4 m ,圆轨道和AE 光滑,滑块与AB 、OE 之间的动摩擦因数μ=0.5.滑块质量m =2 g 且可视为质点,弹射时从静止释放且弹簧的弹性势能完全转化为滑块动能.忽略空气阻力,各部分平滑连接.求:(1)滑块恰好能过圆轨道最高点F 时的速度v F 大小;(2)当h =0.1 m 且游戏成功时,滑块经过E 点对圆轨道的压力F N 大小及弹簧的弹性势能E p0; (3)要使游戏成功,弹簧的弹性势能E p 与高度h 之间满足的关系. 答案 见解析解析 (1)滑块恰好能过F 点的条件为mg =m v F 2r解得v F =1 m/s(2)滑块从E 点到B 点,由动能定理得 -mgh -μmgL 2=0-12m v E 2在E 点由牛顿第二定律得F N ′-mg =m v E 2r解得F N =F N ′=0.14 N从O 点到B 点,由能量守恒定律得: E p0=mgh +μmg (L 1+L 2) 解得E p0=8.0×10-3 J(3)使滑块恰能过F 点的弹性势能 E p1=2mgr +μmgL 1+12m v F 2=7.0×10-3 J到B 点减速到0E p1-mgh 1-μmg (L 1+L 2)=0 解得h 1=0.05 m设斜轨道的倾角为θ,若滑块恰好能停在B 点不下滑, 则μmg cos θ=mg sin θ解得tan θ=0.5,此时h 2=0.2 m 从O 点到B 点E p =mgh +μmg (L 1+L 2)=2×10-3(10h +3) J 其中0.05 m ≤h ≤0.2 m.例7 如图所示,固定斜面的倾角θ=30°,物体A 与斜面之间的动摩擦因数μ=34,轻弹簧下端固定在斜面底端,弹簧处于原长时上端位于C 点,用一根不可伸长的轻绳通过轻质光滑的定滑轮连接物体A 和B ,滑轮右侧绳子与斜面平行,A 的质量为2m =4 kg ,B 的质量为m =2 kg ,初始时物体A 到C 点的距离L =1 m ,现给A 、B 一初速度v 0=3 m/s ,使A 开始沿斜面向下运动,B 向上运动,物体A 将弹簧压缩到最短后又恰好能弹回到C 点.已知重力加速度g =10 m/s 2,不计空气阻力,整个过程中轻绳始终处于伸直状态.求在此过程中:(1)物体A 向下运动刚到C 点时的速度大小; (2)弹簧的最大压缩量; (3)弹簧的最大弹性势能. 答案 (1)2 m/s (2)0.4 m (3)6 J解析 (1)在物体A 向下运动刚到C 点的过程中,对A 、B 组成的系统应用能量守恒定律可得 μ·2mg cos θ·L =12×3m v 02-12×3m v 2+2mgL sin θ-mgL解得v =2 m/s.(2)对A 、B 组成的系统分析,在物体A 从C 点压缩弹簧至将弹簧压缩到最大压缩量,又恰好返回到C 点的过程中,系统动能的减少量等于因摩擦产生的热量,即 12×3m v 2-0=μ·2mg cos θ·2x 其中x 为弹簧的最大压缩量 解得x =0.4 m.(3)设弹簧的最大弹性势能为E pm ,从C 点到弹簧最大压缩量过程中由能量守恒定律可得 12×3m v 2+2mgx sin θ-mgx =μ·2mg cos θ·x +E pm 解得E pm =6 J.课时精练1.(多选)如图所示,质量为m 的物体(可视为质点)以某一速度从A 点冲上倾角为30°的固定斜面,其减速运动的加速度为34g ,此物体在斜面上能够上升的最大高度为h ,则在这个过程中物体( )A .重力势能增加了mghB .机械能损失了12mghC .动能损失了mghD .克服摩擦力做功14mgh答案 AB解析 加速度大小a =34g =mg sin 30°+F f m ,解得摩擦力F f =14mg ,机械能损失等于克服摩擦力做的功,即F f x =14mg ·2h =12mgh ,故B 项正确,D 项错误;物体在斜面上能够上升的最大高度为h ,所以重力势能增加了mgh ,故A 项正确;动能损失量为克服合力做功的大小,动能损失量ΔE k =F 合x =34mg ·2h =32mgh ,故C 项错误.2.某同学用如图所示的装置测量一个凹形木块的质量m ,弹簧的左端固定,木块在水平面上紧靠弹簧(不连接)将其压缩,记下木块右端位置A 点,静止释放后,木块右端恰能运动到B 1点.在木块槽中加入一个质量m 0=800 g 的砝码,再将木块左端紧靠弹簧,木块右端位置仍然在A 点,静止释放后木块离开弹簧,右端恰能运动到B 2点,测得AB 1、AB 2长分别为27.0 cm 和9.0 cm ,则木块的质量m 为( )A .100 gB .200 gC .300 gD .400 g 答案 D解析 根据能量守恒定律,有μmg ·AB 1=E p ,μ(m 0+m )g ·AB 2=E p ,联立解得m =400 g ,D 正确. 3.一木块静置于光滑水平面上,一颗子弹沿水平方向飞来射入木块中.当子弹进入木块的深度达到最大值2.0 cm 时,木块沿水平面恰好移动距离1.0 cm.在上述过程中系统损失的机械能与子弹损失的动能之比为( ) A .1∶2 B .1∶3 C .2∶3 D .3∶2答案 C解析 根据题意,子弹在摩擦力作用下的位移为x 1=(2+1) cm =3 cm ,木块在摩擦力作用下的位移为x 2=1 cm ;系统损失的机械能转化为内能,根据功能关系,有ΔE 系统=Q =F f ·Δx ;子弹损失的动能等于子弹克服摩擦力做的功,故ΔE 子弹=F f x 1;所以ΔE 系统ΔE 子弹=23,所以C 正确,A 、B 、D 错误.4.如图所示,一质量为m的滑块以初速度v0从固定于地面的斜面底端A开始冲上斜面,到达某一高度后返回A,斜面与滑块之间有摩擦.下图分别表示它在斜面上运动的速度v、加速度a、势能E p和机械能E随时间的变化图像,可能正确的是()答案 C解析由牛顿第二定律可知,滑块上升阶段有:mg sin θ+F f=ma1;下滑阶段有:mg sin θ-F f=ma2,因此a1>a2,故选项B错误;速度-时间图像的斜率表示加速度,当上滑和下滑时,加速度不同,则斜率不同,故选项A错误;重力势能先增大后减小,且上升阶段加速度大,所用时间短,势能变化快,下滑阶段加速度小,所用时间长,势能变化慢,故选项C可能正确;由于摩擦力始终做负功,机械能一直减小,故选项D错误.5.如图所示,赫章的韭菜坪建有风力发电机,风力带动叶片转动,叶片再带动转子(磁极)转动,使定子(线圈,不计电阻)中产生电流,实现风能向电能的转化.若叶片长为l,设定的额定风速为v,空气的密度为ρ,额定风速下发电机的输出功率为P,则风能转化为电能的效率为()A.2Pπρl2v3 B.6Pπρl2v3 C.4Pπρl2v3 D.8Pπρl2v3答案 A解析风能转化为电能的工作原理为将风的动能转化为输出的电能,设风吹向发电机的时间为t,则在t时间内吹向发电机的风柱的体积为V=v t·S=v tπl2,则风柱的质量M=ρV=ρv tπl2,因此风吹过的动能为E k =12M v 2=12ρv t πl 2·v 2,在此时间内发电机输出的电能E =P ·t ,则风能转化为电能的效率为η=E E k =2Pπρl 2v3,故A 正确,B 、C 、D 错误.6.(多选)如图所示,在竖直平面内有一半径为R 的圆弧轨道,半径OA 水平、OB 竖直,一个质量为m 的小球自A 点的正上方P 点由静止开始自由下落,小球沿轨道到达最高点B 时恰好对轨道没有压力.已知AP =2R ,重力加速度为g ,则小球从P 点运动到B 点的过程中( )A .重力做功2mgRB .机械能减少mgRC .合外力做功12mgRD .克服摩擦力做功12mgR答案 CD解析 小球从P 点运动到B 点的过程中,重力做功W G =mg (2R -R )=mgR ,故A 错误;小球沿轨道到达最高点B 时恰好对轨道没有压力,则有mg =m v B 2R ,解得v B =gR ,则此过程中机械能的减少量为ΔE =mgR -12m v B 2=12mgR ,故B 错误;根据动能定理可知,合外力做功W 合=12m v B 2=12mgR ,故C 正确;根据功能关系可知,小球克服摩擦力做的功等于机械能的减少量,为12mgR ,故D 正确.7.质量为2 kg 的物体以10 m/s 的初速度,从起点A 出发竖直向上抛出,在它上升到某一点的过程中,物体的动能损失了50 J ,机械能损失了10 J ,设物体在上升、下降过程空气阻力大小恒定,则该物体再落回到A 点时的动能为(g =10 m/s 2)( ) A .40 J B .60 J C .80 J D .100 J 答案 B解析 物体抛出时的总动能为100 J ,物体的动能损失了50 J 时,机械能损失了10 J ,则动能损失100 J 时,机械能损失20 J ,此时到达最高点,由于空气阻力大小恒定,所以下落过程,机械能也损失20 J ,故该物体从A 点抛出到落回到A 点,共损失机械能40 J ,所以该物体再落回到A点时的动能为60 J,A、C、D错误,B正确.8.