镁合金AZ40M再结晶晶粒尺寸与硬度模型研究
- 格式:pdf
- 大小:524.80 KB
- 文档页数:4
摘要挤压变形AZ31镁合金组织以绝热剪切条纹和细小的α再结晶等轴晶为基本特征。
挤压变形可显著地细化镁合金晶粒并提高镁合金的力学性能。
随挤压比的增大,晶粒细化程度增加,晶粒尺寸由铸态的d400μm减小到挤压态的d12μm(min);强度、硬度随挤压比的增大而增大,延伸率在挤压比大于16时呈单调减的趋势。
轧制变形使板材晶粒明显细化,硬度提高。
AZ31合金中添加Ce,其铸态组织中能够形成棒状Al4Ce相,并能改善合金退火态组织和力学性能;添加Ce可以改善AZ31的综合力学性能。
关键词:AZ31变形镁合金;强化机制;组织;性能绪论20世纪90年代以来,作为最轻金属结构材料的镁合金的用量急剧增长,在交通、计算机、通讯、消费类电子产品、国防军工等诸多领域的应用前景极为广阔,被誉为“21世纪绿色工程材料”,许多发达国家已将镁合金列为研究开发的重点。
大多数镁合金产品主要是通过铸造生产方式获得,变形镁合金产品则较少。
但与铸造镁合金产品相比,变形镁合金产品消除了铸造缺陷,组织细密,综合力学性能大大提高,同时生产成本更低,是未来空中运输、陆上交通和军工领域的重要结构材料。
目前,AZ31镁合金的应用十分广泛,尤其用于制作3C产品外壳、汽车车身外覆盖件等冲压产品的前景被看好,正成为结构镁合金材料领域的研究热点而受到广泛重视。
第1章挤压变形对AZ31镁合金组织和性能的影响1.1 挤压变形组织特征及挤压比的影响作用图1-1为动态挤压变形过程中的组织变化。
动态变形过程大致分为3个区域:初始区、变形区和稳态区,分别对应着不同的组织。
图1-1a为初始区挤压变形前的铸态棒料组织。
由粗大的α-Mg树枝晶和分布其间的α-Mg+Mg17Al12共晶体组成,枝晶形态十分发达,具有典型的铸造组织特征。
晶粒尺寸为112~400μm。
图1-1b为变形区近稳态区组织。
图中存在大量无序流线,流线弯曲度大、方向不定且长短不一,显然这种组织特征是在挤压力作用下破碎的树枝晶晶臂(α固溶体)发生滑移、转动的结果。
AZ31镁合金静态再结晶过程及机理的研究重庆大学硕士学位论文(学术学位)学生姓名:陈建指导教师:刘天模教授专业:材料科学与工程学科门类:工学重庆大学材料科学与工程学院二O一二年十月Study on Static Recrystallization Process and Mechanism of AZ31 Magnesium AlloyA Thesis Submitted to Chongqing Universityin Partial Fulfillment of the Requirement for theMaster’s Degree of EngineeringByJian ChenSupervised by Prof. Tianmo LiuSpecialty:Material Science and EngineeringCollege of Material Science and Engineering ofChongqing University, Chongqing, ChinaOctober 2012摘要镁合金因其优越的物理性能如密度小,比强度高等,在工业上尤其是汽车和航天航空领域越来越受到重视。
但是由于其密排六方晶体结构室温下滑移系较少且不容易开动,导致了了它的延展性和冷加工性能比较差而限制了它的应用。
因此为了得到复杂的镁合金零件,我们通常使用铸造的方法,但是铸件存在夹杂、成分偏析等难以克服的缺点。
而焊接方法通过将简单的部件组装成复杂件因而丰富了镁合金的应用,但是如何提高焊接件的可靠性又是一个难题。
在镁合金产品加工成型过程中,再结晶过程能既能软化金属、提高其组织均匀性又能控制金属晶粒尺寸因而有重要作用。
而本文对再结晶的研究分为理论和应用两个部分。
论文首先研究了孪晶界对镁合金静态再结晶过程的影响,我们将铸态AZ31镁合金进行4%、8%和12%的压缩和锻造后,再在200和300℃下进行了不同时间的退火保温实验,然后通过金相、XRD和EBSD等实验手段比较了不同变形方式和变形量对孪生的影响以及不同退火保温条件下再结晶现象的差异,最后着重研究了不同的孪晶界对镁合金静态再结晶影响并探讨了其形核与长大的机制。
镁合金锻造工艺特点1.坯料准备镁合金锻造用原材料主要有铸锭和挤压棒材,大多数情况下都采用挤压棒材,仅在锻造大型模锻件时,才采用铸锭作为原材料。
为提高可锻性,铸锭锻前应进行均匀化退火,以改善其塑性。
镁合金挤压棒材的特点是塑性好,但其机械性能的异向性较铝合金挤压棒材严重,这是由于在挤压过程中,除形成纤维组织外,密排六方晶格脆的基面逐步转向与挤压方向重合而造成的。
为了获得机械性能均匀的锻件,挤压棒材应尽可能减少机械性能异向性,为此铸锭于挤压前应进行均匀化退火,并要增大挤压时的变形程度。
镁合金下料可在圆盘锯或车床上进行,而不采用剪床下料,以防在切口处形成裂纹。