(多选)(2019·全国卷Ⅱ·18)从地面竖直向上抛出一物体,其机械能E总等于动能E k与重力势能E p之和.取地面为重力势能零点,该物体的E总和E p随它离开地面的高度h的变化如图所示.重力加速度取10 m/s2.由图中数据可得()A.物体的质量为2 kgB.h=0时,物体的速率为20 m/sC.h=2 m时,物体的动能E k=40 JD.从地面至h=4 m,物体的动能减少100 J答案AD解析根据题图可知,h=4 m时物体的重力势能E p=mgh=80 J,解得物体质量m=2 kg,抛出时物体的动能为E k0=100 J,由公式E k0=12可知,h=0时物体的速率为v=10 m/s,2m v选项A正确,B错误;由功能关系可知F f h4=|ΔE总|=20 J,解得物体上升过程中所受空气阻力F f=5 N,从物体开始抛出至上升到h=2 m的过程中,由动能定理有-mgh-F f h=E k-E k0,解得E k=50 J,选项C错误;由题图可知,物体上升到h=4 m时,机械能为80 J,重力势能为80 J,动能为零,即从地面上升到h=4 m,物体动能减少100 J,选项D正确.9.(多选)如图所示,楔形木块abc固定在水平面上,粗糙斜面ab与水平面的夹角为60°,光滑斜面bc与水平面的夹角为30°,顶角b处安装一定滑轮.质量分别为M、m(M>m)的两滑块A和B,通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动,A、B不会与定滑轮碰撞.若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中()A.轻绳对滑轮作用力的方向竖直向下B.拉力和重力对M做功之和大于M动能的增加量C.拉力对M做的功等于M机械能的增加量D .两滑块组成系统的机械能损失等于M 克服摩擦力做的功答案 BD解析 根据题意可知,两段轻绳的夹角为90°,轻绳拉力的大小相等,根据平行四边形定则可知,合力方向与绳子方向的夹角为45°,所以轻绳对滑轮作用力的方向不是竖直向下的,故A 错误;对M 受力分析,受到重力、斜面的支持力、绳子拉力以及滑动摩擦力作用,根据动能定理可知,M 动能的增加量等于拉力和重力以及摩擦力做功之和,而摩擦力做负功,则拉力和重力对M 做功之和大于M 动能的增加量,故B 正确;根据除重力以外的力对物体做功等于物体机械能的变化量可知,拉力和摩擦力对M 做的功之和等于M 机械能的增加量,故C 错误;对两滑块组成系统分析可知,除了重力之外只有摩擦力对M 做功,所以两滑块组成的系统的机械能损失等于M 克服摩擦力做的功,故D 正确.10.(多选)如图所示,光滑水平面OB 与足够长粗糙斜面BC 交于B 点.轻弹簧左端固定于竖直墙面,现将质量为m 1的滑块压缩弹簧至D 点,然后由静止释放,滑块脱离弹簧后经B 点滑上斜面,上升到最大高度,并静止在斜面上.不计滑块在B 点的机械能损失.换用相同材料质量为m 2的滑块(m 2>m 1)压缩弹簧至同一点D 后,重复上述过程,下列说法正确的是( )A .两滑块到达B 点的速度相同B .两滑块沿斜面上升的最大高度相同C .两滑块上升到最高点过程克服重力做的功相同D .两滑块上升到最高点过程机械能损失相同答案 CD解析 两滑块到B 点的动能相同,但速度不同,故A 错误;两滑块在斜面上运动时加速度相同,由于质量不同,则在B 点时的速度不同,故上升的最大高度不同,故B 错误;滑块上升到斜面最高点过程克服重力做的功为mgh ,由能量守恒定律得E p =mgh +μmg cos θ·h sin θ,则mgh =E p 1+μtan θ,故两滑块上升到斜面最高点过程克服重力做的功相同,故C 正确;由能量守恒定律得E 损=μmg cos θ·h sin θ=μmgh tan θ,结合C 可知D 正确. 11.(多选)如图所示,质量为M 的长木板静止在光滑水平面上,上表面OA 段光滑,AB 段粗糙且长为l ,左端O 处有一固定挡板,挡板上固定轻质弹簧,右侧用不可伸长的轻绳连接在竖直墙上,轻绳所能承受的最大拉力为F .质量为m 的小滑块以速度v 从A 点向左滑动压缩弹簧,弹簧的压缩量达到最大时细绳恰好被拉断,再过一段时间后长木板停止运动,小滑块恰未掉落.重力加速度为g ,则( )A .细绳被拉断瞬间长木板的加速度大小为F MB .细绳被拉断瞬间弹簧的弹性势能为12m v 2 C .弹簧恢复原长时滑块的动能为12m v 2 D .滑块与长木板AB 段间的动摩擦因数为v 22gl答案 ABD解析 细绳被拉断瞬间弹簧的弹力等于F ,对长木板,由牛顿第二定律得F =Ma ,得a =F M,A 正确;滑块以速度v 从A 点向左滑动压缩弹簧,到弹簧压缩量最大时速度为0,由系统的机械能守恒得,细绳被拉断瞬间弹簧的弹性势能为12m v 2,B 正确;弹簧恢复原长时长木板与滑块都获得动能,所以滑块的动能小于12m v 2,C 错误;弹簧最大弹性势能E p =12m v 2,小滑块恰未掉落时滑到木板的最右端B ,此时小滑块与长木板均静止,又水平面光滑,长木板上表面OA 段光滑,则有E p =μmgl ,联立解得μ=v 22gl,D 正确. 12.如图所示,一物体质量m =2 kg ,在倾角θ=37°的斜面上的A 点以初速度v 0=3 m/s 下滑,A 点距弹簧上端挡板位置B 点的距离AB =4 m .当物体到达B 点后将弹簧压缩到C 点,最大压缩量BC =0.2 m ,然后物体又被弹簧弹上去,弹到的最高位置为D 点,D 点距A 点的距离AD =3 m .挡板及弹簧质量不计,g 取10 m/s 2,sin 37°=0.6,求:(结果均保留三位有效数字)(1)物体与斜面间的动摩擦因数μ;(2)弹簧的最大弹性势能E pm .答案 (1)0.521 (2)24.4 J解析 (1)物体从A 点到被弹簧弹到D 点的过程中,弹簧弹性势能没有发生变化,机械能的减少量全部用来克服摩擦力做功,即:12m v02+mgAD·sin θ=μmg cos θ·(AB+2BC+BD)代入数据解得:μ≈0.521.(2)物体由A到C的过程中,动能减少量ΔE k=12m v02重力势能减少量ΔE p=mg sin θ·AC摩擦产生的热量Q=μmg cos θ·AC由能量守恒定律可得弹簧的最大弹性势能为:E pm=ΔE k+ΔE p-Q≈24.4 J.13.如图所示,在倾角为37°的斜面底端固定一挡板,轻弹簧下端连在挡板上,上端与物块A 相连,用不可伸长的细线跨过斜面顶端的定滑轮把A与另一物体B连接起来,A与滑轮间的细线与斜面平行.已知弹簧劲度系数k=40 N/m,A的质量m1=1 kg,与斜面间的动摩擦因数μ=0.5,B的质量m2=2 kg.初始时用手托住B,使细线刚好处于伸直状态,此时物体A 与斜面间没有相对运动趋势,物体B的下表面离地面的高度h=0.3 m,整个系统处于静止状态,弹簧始终处于弹性限度内.重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8.(1)由静止释放物体B,求B刚落地时的速度大小;(2)把斜面处理成光滑斜面,再将B换成一个形状完全相同的物体C并由静止释放,发现C 恰好到达地面,求C的质量m3.答案(1) 2 m/s(2)0.6 kg解析(1)因为初始时刻A与斜面间没有相对运动趋势,即A不受摩擦力,此时有:m1g sin θ=F弹此时弹簧的压缩量为:x1=F弹k=m1g sin θk=0.15 m当B落地时,A沿斜面上滑h,此时弹簧的伸长量为:x2=h-x1=0.15 m所以从手放开B到B落地过程中以A、B和弹簧为系统,弹簧伸长量和压缩量相同,弹性势能不变,弹簧弹力不做功,根据能量守恒定律可得:m 2gh =m 1gh sin θ+μm 1g cos θ·h +12(m 1+m 2)v 2 代入数据解得:v = 2 m/s(2)由(1)分析同理可知换成光滑斜面,没有摩擦力,则从手放开C 到C 落地过程中以A 、C 和弹簧为系统,根据机械能守恒可得:m 3gh =m 1gh sin θ代入数据解得m 3=0.6 kg.。