除MB2,MB15外,一般不推荐在热态下剁切。
铸锭在锻前应进行表面机械加工,对坯料或棒料也应检查并消除表面缺陷,以防在锻造中发生开裂。
MB15挤压棒材常常带有粗晶环,锻前应进行扒皮。
由于镁屑易燃,下料速度应缓慢。
切削时不用润滑剂和冷却液,以防镁屑燃烧和毛坯受到腐蚀。
切屑要单独存放,工作场地要清洁,以防烟火和爆炸。
2.锻前加热镁合金的加热方法与铝合金的基本相同。
镁合金有良好的导热性,任何尺寸的毛坯或铸锭均可不经预热而直接放入炉膛内加热。
但镁合金中的原子扩散速度慢,强化相的溶解需要较长时间,故实际采用的加热时间还是较长的。
加热时间可按每毫米坯料直径(或厚度)1.5~2min计算。
镁合金属于低塑性合金,其锻造温度范围比铝合金窄。
镁合金的锻造温度范围和加热规范如表25所示。
表25 镁合金的锻造温度范围和加热规范镁合金的加热温度和保温时间,不仅影响合金的工艺塑性,而且还影响锻件锻后的组织和机械性能,这是因为镁合金没有相变重结晶,多数镁合金是不能通过热处理强化的。
如果加热温度过高、保温时间过长或加热次数过多,则再结晶愈充分且晶粒尺寸增大,使镁合金的抗拉强度和屈服强度降低,即产生软化现象(图39)。
这种晶粒长大及软化现象,不能靠随后的热处理来补救,所以必须严格控制锻造工艺。
az31镁合金在高温拉伸中的动态再结晶行为金属所az31镁合金在高温拉伸中的动态再结晶行为[序号一] 引言az31镁合金是一种常见的镁合金材料,具有低密度、高比强度和良好的抗腐蚀性能,因而在航空航天、汽车制造等领域得到了广泛应用。
然而,在高温条件下,az31镁合金的力学性能容易发生变化,尤其是在高温拉伸过程中,动态再结晶行为对材料的性能具有重要影响。
[序号二] az31镁合金的高温拉伸性能及动态再结晶行为在高温拉伸过程中,az31镁合金的晶粒会出现较大程度的变形和织构演变,同时还会发生动态再结晶现象。
这种动态再结晶行为对材料的力学性能和微观组织特征都会产生显著影响。
研究表明,在高温拉伸条件下,az31镁合金的晶粒尺寸会发生显著变化,少量低角度晶界和次晶粒将会形成,这对材料的强度和塑性均产生重要影响。
[序号三] 动态再结晶行为对材料性能的影响动态再结晶行为对az31镁合金的力学性能产生的影响是复杂的。
动态再结晶有助于减轻材料的织构,提高材料的延展性和韧性;另动态再结晶还可能引起材料中局部组织特征的变化,降低其强度和耐磨性。
对az31镁合金在高温拉伸中的动态再结晶行为进行深入研究,有助于更好地理解和控制该材料的力学性能。
[序号四] 我的观点和理解在我看来,az31镁合金在高温拉伸中的动态再结晶行为是一个复杂而值得深入研究的课题。
通过对其动态再结晶行为进行深入了解,可以为其力学性能的调控和优化提供重要参考。
我相信随着科研水平的提高和技术手段的不断完善,对az31镁合金在高温拉伸中动态再结晶行为的研究将会取得更加丰硕的成果,为该材料在工程领域的应用带来更大的发展空间。
[序号五] 总结az31镁合金在高温拉伸中的动态再结晶行为是一个复杂而值得深入研究的课题。
了解其动态再结晶行为对于优化材料的力学性能具有重要意义,也有助于推动该材料在航空航天、汽车制造等领域的应用。
我对这一课题的研究充满信心,相信在不久的将来必将取得更加显著的成果。
大连理工大学本科毕业设计(论文)变形镁合金形变热处理的研究The research of distortion magnesium alloy after heat deformationtreatment学院(系):材料科学与工程学院专业:金属材料工程学生姓名:学号:指导教师:评阅教师:完成日期:大连理工大学Dalian University of Technology摘要镁及镁合金是目前最轻的金属结构材料,具有密度低、比强度和比刚度高、阻尼减震性好、导热性好、电磁屏蔽效果佳、机加工性能优良、零件尺寸稳定、易回收等优点,在航空航天、汽车、计算机、电子、通讯和家电等行业有着广泛的应用前景。
镁合金具有较好的铸造性能,目前镁合金产品以压铸件居多,但与铸造镁合金相比,变形镁合金晶粒细小,成分偏析低,具有较好的强度和塑性,是性能优良的镁合金,因此,镁合金塑性成形工艺的研究已成为世界镁工业中重要的方向。
由于镁合金密排六方的晶体结构,常温下塑性变形能力较差,加工成品率低,限制了其应用。
随着温度升高,原子振动幅度增大,会激活潜在的滑移面和滑移方向,使变形镁合金塑性性能大大改善。
本文从提高镁合金性能入手,将AZ31和AZ61挤压变形镁合金进行不同条件的热处理,研究T4处理、T5处理和T6处理对挤压变形镁合金显微组织和硬度的影响,结果表明:AZ31镁合金在350℃固溶12h下得到了较优化的热处理工艺的组合,AZ31镁合金硬度值达到65.5 HB。
AZ61镁合金在200℃时效12h下得到了较优化的热处理工艺的组合,AZ61镁合金硬度值达到70.0HB。