第四节功能关系能量守恒定律【基础梳理】提示:能量转化做功动能重力势能弹性势能机械能内能转化转移保持不变ΔE减=ΔE增【自我诊断】判一判(1)能量转化是通过做功来实现的.()(2)力对物体做了多少功,物体就有多少能.()(3)力对物体做正功,物体的总能量一定增加.()(4)能量在转化和转移的过程中,其总量会不断减少.()(5)能量在转化和转移的过程中总量保持不变,因此能源取之不尽,用之不竭,故无需节约能源.()(6)滑动摩擦力做功时,一定会引起能量的转化.()提示:(1)√(2)×(3)×(4)×(5)×(6)√做一做(2016·高考四川卷)韩晓鹏是我国首位在冬奥会雪上项目夺冠的运动员.他在一次自由式滑雪空中技巧比赛中沿“助滑区”保持同一姿态下滑了一段距离,重力对他做功1 900 J,他克服阻力做功100 J.韩晓鹏在此过程中()A.动能增加了1 900 JB.动能增加了2 000 JC.重力势能减小了1 900 JD.重力势能减小了2 000 J提示:选C.根据动能定理,物体动能的增量等于物体所受所有力做功的代数和,即增加的动能为ΔE k=W G+W f=1 900 J-100 J=1 800 J,A、B项错误;重力做功与重力势能改变量的关系为W G=-ΔE p,即重力势能减少了1 900 J,C项正确,D项错误.想一想一对相互作用的静摩擦力做功能改变系统的机械能吗?提示:不能.因为做功代数和为零.对功能关系的理解和应用【知识提炼】1.对功能关系的理解(1)做功的过程就是能量转化的过程.不同形式的能量发生相互转化是通过做功来实现的.(2)功是能量转化的量度,功和能的关系,一是体现在不同的力做功,对应不同形式的能转化,具有一一对应关系,二是做功的多少与能量转化的多少在数值上相等. 2.功是能量转化的量度,力学中几种常见的功能关系如下【跟进题组】1.(2018·高考全国卷Ⅰ)如图,abc 是竖直面内的光滑固定轨道,ab 水平,长度为2R; bc 是半径为R 的四分之一圆弧,与ab 相切于b 点.一质量为m 的小球,始终受到与重力大小相等的水平外力的作用,自a 点处从静止开始向右运动.重力加速度大小为g .小球从a 点开始运动到其轨迹最高点,机械能的增量为( )A .2mgRB .4mgRC .5mgRD .6mgR解析:选C.设小球运动到c 点的速度大小为v c ,则对小球由a 到c 的过程,由动能定理有F ·3R -mgR =12m v 2c ,又F =mg ,解得v c =2gR ,小球离开c 点后,在水平方向做初速度为零的匀加速直线运动,竖直方向在重力作用下做匀减速直线运动,由牛顿第二定律可知,小球离开c点后水平方向和竖直方向的加速度大小均为g ,则由竖直方向的运动可知,小球从离开c 点到其轨迹最高点所需的时间为t =v cg=2R g ,在水平方向的位移大小为x =12gt 2=2R .由以上分析可知,小球从a 点开始运动到其轨迹最高点的过程中,水平方向的位移大小为5R ,则小球机械能的增加量为ΔE =F ·5R =5mgR ,C 正确,A 、B 、D 错误. 2.(多选)(2016·高考全国卷Ⅱ)如图,小球套在光滑的竖直杆上,轻弹簧一端固定于O 点,另一端与小球相连.现将小球从M 点由静止释放,它在下降的过程中经过了N 点.已知在M 、N 两点处,弹簧对小球的弹力大小相等,且∠ONM <∠OMN <π2.在小球从M 点运动到N 点的过程中( )A .弹力对小球先做正功后做负功B .有两个时刻小球的加速度等于重力加速度C .弹簧长度最短时,弹力对小球做功的功率为零D .小球到达N 点时的动能等于其在M 、N 两点的重力势能差解析:选BCD.小球在从M 点运动到N 点的过程中,弹簧的压缩量先增大,后减小,到某一位置时,弹簧处于原长,再继续向下运动到N 点的过程中,弹簧又伸长.弹簧的弹力方向与小球速度的方向的夹角先大于90°,再小于90°,最后又大于90°,因此弹力先做负功,再做正功,最后又做负功,A 项错误;弹簧与杆垂直时,小球的加速度等于重力加速度,当弹簧的弹力为零时,小球的加速度也等于重力加速度,B 项正确;弹簧长度最短时,弹力与小球的速度方向垂直,这时弹力对小球做功的功率为零,C 项正确;由于在M 、N 两点处,弹簧的弹力大小相等,即弹簧的形变量相等,根据动能定理可知,小球从M 点到N 点的过程中,弹簧的弹力做功为零,重力做功等于动能的增量,即小球到达N 点时的动能等于其在M 、N 两点的重力势能差,D 项正确.能量守恒定律的应用 【知识提炼】1.2.三步求解相对滑动物体的能量问题3.能量转化问题的解题思路(1)当涉及滑动摩擦力做功,机械能不守恒时,一般应用能的转化和守恒定律.(2)解题时,首先确定初、末状态,然后分析状态变化过程中哪种形式的能量减少,哪种形式的能量增加,求出减少的能量总和ΔE 减和增加的能量总和ΔE 增,最后由ΔE 减=ΔE 增列式求解.【典题例析】如图所示,绷紧的传送带与水平面的夹角θ=30°,皮带在电动机的带动下,始终保持v 0=2 m/s 的速率运行,现把一质量为m =10 kg 的工件(可看做质点)轻轻放在皮带的底端,经过时间1.9 s ,工件被传送到h =1.5 m 的高处,取g =10 m/s 2,求:(1)工件与传送带间的动摩擦因数; (2)电动机由于传送工件多消耗的电能.[审题指导] (1)运动过程分析:1.9 s 内工件是否一直加速?若工件先匀加速后匀速运动,所受摩擦力是否相同?(2)能量转化分析:多消耗的电能转化成了哪几种能量?各如何表示? [解析] (1)由题图可知,皮带长x =hsin θ=3 m .工件速度达v 0前,做匀加速运动的位移x 1=v t 1=v 02t 1,匀速运动的位移为x -x 1=v 0(t -t 1),解得加速运动的时间t 1=0.8 s ,加速运动的位移x 1=0.8 m ,所以加速度a =v 0t 1=2.5 m/s 2,由牛顿第二定律有:μmg cos θ-mg sin θ=ma ,解得:μ=32. (2)从能量守恒的观点,显然电动机多消耗的电能用于增加工件的动能、势能以及克服传送带与工件之间发生相对位移时摩擦力做功发出的热量.在时间t 1内,皮带运动的位移x 皮=v 0t 1=1.6 m 在时间t 1内,工件相对皮带的位移 x 相=x 皮-x 1=0.8 m在时间t 1内,摩擦生热Q =μmg cos θ·x 相=60 J 工件获得的动能E k =12m v 20=20 J工件增加的势能E p =mgh =150 J电动机多消耗的电能W =Q +E k +E p =230 J. [答案] (1)32(2)230 J 【迁移题组】迁移1 传送带模型中能量的转化问题 1.(2019·福建八县联考)如图所示,足够长的传送带以恒定速率顺时针运行,将一个物体轻轻放在传送带底端,第一阶段物体被加速到与传送带具有相同的速度,第二阶段与传送带相对静止,匀速运动到达传送带顶端.下列说法正确的是( )A .第一阶段摩擦力对物体做正功,第二阶段摩擦力对物体不做功B .第一阶段摩擦力对物体做的功等于第一阶段物体动能的增加C .第一阶段物体和传送带间的摩擦生热等于第一阶段物体机械能的增加D .物体从底端到顶端全过程机械能的增加等于全过程物体与传送带间的摩擦生热解析:选C.第一阶段物体受到沿斜面向上的滑动摩擦力;第二阶段物体受到沿斜面向上的静摩擦力做功,两个阶段摩擦力方向都跟物体运动方向相同,所以两个阶段摩擦力都做正功,故A 错误;根据动能定理得知,外力做的总功等于物体动能的增加,第一阶段,摩擦力和重力都做功,则第一阶段摩擦力对物体做的功不等于第一阶段物体动能的增加,故B 错误;由功能关系可知,第一阶段摩擦力对物体做的功(除重力之外的力所做的功)等于物体机械能的增加,即ΔE =W 阻=F 阻s 物,摩擦生热为Q =F 阻s 相对,又由于s 传送带=v t ,s 物=v2t ,所以s 物=s 相对=12s 传送带,即Q =ΔE ,故C 正确;第二阶段没有摩擦生热,但物体的机械能继续增加,故D 错误.迁移2 滑块——滑板模型中能量的转化问题2.(多选)如图所示,长木板A 放在光滑的水平地面上,物体B 以水平速度v 0冲上A 后,由于摩擦力作用,最后停止在木板A 上,则从B 冲到木板A 上到相对木板A 静止的过程中,下述说法中正确的是( )A .物体B 动能的减少量等于系统损失的机械能 B .物体B 克服摩擦力做的功等于系统内能的增加量C .物体B 损失的机械能等于木板A 获得的动能与系统损失的机械能之和D .摩擦力对物体B 做的功和对木板A 做的功的总和等于系统内能的增加量解析:选CD.物体B 以水平速度冲上木板A 后,由于摩擦力作用,B 减速运动,木板A 加速运动,根据能量守恒定律,物体B 动能的减少量等于木板A 增加的动能和产生的热量之和,选项A 错误;根据动能定理,物体B 克服摩擦力做的功等于物体B 损失的动能,选项B 错误;由能量守恒定律可知,物体B 损失的机械能等于木板A 获得的动能与系统损失的机械能之和,选项C 正确;摩擦力对物体B 做的功等于物体B 动能的减少量,摩擦力对木板A 做的功等于木板A 动能的增加量,由能量守恒定律,摩擦力对物体B 做的功和对木板A 做的功的总和等于系统内能的增加量,选项D 正确.迁移3 能量守恒问题的综合应用3.如图所示,一物体质量m =2 kg ,在倾角θ=37°的斜面上的A 点以初速度v 0=3 m/s 下滑,A 点距弹簧上端B 的距离AB =4 m .当物体到达B 点后将弹簧压缩到C 点,最大压缩量BC =0.2 m ,然后物体又被弹簧弹上去,弹到的最高位置为D 点,D 点距A 点的距离AD =3 m .