关键词:AZ31镁合金;AZ61镁合金;热处理;显微组织;力学性能The research of distortion magnesium alloy after heat deformationtreatmentAbstractMagnesium and magnesium alloy are the lightest metallic structural material at present. They have been used widely in the aviation, automotive, computer, and electronics industries, due to their unique properties such as low density, high specific strength and rigidity, good damping capacity and heat conductivity, excellent electromagnetic shield effectiveness and machinability, good dimensional stability and recycle character, and so on.Because of the close grain, low composition segregation and high strength and plasticity, wrought Mg alloy has better properties than cast Mg alloy. But Mg alloy is the HCP crystal structure, therefore its plastic deformation is worse at room temperature, and processed yield is also lower, which could be limit its application. The plasticity of wrought Mg alloy will be greatly improved with higher temperature. The behavior of pyroplastic deformation of AZ31 alloy was systematically studied with optical microscope and SEM. Physics and numerical simulation technique such as Gleeble-1500 thermal analog computer and ANSYS software were also employed.To enhance the magnesium alloy performance, we put AZ31 and AZ61 extrusion distortion magnesium alloy in different heat treatment condition. we study the basic theory and craft experiment of T4 processing,T5 processing and T6 processing of AZ31 and AZ61.The result show that: The optimized heat treatment technic of is AZ31 magnesium alloy 420℃12h after solution treatment while hardness increases to 65.5 HB, and the grain size is small. The optimized heat treatment technic of is AZ61 magnesium alloy 200℃12h after ageing treatment while hardness increases to 70.0 HB, and the grain size is 15μm.Key Words:AZ31 magnesium alloys;AZ61 magnesium alloys;Heat treatment;Microstructure;Mechanical properties目录摘要 (II)Abstract (III)1绪论 (1)1.1 镁及镁合金的概述 (1)1.2 镁及镁合金的基本性质 (2)1.3 镁合金的应用及前景 (4)1.4 镁合金的成型技术 (5)1.4.1挤压铸造 (5)1.4.2压铸 (6)1.4.3半固态铸造 (6)1.4.4轧制成型 (7)1.4.5冲锻成型 (7)1.4.6热挤压成型 (8)1.5 镁合金的热处理 (8)1.5.1 镁合金的热处理种类 (8)1.5.2 不同镁合金系的合金化及热处理 (9)1.6 论文的研究目的及研究内容 (12)2AZ31、AZ61变形镁合金的电磁连铸 (14)2.1 引言 (14)2.2 电磁连铸基本原理 (14)2.3 镁合金电磁成型系统装置 (15)2.4 镁合金电磁连铸过程 (16)2.4.1AZ31、AZ61镁合金成分 (16)2.4.2 镁合金的熔炼 (17)2.4.3镁合金的防护 (17)2.4.4镁合金的电磁连铸工艺参数 (19)3变形镁合金的挤压成形 (20)3.1 引言 (20)3.2 挤压工艺参数的确定 (20)3.3 热处理前变形镁合金的显微组织 (21)4挤压变形镁合金的热处理 (22)4.1实验方法 (22)4.1.1试样制备 (22)4.1.2试验工艺参数 (22)4.2热处理后变形镁合金的显微组织和力学性能 (24)参考文献 (32)致谢 (34)1 绪论1.1镁及镁合金的概述进入21 世纪,传统金属矿产资源的紧缺已成为全球性问题。
第13卷第2期V ol.13N o.2中国有色金属学报The Chinese Journal of N onferrous Metals2003年4月Apr. 2003文章编号:10040609(2003)02027712变形镁合金的研究、开发及应用①余琨,黎文献,王日初,马正青(中南大学材料科学与工程学院,长沙410083)摘 要:综述了国内外主要的变形镁合金材料的基本特性、力学性能和应用领域,介绍了目前变形镁合金材料的研究现状和进展,以及制备高性能变形镁合金材料的新工艺,探讨了镁合金的合金化原理和主要合金元素在变形镁合金中的作用,重点阐述了稀土元素对变形镁合金性能的影响及稀土镁合金的研究与进展。
塑性变形与热处理工艺相结合,可获得高强度和优良延展性、更多样化性能的镁合金结构材料。
变形镁合金将成为21世纪重要的商用轻质结构材料。
关键词:镁合金;塑性变形;稀土中图分类号:TG146.22文献标识码:A 金属镁及其合金是迄今在工程中应用的最轻的结构材料[1]。
在元素周期表中,镁的原子序数为12,属ⅡA族碱土金属。
纯镁的密度为1.736×103 kg/m3,普通镁合金的密度为(1.3~1.9)×103kg/ m3[2,3],最轻的镁合金(Mg2Li合金)的密度仅为0.95×103kg/m3,可漂浮于水上[3,4]。
常规镁合金比铝合金轻30%~50%,比钢铁轻70%以上,应用在工程中可大大减轻结构件质量。
同时,镁合金具有高的比强度和比刚度,尺寸稳定性高,阻尼减震性能好,机械加工方便,尤其易于回收利用,具有环保特性。
图1对比了几种典型金属结构材料与非金属材料的比强度和比刚度。
可见镁合金具有优良的力学性能,特别适用于轻质结构件。
镁的这些优点使其被誉为“21世纪绿色工程金属结构材料”[5~7],并将成为21世纪重要的商用轻质结构材料。
1 镁及变形镁合金的开发与应用镁可以应用的领域十分广泛(如图2所示)[3],但目前其主要的应用方式是作为铝合金的添加剂,因此镁合金的开发和应用还具有很大的发展潜力。
稀土元素对镁合金晶粒细化的研究综述稀土元素对镁合金晶粒细化的研究综述[摘要]根据稀土元素在镁合金中存在的形式及其作用,综述了稀土Ce、Nd、Y、Er及Sc在镁合金中的晶粒细化效果及其作用机理。
一定量的Ce、Nd、Y、Er及Sc 对镁合金晶粒均有细化作用,根据稀土固溶度的不同,其细化合金晶粒所参加的量也不同;镁合金晶粒开始粗化时所添加的稀土量是随着其在镁合金中的固溶度增加而增大的。
[关键词]镁合金;稀土;晶粒细化;固溶度中图分类号:TQ462+.91 文献标识码:A 文章编号:1009-914X40-0022-01目前,国内外关于RE对镁合金晶粒的影响研究较多,特别是对AZ系列的研究;但是各种RE对不同系列镁合金晶粒的作用规律和机理尚未完全建立起来。
因此有必要针对RE在镁合金晶粒细化方面的研究现状进行综述。
1 Ce对镁合金组织的影响Ce属于轻稀土元素,在镁中的固溶度只有0.75%,作为最常用的晶粒细化剂,不仅能明显提高镁合金的强度及高温稳定性能还能细化镁合金晶粒。
综合Ce对镁合金晶粒的作用可知:Ce在Mg中的固溶度很小,凝固时Ce原子几乎不溶于α-Mg基体,除形成Al4Ce化合物外,局部Ce易富集于固/液界面前沿,在结晶截面前沿造成成分过冷,促进基体晶粒的均质形核,从而细化晶粒。
此外,凝固过程中枝晶间析出的高熔点化合物Al4Ce,很难作为α-Mg在凝固过程中的异质形核核心,但它能吸附在α-Mg晶粒周围阻碍它长大,起细晶强化作用。
大量的Ce的添加引起镁合金晶粒粗化的原因可能在于:Ce在镁中的固溶度只有0.75%,当镁合金中Ce的参加量到达0.8%~0.93%时,在凝固过程中过剩的Ce与Al形成大量Al4Ce化合物,放出大量的结晶潜热,降低了液态金属的过冷度,从而使晶粒细化效果降低,合金开始粗化。
2 Nd对镁合金组织的影响Nd在镁中的固溶度为3.6%,大于Ce的固溶度0.75%,属于轻稀土元素。
当参加1.2%Nd 时,其晶粒最细,晶粒平均直径由145μm减小到42μm。
材料科学基础A习题第五章材料的变形与再结晶1、某金属轴类零件在使用过程中发生了过量的弹性变形,为减小该零件的弹性变形,拟采取以下措施:(1)增加该零件的轴径。