挡板及弹簧质量不计,g 取10 m/s 2,sin 37°=0.6,求:(1)物体与斜面间的动摩擦因数μ; (2)弹簧的最大弹性势能E pm . 解析:(1)物体从开始位置A 点到最后D 点的过程中,弹簧弹性势能没有发生变化,物体动能和重力势能减少,机械能的减少量为ΔE =ΔE k +ΔE p =12m v 20+mgl AD sin 37°①物体克服摩擦力产生的热量为 Q =F f x② 其中x 为物体的路程,即x =5.4 m ③ F f =μmg cos 37°④ 由能量守恒定律可得ΔE =Q ⑤由①②③④⑤式解得μ≈0.52. (2)由A 到C 的过程中,动能减少 ΔE ′k =12m v 20⑥ 重力势能减少ΔE ′p =mgl AC sin 37° ⑦ 摩擦生热Q =F f l AC =μmg cos 37°l AC⑧ 由能量守恒定律得弹簧的最大弹性势能为 E pm =ΔE ′k +ΔE ′p -Q⑨联立⑥⑦⑧⑨解得E pm ≈24.5 J. 答案:(1)0.52 (2)24.5 J应用能量守恒定律解题的步骤功能原理的综合应用【对点训练】(多选)弹跳杆运动是一项广受青少年欢迎的运动.弹跳杆的结构如图所示,弹簧的下端固定在跳杆的底部,上端与一个套在跳杆上的脚踏板底部相连接.质量为M的小孩站在脚踏板上保持静止不动时,弹簧的压缩量为x0.设小孩和弹跳杆只在竖直方向上运动,跳杆的质量为m,取重力加速度为g,空气阻力、弹簧和脚踏板的质量、以及弹簧和脚踏板与跳杆间的摩擦均忽略不计.某次弹跳中,弹簧从最大压缩量3x0开始竖直向上弹起,不考虑小孩做功.下列说法中正确的是()A .弹簧从压缩量3x 0到恢复原长过程中弹簧的弹力做的功为92(M +m )gx 0B .弹簧从压缩量3x 0到恢复原长过程中弹簧的弹力做的功为92Mgx 0C .小孩在上升过程中能达到的最大速度为2gx 0D .小孩在上升过程中能达到的最大速度为5gx 0 答案:BC(多选)(2019·潍坊高三统考)如图所示,甲、乙传送带倾斜放置,并以相同的恒定速率v 逆时针运动,两传送带粗糙程度不同,但长度、倾角均相同.将一小物体分别从两传送带顶端的A 点无初速度释放,甲传送带上小物体到达底端B 点时恰好达到速度v ;乙传送带上小物体到达传送带中部的C 点时恰好达到速度v ,接着以速度v 运动到底端B 点.则小物体从A 运动到B 的过程()A .小物体在甲传送带上的运动时间比在乙上的大B .小物体与甲传送带之间的动摩擦因数比与乙之间的大C .两传送带对小物体做功相等D .两传送带因与小物体摩擦产生的热量相等解析:选AC.设传送带的长度为L ,小物体在甲传送带上做匀加速直线运动,运动时间t 甲=L v 2=2Lv ,小物体在乙传送带上先做匀加速运动后做匀速运动,运动时间t 乙=t 加+t 匀=L 2v 2+L2v =3L2v,所以t 甲>t 乙,A 对;由v 2=2a甲L 得a 甲=v 22L ,同理得a 乙=v 2L ,则a 甲<a 乙,由牛顿第二定律得a 甲=g sin θ+μ甲g cos θ,a 乙=g sin θ+μ乙g cos θ,所以μ甲<μ乙,B 错;由动能定理得W 重+W 传=12m v 2,所以传送带对小物体做功相等,C 对;小物体与传送带之间的相对位移Δx 甲=x 传-x 甲=v t 甲-L =L ,Δx 乙=x ′传-x 乙=v t 加-L 2=L2,摩擦产生的热量Q 甲=μ甲mg cosθΔx 甲=12m v 2-mgL sin θ,Q 乙=μ乙mg cos θΔx 乙=12m v 2-12mgL sin θ,所以Q 甲<Q 乙,D 错.(建议用时:40分钟)一、单项选择题1.(2019·河南林州一中高三质量监测)如图所示,倾角为30°的斜面上,质量为m 的物块在恒定拉力作用下沿斜面以加速度a =g2(g 为重力加速度)向上加速运动距离x 的过程中,下列说法正确的是( )A .重力势能增加mgxB .动能增加mgx4C .机械能增加mgxD .拉力做功为mgx2解析:选C.物块上升的高度为x 2,因而增加的重力势能为ΔE p =12mgx ,A 错误;根据动能定理可得增加的动能为ΔE k =ma ·x =12mgx ,B 错误;根据能量守恒定律可得ΔE =ΔE p +ΔE k ,故增加的机械能为ΔE =mgx ,C 正确;由于斜面是否光滑未知,因而不能确定拉力的大小,不能得到拉力做的功,D 错误. 2.(2019·安徽合肥一模)如图所示,一个质量为m 的小铁块沿半径为R 的固定半圆轨道上边缘由静止滑下,到半圆轨道最低点时,轨道所受压力为铁块重力的1.5倍,则此过程中铁块损失的机械能为(重力加速度为g )( )A .18mgRB .14mgRC .12mgRD .34mgR解析:选D.铁块在最低点,支持力与重力合力等于向心力,即1.5mg -mg =m v 2R ,即铁块动能E k =12m v 2=14mgR ,初动能为零,故动能增加14mgR ,铁块重力势能减少mgR ,所以机械能损失34mgR ,D 项正确.3.(2019·江西重点中学联考)如图所示,在粗糙的水平面上,质量相等的两个物体A 、B 间用一轻质弹簧相连组成系统,且该系统在水平拉力F 作用下以相同加速度保持间距不变一起做匀加速直线运动,当它们的总动能为2E k 时撤去水平力F ,最后系统停止运动.不计空气阻力,认为最大静摩擦力等于滑动摩擦力,从撤去拉力F 到系统停止运动的过程中( )A .外力对物体A 所做总功的绝对值等于2E kB .物体A 克服摩擦阻力做的功等于E kC .系统克服摩擦阻力做的功可能等于系统的总动能2E kD .系统克服摩擦阻力做的功一定等于系统机械能的减少量解析:选D.当它们的总动能为2E k 时,物体A 动能为E k ,撤去水平力F ,最后系统停止运动,外力对物体A 所做总功的绝对值等于E k ,选项A 、B 错误;由于二者之间有弹簧,弹簧具有弹性势能,根据功能关系,系统克服摩擦阻力做的功一定等于系统机械能的减少量,选项D 正确,C 错误. 4.(2019·泉州模拟)如图所示为地铁站用于安全检查的装置,主要由水平传送带和X 光透视系统两部分组成,传送过程传送带速度不变.假设乘客把物品轻放在传送带上之后,物品总会先、后经历两个阶段的运动,用v 表示传送带速率,用μ表示物品与传送带间的动摩擦因数,则( )A .前阶段,物品可能向传送方向的相反方向运动B .后阶段,物品受到摩擦力的方向跟传送方向相同C .v 相同时,μ不同的等质量物品与传送带摩擦产生的热量相同D .μ相同时,v 增大为原来的2倍,前阶段物品的位移也增大为原来的2倍解析:选C.物品轻放在传送带上,前阶段,物品受到向前的滑动摩擦力,所以物品的运动方向一定与传送带的运动方向相同,故A 错误;后阶段,物品与传送带一起做匀速运动,不受摩擦力,故B 错误;设物品匀加速运动的加速度为a ,由牛顿第二定律得F f =μmg =ma ,物品的加速度大小为a =μg ,匀加速的时间为t =va =v μg ,位移为x =v 2t ,传送带匀速的位移为x ′=v t ,物品相对传送带滑行的距离为Δx =x ′-x =v t 2=v 22μg ,物品与传送带摩擦产生的热量为Q =μmg Δx =12m v 2,则知v 相同时,μ不同的等质量物品与传送带摩擦产生的热量相同,故C 正确;前阶段物品的位移为x =v t 2=v 22μg ,则知μ相同时,v 增大为原来的2倍,前阶段物品的位移增大为原来的4倍,故D 错误.5.如图所示,在竖直平面内有一半径为R 的圆弧轨道,半径OA 水平、OB 竖直,一个质量为m 的小球自A 的正上方P 点由静止开始自由下落,小球沿轨道到达最高点B 时恰好对轨道没有压力.已知AP =2R ,重力加速度为g ,则小球从P 到B 的运动过程中( )A .重力做功2mgRB .机械能减少mgRC .合外力做功mgRD .克服摩擦力做功12mgR解析:选D.小球到达B 点时,恰好对轨道没有压力,只受重力作用,根据mg =m v 2R 得,小球在B 点的速度v=gR .小球从P 到B 的运动过程中,重力做功W =mgR ,故选项A 错误;减少的机械能ΔE 减=mgR -12m v 2=12mgR ,故选项B 错误;合外力做功W 合=12m v 2=12mgR ,故选项C 错误;根据动能定理得,mgR -W f =12m v 2-0,所以W f =mgR -12m v 2=12mgR ,故选项D 正确.6.如图所示,一张薄纸板放在光滑水平面上,其右端放有小木块,小木块与薄纸板的接触面粗糙,原来系统静止.现用水平恒力F 向右拉薄纸板,小木块在薄纸板上发生相对滑动,直到从薄纸板上掉下来.上述过程中有关功和能的说法正确的是( )A .拉力F 做的功等于薄纸板和小木块动能的增加量B .摩擦力对小木块做的功一定等于系统中由摩擦产生的热量C .离开薄纸板前小木块可能先做加速运动,后做匀速运动D .小木块动能的增加量可能小于系统中由摩擦产生的热量解析:选D.