(2)通过热处理提高其屈服强度。
(3)用弹性模量更大的金属制作该零件。
问哪一种措施可解决该问题,为什么?答:增加该零件的轴径,或用弹性模量更大的金属制作该零件。
产生过量的弹性变形是因为该金属轴的刚度太低,增加该零件的轴径可减小其承受的应力,故可减小其弹性变形;用弹性模量更大的金属制作该零件可增加其抵抗弹性变形的能力,也可减小其弹性变形。
2、有铜、铝、铁三种金属,现无法通过实验或查阅资料直接获知他们的弹性模量,但关于这几种金属的其他各种数据可以查阅到。
请通过查阅这几种金属的其他数据确定铜、铝、铁三种金属弹性模量大小的顺序(从大到小排列),并说明其理由。
答:金属的弹性模量主要取决于其原子间作用力,而熔点高低反映了原子间作用力的大小,因而可通过查阅这些金属的熔点高低来间接确定其弹性模量的大小。
据熔点高低顺序,此几种金属的弹性模量从大到小依次为铁、铜、铝。
3、下图为两种合金A、B各自的交变加载-卸载应力应变曲线(分别为实线和虚线),试问那一种合金作为减振材料更为合适,为什么?答:B合金作为减振材料更为合适。
因为其应变滞后于应力的变化更为明显,交变加载-卸载应力应变回线包含的面积更大,即其对振动能的衰减更大。
4、对比晶体发生塑性变形时可以发生交滑移和不可以发生交滑移,哪一种情形下更易塑性变形,为什么?答:发生交滑移时更易塑性变形。
因为发生交滑移可使位错绕过障碍继续滑移,故更易塑性变形。
5、当一种单晶体分别以单滑移和多系滑移发生塑性变形时,其应力应变曲线如下图,问A、B中哪一条曲线为多系滑移变形曲线,为什么?应力滑移可导致不同滑移面上的位错相遇,通过位错反应形成不动位错,或产生交割形成阻碍位错运动的割阶,从而阻碍位错滑移,因此其应力-应变曲线的加工硬化率较单滑移高。
镁合金研究现状及发展趋势摘要:镁合金作为21世纪的绿色环保工程材料之一,近年来已成为学术界的一个研究热点。
本文主要综述了镁合金的研究进展和应用,介绍了耐热、耐蚀、阻燃和高强高韧等高性能镁合金材料的最新发展。
还介绍了镁合金成型技术的研究成果,最后展望了高性能镁合金的发展前景。
关键词:镁合金;高强高韧;成型技术;应用1.引言镁(Mg)是地球上储量最为丰富的元素之一,在陆地、湖泊和海洋中都广为分布,例如,其在地壳表层金属矿资源中的含量达2.3%,仅次于占8.1%的铝和5%的铁,居第三位;海水中的镁含量达到2.1×1015吨,可以认为是取之不尽、用之不竭的元素[1]。
此外,我国的白云石矿储量、菱镁矿以及原镁的产量位列世界镁资源储量首位[2]。
同时,随着当前钢铁行业中铁矿石等资源的日趋紧张,开发和利用镁作为替代材料是必然的趋势。
被誉为“二十一世纪绿色金属结构工程材料”的镁合金是目前所知金属结构材料中最轻的,与其他同类材料相比,它具有密度小,比强度、比刚度较高,可以回收再利用且机加工性能优异,阻尼减震性好,电磁屏蔽效果佳等一系列优点,因此在交通运输(如汽车、摩托车、自行车等工业)、航空航天、武器装备、计算机通讯和消费电子产品等领域具有广阔的应用前景[3],但其使用量与铝合金和塑料相比还相当少[4]。
目前,从全球镁合金研发状况看,发展方向如图1所示[5],我国在镁合金材料的应用研究与产业化方面也己取得重大进展,形成了从高品质镁材料生产到镁合金产品制造的完整产业链,为我国实现由镁资源大国向镁应用强国的跨越奠定了坚实的基础。
图1 镁合金的研发方向[5]Fig. 1 Directions of Mg alloy development2.镁合金的特点及分类通过在纯镁中添加其他化学元素,可显著改善镁的物理、化学和力学性能。
但镁合金同时存在着显著的缺点,下面对镁合金的优缺点进行简要的阐述。
2.1镁合金的优点[6 ~ 8]1)密度小、质量轻。
变形镁合金的成形工艺(一)镁合金与其他易成形金属一样,变形镁合金几乎可以用所有的金属塑性成形工艺来实现成形。
成形原理相同,不同的是具体工艺参数的变化。
1、镁合金挤压成形工艺典型的挤压成形工艺流程为:挤压坯生产→加热→挤压→矫直→热处理。
变形镁合金的加热温度一般不超过4000C,可用电炉加热挤压坯,一般不需要保护气氛。
挤压温度为300~4000C之间。
挤压截面收缩范围在10:1~100:1之间。
在挤压过程中,由于大变形而产生大量的热量,需要采取冷却措施,以避免温度过高,出现热裂纹。
坯料挤压成型后进行热处理,可以获得细小而均匀的合金组织,去除残余应力,稳定形状和尺寸,改善其使用性能。
金属挤压工艺生产变形镁合金型材和管材目前在国内正趋向成熟,主要缺陷如裂纹、皱纹和扭曲等已经得到了很大的改善。
福建坤孚股份有限公司拥有先进的大型镁合金挤压成套设备,可以生产出符合中国国家标准和国际标准的镁合金板材、镁合金棒材和镁合金型材。
目前,福建坤孚股份有限公司可以生产的挤压镁合金棒材型号是AZ31B、AZ91D、AZ61A、ZK60、ZK61等,直径Ø8mm-Ø130mm. 可以生产的型材合金牌号是AZ40M,AZ31B,ME20M,ZK61M。
2、镁合金板轧制工艺变形镁合金板材的生产主要是通过轧制工艺来完成,铸造工艺已经被淘汰。
轧制工艺流程如下:铸锭铣面→铸锭均匀化→加热→开坯→板坯剪切→板坯加热→粗轧→酸洗→加热→中轧→中断或下料→加热→精轧→产品退火→精整→氧化上色→涂油包装。
福建坤孚股份有限公司生产的镁合金板材的轧制采用热轧方式,必要时进行中间退火。
采用多道次、小压下量工艺进行轧制。
一般厚度6.3-200mm的板材为厚板,厚度6.3mm以下为薄板。
(1)镁合金厚板轧制工艺镁合金板坯在轧制前要在轧制面或侧面铣面并经过探伤检查。
要求板坯内部组织均匀,晶粒细小,第二相分布均匀。
采用带有空气循环的电阻链式加热炉加热,加热温度一般为450-5000C,加热过程中要使炉膛内温度分布均匀,避免局部高温。
基于Fields-Backofen方程的镁合金热变形本构模型贾伟涛;乐启炽【摘要】目的研究镁合金热变形行为,建立真实应力与应变、温度及应变速率间的构效关系,以表征多类镁合金的热变形过程.方法基于Gleeble-1500热模拟实验,定性、定量化分析镁合金热变形的温度敏感性,结合变形曲线的唯象特征,优化并重构Fields-Backofen本构方程以表征镁合金的热变形行为.结果镁合金热变形过程中,应力关于温度的软化作用可被描述为以e为底的指数函数形式;采用F-B方程表征镁合金热变形行为时,需考虑温度软化作用对该方程进行特定优化;优化后的F-B模型,其形式上为分段式函数,该函数所预测的变形曲线在峰值处存在尖点现象且预测误差较大;利用"离散变形微阶段求解——全阶段整合"的方法,将应变变量植入到应变速率及温度敏感系数,对F-B模型进行重构,可有效解决尖点问题,提高对变形曲线的预测精度.结论重构后的F-B模型可准确表征AZ31B镁合金的塑性流变行为,并适用于AZ91,AZ80及ZK60等具有与研究合金相似变形特性的镁合金.【期刊名称】《精密成形工程》【年(卷),期】2017(009)004【总页数】8页(P17-24)【关键词】构效关系;温度敏感性;热变形行为;本构方程【作者】贾伟涛;乐启炽【作者单位】东北大学材料电磁过程研究教育部重点实验室,沈阳110819;东北大学材料电磁过程研究教育部重点实验室,沈阳110819【正文语种】中文【中图分类】TG146.22有限元方法(FEM)已成为仿真材料变形过程最直接的可视化工具,有助于确定金属材料最佳的变形工艺条件,从而为成形工艺的在线优化提供理论依据。
工艺模拟结果的可靠性直接取决于材料本构关系数学模型的准确性。
针对镁合金热变形,国内外学者相继提出了 Arrhenius[1], Johnson-Cook(JC)[2], Sellars-Tegart(ST)[3]和Zerilli-Armstrong(ZA)[4]流变应力本构模型。
精 密 成 形 工 程第13卷 第6期 98 JOURNAL OF NETSHAPE FORMING ENGINEERING2021年11月收稿日期:2021-03-17基金项目:国家自然科学基金面上项目(52071042,51771038);重庆英才计划(CQYC202003047);重庆市自然科学基金(cstc2018jcyjAX0249,cstc2018jcyjAX0653) 作者简介:章欧(1997—),男,硕士生,主要研究方向为镁合金组织与性能的优化调控。
通讯作者:胡红军(1976—),男,博士,教授,主要研究方向为轻合金材料科学与工程。
镁合金复合细晶强化研究进展章欧1,胡红军1,胡刚1,张丁非2,戴庆伟3,欧忠文4(1. 重庆理工大学材料科学与工程学院,重庆 400050;2. 重庆大学 材料科学与工程学院,重庆 400044;3. 重庆科技学院 冶金与材料学院,重庆 401331;4. 陆军勤务学院 化学与材料学院,重庆 401311) 摘要:细化镁合金的晶粒可极大改善其综合力学性能,单一的细化方法包括在熔体中施加外力场作用、高压和激冷作用以及大塑性变形,单一细化方法下的材料性能难以满足实际需求,且生产效率低、成本高、质量难以保证。
2种及以上细化晶粒方法的结合可以实现镁合金性能的极大提升,通过评述镁合金复合加工方法,包括挤压铸造-固态挤压成形、挤压铸造-正挤压成形、FE-CCAE 复合变形工艺、电磁脉冲结合轧制工艺、超声振动-挤压加工等,详细阐述镁合金复合细晶强化工艺的研究进展,为进一步研究和开发更加高效绿色的镁合金晶粒细化复合成形技术提供参考。