由功能关系,拉力F 做的功等于薄纸板和小木块动能的增加量与系统产生的内能之和,选项A 错误;摩擦力对小木块做的功等于小木块动能的增加量,选项B 错误;离开薄纸板前小木块一直在做匀加速运动,选项C 错误;对于系统,由摩擦产生的热量Q =f ΔL ,其中ΔL 为小木块相对薄纸板运动的路程,若薄纸板的位移为L 1,小木块相对地面的位移为L 2,则ΔL =L 1-L 2,且ΔL 存在大于、等于或小于L 2三种可能,对小木块,fL 2=ΔE k ,即Q 存在大于、等于或小于ΔE k 三种可能,选项D 正确. 7.(2019·江西十校模拟)将三个木板1、2、3固定在墙角,木板与墙壁和地面构成了三个不同的三角形,如图所示,其中1与2底边相同,2和3高度相同.现将一个可以视为质点的物块分别从三个木板的顶端由静止释放,并沿斜面下滑到底端,物块与木板之间的动摩擦因数μ均相同.在这三个过程中,下列说法不正确的是( )A .沿着1和2下滑到底端时,物块的速率不同,沿着2和3下滑到底端时,物块的速率相同B .沿着1下滑到底端时,物块的速度最大C .物块沿着3下滑到底端的过程中,产生的热量是最多的D .物块沿着1和2下滑到底端的过程中,产生的热量是一样多的解析:选A.设1、2、3木板与地面的夹角分别为θ1、θ2、θ3,木板长分别为l 1、l 2、l 3,当物块沿木板1下滑时,由动能定理有mgh 1-μmgl 1cos θ1=12m v 21-0,当物块沿木板2下滑时,由动能定理有mgh 2-μmgl 2cos θ2=12m v 22-0,又h 1>h 2,l 1cos θ1=l 2cos θ2,可得v 1>v 2;当物块沿木板3下滑时,由动能定理有mgh 3-μmgl 3cos θ3=12m v 23-0,又h 2=h 3,l 2cos θ2<l 3cos θ3,可得v 2>v 3,故A 错、B 对;三个过程中产生的热量分别为Q 1=μmgl 1cos θ1,Q 2=μmgl 2cos θ2,Q 3=μmgl 3cos θ3,则Q 1=Q 2<Q 3,故C 、D 对. 二、多项选择题 8.(2019·嘉兴一中模拟)在儿童乐园的蹦床项目中,小孩在两根弹性绳和弹性床的协助下实现上下弹跳,如图所示.某次蹦床活动中小孩静止时处于O 点,当其弹跳到最高点A 后下落可将蹦床压到最低点B ,小孩可看成质点.不计空气阻力,下列说法正确的是( )A .从A 点运动到O 点,小孩重力势能的减少量大于动能的增加量B .从O 点运动到B 点,小孩动能的减少量等于蹦床弹性势能的增加量C .从A 点运动到B 点,小孩机械能的减少量小于蹦床弹性势能的增加量D .从B 点返回到A 点,小孩机械能的增加量大于蹦床弹性势能的减少量解析:选AD.小孩从A 点运动到O 点,由动能定理可得mgh AO -W 弹1=ΔE k1,选项A 正确;小孩从O 点运动到B 点,由动能定理可得mgh OB -W 弹2=ΔE k2,选项B 错误;小孩从A 点运动到B 点,由功能关系可得-W 弹=ΔE 机1,选项C 错误;小孩从B 点返回到A 点,弹性绳和蹦床的弹性势能转化为小孩的机械能,则知小孩机械能的增加量大于蹦床弹性势能的减少量,选项D 正确.9.将一质量为1 kg 的滑块轻轻放置于传送带的左端,已知传送带正以4 m/s 的速度顺时针运行,滑块与传送带间的动摩擦因数为0.2,传送带左右距离无限长,当滑块放上去2 s 时,突然断电,传送带以1 m/s 2的加速度做匀减速运动至停止,则滑块从放上去到最后停下的过程中,下列说法正确的是( )A .前2 s 传送带与滑块之间因摩擦力所产生的热量为8 JB .前2 s 传送带与滑块之间因摩擦力所产生的热量为16 JC .2 s 后传送带与滑块之间因摩擦力所产生的热量为8 JD .2 s 后传送带与滑块之间因摩擦力所产生的热量为0解析:选AD.前2 s ,滑块的位移x 1=12μgt 2=4 m ,传送带的位移x 2=v t =8 m ,相对位移Δx =x 2-x 1=4 m ,2 s 后滑块随传送带一起做匀减速运动,无相对位移,整个过程中传送带与滑块之间因摩擦力而产生的热量为Q =μmg ·Δx =8 J ,2 s 后滑块与传送带相对静止,产生热量为0,故选项A 、D 正确.10.如图所示,轻质弹簧一端固定,另一端与一质量为m 、套在粗糙竖直固定杆A 处的圆环相连,弹簧水平且处于原长.圆环从A 处由静止开始下滑,经过B 处的速度最大,到达C 处的速度为零,AC =h .圆环在C 处获得一竖直向上的速度v ,恰好能回到A .弹簧始终在弹性限度内,重力加速度为g .则圆环( )A .下滑过程中,加速度一直减小B .下滑过程中,克服摩擦力做的功为14m v 2 C .在C 处,弹簧的弹性势能为14m v 2-mgh D .上滑经过B 的速度大于下滑经过B 的速度解析:选BD.圆环下落时,先加速,在B 位置时速度最大,加速度减小至0,从B 到C 圆环减速,加速度增大,方向向上,选项A 错误;圆环下滑时,设克服摩擦力做功为W f ,弹簧的最大弹性势能为ΔE p ,由A 到C的过程中,根据功能关系有mgh =ΔE p +W f ,由C 到A 的过程中,有12m v 2+ΔE p =W f +mgh ,联立解得W f =14m v 2,ΔE p =mgh -14m v 2,选项B 正确,选项C 错误;设圆环在B 位置时,弹簧弹性势能为ΔE ′p ,根据能量守恒,A 到B 的过程有12m v 2B +ΔE ′p +W ′f =mgh ′,B 到A 的过程有12m v ′2B+ΔE ′p =mgh ′+W ′f ,比较两式得v ′B >v B ,选项D 正确.三、非选择题11.如图所示,弹簧的一端固定,另一端连接一个物块,弹簧质量不计.物块(可视为质点)的质量为m ,在水平桌面上沿x 轴运动,与桌面间的动摩擦因数为μ.以弹簧原长时物块的位置为坐标原点O ,当弹簧的伸长量为x 时,物块所受弹簧弹力大小为F =kx ,k 为常量.(1)请画出F 随x 变化的示意图;并根据F -x 图象求物块沿x 轴从O 点运动到位置x 的过程中弹力所做的功.(2)物块由x 1向右运动到x 3,然后由x 3返回到x 2,在这个过程中,①求弹力所做的功,并据此求弹性势能的变化量;②求滑动摩擦力所做的功;并与弹力做功比较,说明为什么不存在与摩擦力对应的“摩擦力势能”的概念. 解析:(1)F -x 图象如图所示.物块沿x 轴从O 点运动到位置x 的过程中,弹力做负功;F -x 图线下的面积等于弹力做功大小.弹力做功W F =-12·kx ·x =-12kx 2. (2)①物块由x 1向右运动到x 3的过程中,弹力做功W F 1=-12·(kx 1+kx 3)·(x 3-x 1)=12kx 21-12kx 23物块由x 3向左运动到x 2的过程中,弹力做功W F 2=12·(kx 2+kx 3)·(x 3-x 2)=12kx 23-12kx 22 整个过程中,弹力做功W F =W F 1+W F 2=12kx 21-12kx 22 弹性势能的变化量ΔE p =-W F =12kx 22-12kx 21. ②整个过程中,摩擦力做功W f =-μmg (2x 3-x 1-x 2)与弹力做功比较,弹力做功与x 3无关,即与实际路径无关,只与始末位置有关,所以,我们可以定义一个由物体之间的相互作用力(弹力)和相对位置决定的能量——弹性势能.而摩擦力做功与x 3有关,即与实际路径有关,所以,不可以定义与摩擦力对应的“摩擦力势能”.答案:见解析12.(2019·湖南石门一中高三检测)如图所示,光滑的水平面AB 与半径R =0.4 m 的光滑竖直半圆轨道BCD 在B 点相切,D 点为半圆轨道最高点, A 右侧连接一粗糙水平面.用细线连接甲、乙两物体,中间夹一轻质压缩弹簧,弹簧与甲、乙两物体不拴接,甲质量为m 1=4 kg ,乙质量m 2=5 kg ,甲、乙均静止.若固定乙,烧断细线,甲离开弹簧后经过B 点进入半圆轨道,过D 点时对轨道压力恰好为零.取g =10 m/s 2,甲、乙两物体均可看做质点,求:(1)甲离开弹簧后经过B 时速度大小v B ;(2)弹簧压缩量相同情况下,若固定甲,烧断细线,乙物体离开弹簧后从A 进入动摩擦因数μ=0.4的粗糙水平面,则乙物体在粗糙水平面上运动的位移s .解析:(1)甲在最高点D ,由牛顿第二定律得:m 1g =m 1v 2D R, 甲离开弹簧运动至D 点的过程中由机械能守恒得:12m 1v 2B =m 1g ·2R +12m 1v 2D . 代入数据联立解得:v B =2 5 m/s.(2)甲固定,烧断细线后乙的速度大小为v 2,由能量守恒得:E p =12m 1v 2B =12m 2v 22, 得:v 2=4 m/s.乙在粗糙水平面做匀减速运动:μm 2g =m 2a ,解得:a =4 m/s 2,则有:s =v 222a =162×4m =2 m. 答案:(1)2 5 m/s (2)2 m。