关键词:镁合金;复合加工;外加场DOI :10.3969/j.issn.1674-6457.2021.06.013中图分类号:TG146.2+2 文献标识码:A 文章编号:1674-6457(2021)06-0098-08Research Progress on Composite Refinement Strengthening of Magnesium AlloyZHANG Ou 1, HU Hong-jun 1, HU Gang 1, ZHANG Ding-fei 2, DAI Qing-wei 3, OU Zhong-wen 4(1. School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400050, China;2. School of Materials Science and Engineering, Chongqing University, Chongqing 400044, China;3. School of Metallurgy and Materials, Chongqing University of Science and Technology, Chongqing 401331, China;4. School of Chemistry and Materials, Army Service College, Chongqing 401311, China) ABSTRACT: The grain refinement of magnesium alloy can greatly improve the comprehensive mechanical properties. Single refinement method includes applying external force field, high pressure and chilling action, and large plastic deformation in melt. The properties of materials processed by single refinement method are difficult to meet the actual production needs, and the production efficiency is low, the cost is high, and the quality is difficult to guarantee. The combination of two or more grain re-finement methods can achieve greater improvement in the properties of magnesium alloys. Through the review on composite processing methods of magnesium alloy, including squeeze casting-solid extrusion forming, squeeze casting-positive extrusion, FE-CCAE composite deformation process, electromagnetic pulse combined rolling process, ultrasonic vibration-extrusion proc-essing, et al, the research progress on composite refinement strengthening process of magnesium alloy is expounded in detail, which provides a reference for further research and development of more efficient and green composite forming technology of refining magnesium alloy grains.KEY WORDS: magnesium alloy; composite processing; external field. All Rights Reserved.第13卷第6期章欧等:镁合金复合细晶强化研究进展99镁合金作为最轻的结构材料,具有比强度和比刚度高等特点,被誉为“21世纪绿色工程金属”。
基于新加工硬化率方法的AZ80镁合金动态再结晶临界条件王忠堂;霍达;于晓林【摘要】在变形温度为260~410℃、应变速率为0.001~10 s-1条件下,对AZ80镁合金进行热拉伸实验,测试AZ80镁合金的真应力-真应变曲线;依据Arrhenius本构方程形式,确定AZ80镁合金热变形过程的本构关系模型;提出一种新的加工硬化率方法,当加工硬化率函数对应变(ε)求一阶导数后的函数取最小值时所对应的应变值,即为临界应变(εc).采用新的加工硬化率方法,确定AZ80镁合金在不同变形条件下动态再结晶的临界应变和临界应力;研究热变形工艺参数对临界应变和临界应力的影响规律;确定AZ80镁合金热变形过程中的临界应变、临界应力、稳定应变与Z参数的关系模型.模型计算结果与Sellars模型结果相吻合.【期刊名称】《中国有色金属学报》【年(卷),期】2018(028)010【总页数】8页(P1972-1979)【关键词】AZ80镁合金;加工硬化率;动态再结晶;临界条件【作者】王忠堂;霍达;于晓林【作者单位】沈阳理工大学材料科学与工程学院,沈阳 110159;东北财经大学金融学院,大连 116025;沈阳理工大学材料科学与工程学院,沈阳 110159【正文语种】中文【中图分类】TG146.2动态再结晶过程可以消除金属材料在塑性变形过程中的加工硬化所积聚的位错和产生的微裂纹,可以有效改善材料的热塑性。