2020年高考物理一轮复习热点题型归纳与变式演练专题14 功能关系与能量守恒【专题导航】目录热点题型一与摩擦生热相关的两个物理模型 (1)滑块——滑板模型中能量的转化问题 (2)传送带模型中能量的转化问题 (3)热点题型二对功能关系的理解和应用 (5)热点题型三能量守恒定律的应用 (7)热点题型四功能原理的综合应用 (9)功能原理处理斜面问题 (9)功能原理处理弹簧问题 (10)【题型演练】 (11)【题型归纳】热点题型一与摩擦生热相关的两个物理模型两种摩擦力的做功情况比较滑块——滑板模型中能量的转化问题【例1】.(多选)如图所示,长木板A 放在光滑的水平地面上,物体B 以水平速度v 0冲上A 后,由于摩擦力作用,最后停止在木板A 上,则从B 冲到木板A 上到相对木板A 静止的过程中,下述说法中正确的是( )A .物体B 动能的减少量等于系统损失的机械能 B .物体B 克服摩擦力做的功等于系统内能的增加量C .物体B 损失的机械能等于木板A 获得的动能与系统损失的机械能之和D .摩擦力对物体B 做的功和对木板A 做的功的总和等于系统内能的增加量 【答案】CD.【解析】物体B 以水平速度冲上木板A 后,由于摩擦力作用,B 减速运动,木板A 加速运动,根据能量守恒定律,物体B 动能的减少量等于木板A 增加的动能和产生的热量之和,选项A 错误;根据动能定理,物体B 克服摩擦力做的功等于物体B 损失的动能,选项B 错误;由能量守恒定律可知,物体B 损失的机械能等于木板A 获得的动能与系统损失的机械能之和,选项C 正确;摩擦力对物体B 做的功等于物体B 动能的减少量,摩擦力对木板A 做的功等于木板A 动能的增加量,由能量守恒定律,摩擦力对物体B 做的功和对木板A 做的功的总和等于系统内能的增加量,选项D 正确.【变式1】(2019·河北定州中学模拟)如图所示,质量为M 的木块静止在光滑的水平面上,质量为m 的子弹 以速度v 0沿水平方向射中木块并最终留在木块中与木块一起以速度v 运动.已知当子弹相对木块静止时, 木块前进距离L ,子弹进入木块的深度为L ′,木块对子弹的阻力为F (F 视为恒力),则下列判断正确的是( )A .子弹和木块组成的系统机械能不守恒B .子弹克服阻力所做的功为FL ′C .系统产生的热量为F (L +L ′)D .子弹对木块做的功为12Mv 2【答案】AD【解析】子弹打入木块,子弹和木块位移不相等,所以相互作用力对子弹做的功即子弹动能的减少量,与相互作用力对木块做的功即木块动能的增加量不相等,因此有内能产生,系统机械能不守恒,二者之差即为产生的内能.力做的功等于力乘以物体在力的方向上的位移.此过程中由于有内能产生,子弹和木块组成的系统机械能不守恒,A 正确;子弹克服阻力所做的功即阻力所做的功的大小为F (L +L ′),B 错误;根据能量守恒得,摩擦力与相对位移的乘积等于系统能量的损失,系统产生的热量为FL ′,C 错误;对木块运用动能定理得,fL =12Mv 2,D 正确.【变式2】如图所示,木块A 放在木块B 的左端上方,用水平恒力F 将A 拉到B 的右端,第一次将B 固定在地面上,F 做功W 1,生热Q 1;第二次让B 在光滑水平面上可自由滑动,F 做功W 2,生热Q 2.则下列关系中正确的是( )A .W 1<W 2,Q 1=Q 2B .W 1=W 2,Q 1=Q 2C .W 1<W 2,Q 1<Q 2D .W 1=W 2,Q 1<Q 2 【答案】A【解析】在A 、B 分离过程中,第一次和第二次A 相对于B 的位移是相等的,而热量等于滑动摩擦力乘以相对位移,因此Q 1=Q 2;在A 、B 分离过程中,第一次A 的对地位移要小于第二次A 的对地位移,而功等于力乘以对地位移,因此W 1<W 2,所以选项A 正确. 传送带模型中能量的转化问题【例2】.(2019·福建八县联考)如图所示,足够长的传送带以恒定速率顺时针运行,将一个物体轻轻放在传送带底端,第一阶段物体被加速到与传送带具有相同的速度,第二阶段与传送带相对静止,匀速运动到达传送带顶端.下列说法正确的是( )A .第一阶段摩擦力对物体做正功,第二阶段摩擦力对物体不做功B .第一阶段摩擦力对物体做的功等于第一阶段物体动能的增加C .第一阶段物体和传送带间的摩擦生热等于第一阶段物体机械能的增加D .物体从底端到顶端全过程机械能的增加等于全过程物体与传送带间的摩擦生热 【答案】C.【解析】第一阶段物体受到沿斜面向上的滑动摩擦力;第二阶段物体受到沿斜面向上的静摩擦力做功,两个阶段摩擦力方向都跟物体运动方向相同,所以两个阶段摩擦力都做正功,故A 错误;根据动能定理得知,外力做的总功等于物体动能的增加,第一阶段,摩擦力和重力都做功,则第一阶段摩擦力对物体做的功不等于第一阶段物体动能的增加,故B 错误;由功能关系可知,第一阶段摩擦力对物体做的功(除重力之外的力所做的功)等于物体机械能的增加,即ΔE =W 阻=F 阻s 物,摩擦生热为Q =F 阻s 相对,又由于s 传送带=vt ,s 物=v 2t ,所以s 物=s 相对=12s 传送带,即Q =ΔE ,故C 正确;第二阶段没有摩擦生热,但物体的机械能继续增加,故D 错误.【例2】(2019·山西大学附属中学模拟)如图甲所示,一倾角为37°的传送带以恒定速度运行.现将一质量m =1 kg 的物体抛上传送带,物体相对地面的速度随时间变化的关系如图乙所示,取沿传送带向上为正方向,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.则下列说法正确的是( )A .0~8 s 内物体位移的大小是18 mB .0~8 s 内物体机械能增量是90 JC .0~8 s 内物体机械能增量是84 JD .0~8 s 内物体与传送带因摩擦产生的热量是126 J 【答案】BD【解析】从题图乙求出0~8 s 内物体位移的大小s =14 m ,A 错误;0~8 s 内,物体上升的高度h =s sin θ=8.4 m ,物体机械能增量ΔE =ΔE p +ΔE k =90 J ,B 正确,C 错误;0~6 s 内物体的加速度a =μg cos θ-g sin θ=1 m/s 2,得μ=78,传送带速度大小为 4 m/s ,Δs =18 m,0~8 s 内物体与传送带摩擦产生的热量Q =μmg cos θ·Δs =126 J ,D 正确.【变式2】(2019·泉州模拟)如图所示为地铁站用于安全检查的装置,主要由水平传送带和X 光透视系统两部分组成,传送过程传送带速度不变.假设乘客把物品轻放在传送带上之后,物品总会先、后经历两个阶段的运动,用v 表示传送带速率,用μ表示物品与传送带间的动摩擦因数,则( )A .前阶段,物品可能向传送方向的相反方向运动B .后阶段,物品受到摩擦力的方向跟传送方向相同C .v 相同时,μ不同的等质量物品与传送带摩擦产生的热量相同D .μ相同时,v 增大为原来的2倍,前阶段物品的位移也增大为原来的2倍 【答案】C【解析】.物品轻放在传送带上,前阶段,物品受到向前的滑动摩擦力,所以物品的运动方向一定与传送带的运动方向相同,故A 错误;后阶段,物品与传送带一起做匀速运动,不受摩擦力,故B 错误;设物品匀加速运动的加速度为a ,由牛顿第二定律得F f =μmg =ma ,物品的加速度大小为a =μg ,匀加速的时间为t=v a =v μg ,位移为x =v 2t ,传送带匀速的位移为x ′=vt ,物品相对传送带滑行的距离为Δx =x ′-x =vt 2=v 22μg ,物品与传送带摩擦产生的热量为Q =μmg Δx =12mv 2,则知v 相同时,μ不同的等质量物品与传送带摩擦产生的热量相同,故C 正确;前阶段物品的位移为x =vt 2=v 22μg ,则知μ相同时,v 增大为原来的2倍,前阶段物品的位移增大为原来的4倍,故D 错误.热点题型二 对功能关系的理解和应用 1.对功能关系的理解(1)做功的过程就是能量转化的过程.不同形式的能量发生相互转化是通过做功来实现的.(2)功是能量转化的量度,功和能的关系,一是体现在不同的力做功,对应不同形式的能转化,具有一一对应关系,二是做功的多少与能量转化的多少在数值上相等. 2.功是能量转化的量度,力学中几种常见的功能关系如下【例3】(2018·高考全国卷Ⅰ)如图,abc 是竖直面内的光滑固定轨道,ab 水平,长度为2R; bc 是半径为R 的四分之一圆弧,与ab 相切于b 点.一质量为m 的小球,始终受到与重力大小相等的水平外力的作用,自a 点处从静止开始向右运动.重力加速度大小为g .小球从a 点开始运动到其轨迹最高点,机械能的增量为( )A .2mgRB .4mgRC .5mgRD .6mgR 【答案】C【解析】.设小球运动到c 点的速度大小为v c ,则对小球由a 到c 的过程,由动能定理有F ·3R -mgR =12mv 2c ,又F =mg ,解得v c =2gR ,小球离开c 点后,在水平方向做初速度为零的匀加速直线运动,竖直方向在重力作用下做匀减速直线运动,由牛顿第二定律可知,小球离开c 点后水平方向和竖直方向的加速度大小均为g ,则由竖直方向的运动可知,小球从离开c 点到其轨迹最高点所需的时间为t =v cg =2Rg,在水平方向的位移大小为x =12gt 2=2R .由以上分析可知,小球从a 点开始运动到其轨迹最高点的过程中,水平方向的位移大小为5R ,则小球机械能的增加量为ΔE =F ·5R =5mgR ,C 正确,A 、B 、D 错误.【变式1】起跳摸高是学生经常进行的一项体育活动.一质量为m 的同学弯曲两腿向下蹲,然后用力蹬地起跳,从该同学用力蹬地到刚离开地面的起跳过程中,他的重心上升了h ,离地时他的速度大小为v .下列说法正确的是( )A .起跳过程中该同学机械能增加了mghB .起跳过程中该同学机械能增量为mgh +12mv 2C .地面的支持力对该同学做的功为mgh +12mv 2D .该同学所受的合外力对其做的功为12mv 2+mgh【答案】B【解析】该同学重心升高了h ,重力势能增加了mgh ,又知离地时获得动能为12mv 2,则机械能增加了mgh+12mv 2,A 错误,B 正确;该同学在与地面作用过程中,在支持力方向上的位移为零,则支持力对该同学做功为零,C 错误;该同学所受合外力做的功等于动能的增量,则W 合=12mv 2,D 错误.【变式2】轻质弹簧右端固定在墙上,左端与一质量m =0.5 kg 的物块相连,如图甲所示,弹簧处于原长状 态,物块静止,物块与水平面间的动摩擦因数μ=0.2.以物块所在处为原点,水平向右为正方向建立x 轴, 现对物块施加水平向右的外力F ,F 随x 轴坐标变化的情况如图乙所示,物块运动至x =0.4 m 处时速度为零,则此时弹簧的弹性势能为g 取10 m/s( )A .3.1 JB .3.5 JC .1.8 JD .2.0 J 【答案】 A【解析】 物块与水平面间的摩擦力为F f =μmg =1 N .现对物块施加水平向右的外力F ,由F -x 图象面积表示功可知,物块运动至x =0.4 m 处时F 做功W =3.5 J ,克服摩擦力做功W f =F f x =0.4 J .由功能关系可知W -W f =E p ,此时弹簧的弹性势能为E p =3.1 J ,选项A 正确.热点题型三能量守恒定律的应用1.对能量守恒定律的理解(1)转化:某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等.(2)转移:某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量相等.2.涉及弹簧的能量问题应注意两个或两个以上的物体与弹簧组成的系统相互作用的过程,具有以下特点:(1)能量变化上,如果只有重力和系统内弹簧弹力做功,系统机械能守恒.(2)如果系统每个物体除弹簧弹力外所受合外力为零,则当弹簧伸长或压缩到最大程度时两物体速度相同.3.运用能量守恒定律解题的基本思路4.多过程问题的解题技巧(1)“合”——初步了解全过程,构建大致的运动情景.(2)“分”——将全过程进行分解,分析每个过程的规律.(3)“合”——找到过程之间的联系,寻找解题方法.【例4】如图所示,一物体质量m=2 kg,在倾角θ=37°的斜面上的A点以初速度v0=3 m/s下滑,A点距弹簧上端B的距离AB=4 m.当物体到达B点后将弹簧压缩到C点,最大压缩量BC=0.2 m,然后物体又被弹簧弹上去,弹到的最高位置为D点,D点距A点的距离AD=3 m.挡板及弹簧质量不计,g取10 m/s2,sin 37°=0.6,求:(1)物体与斜面间的动摩擦因数μ;(2)弹簧的最大弹性势能E pm.【答案】(1)0.52(2)24.5 J【解析】(1)物体从开始位置A点到最后D点的过程中,弹簧弹性势能没有发生变化,物体动能和重力势能减少,机械能的减少量为ΔE =ΔE k +ΔE p =12mv 20+mgl AD sin 37°①物体克服摩擦力产生的热量为 Q =F f x② 其中x 为物体的路程,即x =5.4 m ③ F f =μmg cos 37°④ 由能量守恒定律可得ΔE =Q ⑤ 由①②③④⑤式解得μ≈0.52. (2)由A 到C 的过程中,动能减少 ΔE ′k =12mv 20⑥ 重力势能减少ΔE ′p =mgl AC sin 37° ⑦ 摩擦生热Q =F f l AC =μmg cos 37°l AC⑧ 由能量守恒定律得弹簧的最大弹性势能为 E pm =ΔE ′k +ΔE ′p -Q⑨ 联立⑥⑦⑧⑨解得E pm ≈24.5 J.【变式】如图所示,光滑水平面AB 与竖直面内的半圆形导轨在B 点相切,半圆形导轨的半径为R .一个质 量为m 的物体将弹簧压缩至A 点后由静止释放,在弹力作用下物体获得某一向右的速度后脱离弹簧,当它 经过B 点进入导轨的瞬间对轨道的压力为其重力的8倍,之后向上运动恰能到达最高点C .不计空气阻力, 试求:(1)物体在A 点时弹簧的弹性势能;(2)物体从B 点运动至C 点的过程中产生的内能.【答案】(1)72mgR (2)mgR【解析】(1)设物体在B 点的速度为v B ,所受弹力为F N B ,由牛顿第二定律得: F N B -mg =m v 2BR由牛顿第三定律F N B ′=8mg =F N B 由能量守恒定律可知物体在A 点时的弹性势能E p =12mv 2B =72mgR (2)设物体在C 点的速度为v C ,由题意可知mg =m v 2CR物体由B 点运动到C 点的过程中,由能量守恒定律得Q =12mv 2B -(12mv 2C +2mgR ) 解得Q =mgR .热点题型四 功能原理的综合应用 功能原理处理斜面问题【例5】(2019·河南林州一中高三质量监测)如图所示,倾角为30°的斜面上,质量为m 的物块在恒定拉力作用下沿斜面以加速度a =g2(g 为重力加速度)向上加速运动距离x 的过程中,下列说法正确的是( )A .重力势能增加mgxB .动能增加mgx4C .机械能增加mgxD .拉力做功为mgx2【答案】C【解析】.物块上升的高度为x 2,因而增加的重力势能为ΔE p =12mgx ,A 错误;根据动能定理可得增加的动能为ΔE k =ma ·x =12mgx ,B 错误;根据能量守恒定律可得ΔE =ΔE p +ΔE k ,故增加的机械能为ΔE =mgx ,C 正确;由于斜面是否光滑未知,因而不能确定拉力的大小,不能得到拉力做的功,D 错误.【变式1】(2019·江西十校模拟)将三个木板1、2、3固定在墙角,木板与墙壁和地面构成了三个不同的三角形,如图所示,其中1与2底边相同,2和3高度相同.现将一个可以视为质点的物块分别从三个木板的顶端由静止释放,并沿斜面下滑到底端,物块与木板之间的动摩擦因数μ均相同.在这三个过程中,下列说法不正确的是( )A .沿着1和2下滑到底端时,物块的速率不同,沿着2和3下滑到底端时物块的速率相同B .沿着1下滑到底端时,物块的速度最大C .物块沿着3下滑到底端的过程中,产生的热量是最多的D .物块沿着1和2下滑到底端的过程中,产生的热量是一样多的 【答案】A【解析】.设1、2、3木板与地面的夹角分别为θ1、θ2、θ3,木板长分别为l 1、l 2、l 3,当物块沿木板1下滑时,由动能定理有mgh 1-μmgl 1cos θ1=12mv 21-0,当物块沿木板2下滑时,由动能定理有mgh 2-μmgl 2cos θ2=12mv 22-0,又h 1>h 2,l 1cos θ1=l 2cos θ2,可得v 1>v 2;当物块沿木板3下滑时,由动能定理有mgh 3-μmgl 3cos θ3=12mv 23-0,又h 2=h 3,l 2cos θ2<l 3cos θ3,可得v 2>v 3,故A 错、B 对;三个过程中产生的热量分别为Q 1=μmgl 1cos θ1,Q 2=μmgl 2cos θ2,Q 3=μmgl 3cos θ3,则Q 1=Q 2<Q 3,故C 、D 对.【变式2】(2019·安徽安庆高三质检)安徽首家滑雪场正式落户国家AAAA 级旅游景区——安庆巨石山,现已正式“开滑”.如图所示,滑雪者从O 点由静止沿斜面自由滑下,接着在水平面上滑至N 点停下.斜面、水平面与滑雪板之间的动摩擦因数都为μ=0.1.滑雪者(包括滑雪板)的质量为m =50 kg ,g 取 10 m/s 2,O 、N 两点间的水平距离为s =100 m .在滑雪者经过ON 段运动的过程中,克服摩擦力做的功为( )A .1 250 JB .2 500 JC .5 000 JD .7 500 J 【答案】C【解析】设斜面的倾角为θ,则滑雪者从O 到N 的运动过程中克服摩擦力做的功W f =μmg cos θ·x OM +μmgx MN ,由题图可知,x OM cos θ+x MN =s ,两式联立可得W f =μmgs =0.1×50×10×100 J =5 000 J ,故选项A 、B 、D 错误,C 正确. 功能原理处理弹簧问题【例6】(2019·江苏启东中学月考)如图甲所示,质量不计的弹簧竖直固定在水平面上,t =0时刻,将一金属小球从弹簧正上方某一高度处由静止释放,小球落到弹簧上压缩弹簧到最低点,然后又被弹起离开弹簧,上升到一定高度后再下落,如此反复.通过安装在弹簧下端的压力传感器,测出这一过程弹簧弹力F 随时间t 变化的图象如图乙所示,则( )A .t 1时刻小球动能最大B .t 2时刻小球动能最大C .t 2~t 3这段时间内,小球的动能先增加后减少D .t 2~t 3这段时间内,小球增加的动能等于弹簧减少的弹性势能【答案】C【解析】由题图知,t 1时刻小球刚与弹簧接触,此时小球的重力大于弹簧的弹力,小球将继续向下做加速运动,此时小球的动能不是最大,当弹力增大到与重力平衡,即加速度减为零时,速度达到最大,动能最大,故A 错误;t 2时刻,弹力F 最大,故弹簧的压缩量最大,小球运动到最低点,动能最小,为0,故B 错误;t 2~t 3这段时间内,小球处于上升过程,弹簧的弹力先大于重力,后小于重力,小球先做加速运动,后做减速运动,则小球的动能先增大后减少,故C 正确;t 2~t 3段时间内,小球和弹簧系统机械能守恒,故小球增加的动能和重力势能之和等于弹簧减少的弹性势能,故D 错误.【变式2】(2019·四川成都诊断)如图所示,轻质弹簧一端固定,另一端与一质量为m 、套在粗糙竖直固定杆A 处的圆环相连,弹簧水平且处于原长.圆环从A 处由静止开始下滑,经过B 处的速度最大,到达C 处的速度为零,AC =h .圆环在C 处获得一竖直向上的速度v ,恰好能回到A .弹簧始终在弹性限度内,重力加速度为g .则圆环( )A .下滑过程中,加速度一直减小B .下滑过程中,克服摩擦力做的功为14mv 2 C .在C 处,弹簧的弹性势能为14mv 2-mgh D .上滑经过B 的速度大于下滑经过B 的速度 【答案】BD.【解析】圆环下落时,先加速,在B 位置时速度最大,加速度减小至0,从B 到C 圆环减速,加速度增大,方向向上,选项A 错误;圆环下滑时,设克服摩擦力做功为W f ,弹簧的最大弹性势能为ΔE p ,由A 到C 的过程中,根据功能关系有mgh =ΔE p +W f ,由C 到A 的过程中,有12mv 2+ΔE p =W f +mgh ,联立解得W f =14mv 2,ΔE p =mgh -14mv 2,选项B 正确,选项C 错误;设圆环在B 位置时,弹簧弹性势能为ΔE ′p ,根据能量守恒,A 到B 的过程有12mv 2B +ΔE ′p +W ′f =mgh ′,B 到A 的过程有12mv ′2B +ΔE ′p =mgh ′+W ′f ,比较两式得v ′B >v B ,选项D 正确.【题型演练】1.(多选)(2019·福建省三明一中模拟)滑沙是人们喜爱的游乐活动,如图是滑沙场地的一段斜面,其倾角为30°,设参加活动的人和滑车总质量为m ,人和滑车从距底端高为h 处的顶端A 沿滑道由静止开始匀加速下滑,加速度为0.4g ,人和滑车可视为质点,则从顶端向下滑到底端B 的过程中,下列说法正确的是( )A .人和滑车减少的重力势能全部转化为动能B .人和滑车获得的动能为0.8mghC .整个下滑过程中人和滑车减少的机械能为0.2mghD .人和滑车克服摩擦力做功为0.6mgh【答案】 BC【解析】 沿斜面的方向有ma =mg sin 30°-F f ,所以F f =0.1mg ,人和滑车减少的重力势能转化为动能和内能,故A 错误;人和滑车下滑的过程中重力和摩擦力做功,获得的动能为E k =(mg sin 30°-F f )h sin 30°=0.8mgh ,故B 正确;整个下滑过程中人和滑车减少的机械能为ΔE =mgh -E k =mgh -0.8mgh =0.2mgh ,故C 正确;整个下滑过程中克服摩擦力做功等于人和滑车减少的机械能,所以人和滑车克服摩擦力做功为0.2mgh ,故D 错误.2.(多选)(2019·安徽省安庆市二模)一运动员穿着飞翔装备从飞机上跳出后的一段运动过程可近似认为是匀变速直线运动,如图2所示,运动方向与水平方向成53°,运动员的加速度大小为3g 4.已知运动员(包含装备)的质量为m ,则在运动员下落高度为h 的过程中,下列说法正确的是( )A .运动员重力势能的减少量为3mgh 5B .运动员动能的增加量为3mgh 4C .运动员动能的增加量为1516mghD .运动员的机械能减少了mgh 16【答案】 CD【解析】 运动员下落的高度是h ,W =mgh ,运动员重力势能的减少量为mgh ,故A 错误;运动员下落的高度是h ,则飞行的距离L =h sin 53°=54h ,运动员受到的合外力F 合=ma =34mg ,动能的增加量等于合外力做的功,即ΔE k =W 合=34mg ×54h =1516mgh ,故B 错误,C 正确;运动员重力势能的减少量为mgh ,动能的增加量为1516mgh ,所以运动员的机械能减少了116mgh ,故D 正确. 3.(多选)(2019·山东省临沂市模拟)如图所示,在升降机内固定一光滑的斜面体,一轻弹簧的一端连在位于斜面体上方的固定木板B 上,另一端与质量为m 的物块A 相连,弹簧与斜面平行.整个系统由静止开始加速上升高度h 的过程中( )A .物块A 的重力势能增加量一定等于mghB .物块A 的动能增加量等于斜面的支持力和弹簧的拉力对其做功的和C .物块A 的机械能增加量等于斜面的支持力和弹簧的拉力对其做功的和D .物块A 和弹簧组成系统的机械能增加量等于斜面对物块的支持力和B 对弹簧的拉力做功的和【答案】 CD【解析】 当物块具有向上的加速度时,弹簧弹力在竖直方向上的分力和斜面的支持力在竖直方向上的分力的合力大于重力,所以弹簧的弹力比物块静止时大,弹簧的伸长量增大,物块A 相对于斜面向下运动,物块A 上升的高度小于h ,所以重力势能的增加量小于mgh ,故A 错误;对物块A 由动能定理有物块A 的动能增加量等于斜面的支持力、弹簧的拉力和重力对其做功的和,故B 错误;物块A 机械能的增加量等于斜面支持力和弹簧弹力做功的和,故C 正确;物块A 和弹簧组成系统的机械能增加量等于斜面对物块的支持力和B 对弹簧的拉力做功的和,故D 正确.4.(2019·四川省德阳市调研)足够长的水平传送带以恒定速度v 匀速运动,某时刻一个质量为m 的小物块以大小也是v 、方向与传送带的运动方向相反的初速度冲上传送带,最后小物块的速度与传送带的速度相同.在小物块与传送带间有相对运动的过程中,滑动摩擦力对小物块做的功为W ,小物块与传送带间因摩擦产生的热量为Q ,则下列判断中正确的是( )A .W =0,Q =mv 2B .W =0,Q =2mv 2C .W =mv 22,Q =mv 2 D .W =mv 2,Q =2mv 2【答案】 B 【解析】 对小物块,由动能定理有W =12mv 2-12mv 2=0,设小物块与传送带间的动摩擦因数为μ,则小物块与传送带间的相对路程x 相对=2v 2μg,这段时间内因摩擦产生的热量Q =μmg ·x 相对=2mv 2,选项B 正确. 5.(多选)(2018·陕西省黄陵中学考前模拟)如图所示,光滑水平面OB 与足够长粗糙斜面BC 交于B 点.轻弹簧左端固定于竖直墙面,现将质量为m 1的滑块压缩弹簧至D 点,然后由静止释放,滑块脱离弹簧后经B 点滑上斜面,上升到最大高度,并静止在斜面上.不计滑块在B 点的机械能损失;换用相同材料质量为m 2的滑块(m 2>m 1)压缩弹簧至同一点D 后,重复上述过程,下列说法正确的是( )A .两滑块到达B 点的速度相同 B .两滑块沿斜面上升的最大高度相同C .两滑块上升到最高点过程克服重力做的功相同D .两滑块上升到最高点过程机械能损失相同【答案】 CD【解析】 两滑块到B 点的动能相同,但速度不同,故A 错误;两滑块在斜面上运动时加速度相同,由于在B 点时的速度不同,故上升的最大高度不同,故B 错误;两滑块上升到斜面最高点过程克服重力做的功为mgh ,由能量守恒定律得E p =mgh +μmg cos θ·h sin θ,则mgh =E p 1+μtan θ,故两滑块上升到斜面最高点过程克服重力做的功相同,故C 正确;由能量守恒定律得E 损=μmg cos θ·h sin θ=μmgh tan θ,结合C 可知D 正确. 6.(多选)(2018·黑龙江省佳木斯市质检)如图5所示,建筑工地上载人升降机用不计质量的细钢绳跨过定滑轮与一电动机相连,通电后电动机带动升降机沿竖直方向先匀加速上升后匀速上升.摩擦及空气阻力均不计.则( )A .升降机匀加速上升过程中,升降机底板对人做的功等于人增加的动能B .升降机匀加速上升过程中,升降机底板对人做的功等于人增加的机械能C .升降机匀速上升过程中,升降机底板对人做的功等于人增加的机械能。