权国政等[1]根据AZ80镁合金的流动应力−应变曲线,构建了流动应力计算模型和动态再结晶动力学模型。
蔡赟等[2]研究了变形温度、应变速率对动态再结晶临界条件及演化过程的影响,随着变形温度的升高和应变速率的降低,动态再结晶软化临界应变减小,动态再结晶体积分数增加。
王天一等[3]研究发现,ZX115合金在热压缩变形过程中发生了明显的动态再结晶,再结晶晶粒尺寸随着变形温度的升高或应变速率的降低而增大,在不同变形条件下的动态再结晶机制有所差异,主要有孪生动态再结晶、不连续动态再结晶和第二相粒子促进动态再结晶等方式。
镁合金在大变形和高应变率下塑性变形研究进展Research and Prog ress of Plastic Deformation o f M ag nesium A lloy sat H igh S train Rate and Large Deformation宁俊生1,范亚夫2,彭秀峰1(1烟台大学物理系,山东烟台264005;2中国兵器工业集团第五二研究所烟台分所,山东烟台264000)NING Jun-sheng1,FAN Ya-fu2,PENG Xiu-feng1 (1Phy sics Department of Yantai U niversity,Yantai264005,Shandong,China;2Yantai Branch of No.52Institute o f China Ordnance Industrie s Group,Yantai264000,Shandong,China)摘要:介绍了强应变塑性大变形下镁合金研究现状。
重点综述了在较高应变率及冲击载荷作用下关于镁合金变形的研究情况,同时也比较详细地综述了在不同温度、不同载荷作用下镁合金塑性变形特征及其物理机制。
最后简要介绍了几个描述材料在较高应变率和冲击载荷作用下变形行为的数学表示式,并就镁合金作为结构材料的研究说明了作者的一些看法。
关键词:镁合金;塑性大变形;高应变率;冲击载荷中图分类号:TG146.22 文献标识码:A 文章编号:1001-4381(2007)09-0067-07A bstract:Study about micro-structural changes of m ag nesium alloy s under large strains and severe plastic defo rmatio n w ere introduced.A ttention is concentrated on the research about the plastic de-fo rm ation of magnesium alloy s unde r impact loading and high strain rate.Meanw hile,the pro perties and phy sical mechanism s of plastic defo rmatio n of magnesium alloys under different lo ads and over a wide rang e of tem peratures we re review ed.Finally,sev eral fo rmula for describing the behaviors of magnesium alloy s under dy namic loading at hig h strain rate w as summ arized briefly,and so me sugges-tions on the study of m ag nesium alloy s used as structural m aterials were o ffered.Key words:magnesium alloy;larg e plastic defo rmatio n;hig h strain rate;impact loading 随着对镁合金研究的不断深入,镁合金优越的综合性能逐渐为人们所认识。
AZ31镁合金塑性变形机制及再结晶行为的研究共3篇AZ31镁合金塑性变形机制及再结晶行为的研究1AZ31镁合金塑性变形机制及再结晶行为的研究AZ31镁合金是一种常见的轻质结构材料,在航空、汽车、电子等领域有着广泛的应用。
其具有良好的加工性能和强度,但同时也存在着较高的塑性失稳和晶粒长大的问题。
因此,深入研究AZ31镁合金的塑性变形机制和再结晶行为,具有重要的理论和实际意义。
塑性变形机制是指材料在外力作用下发生形变的过程,其中包括与晶体结构、晶粒尺寸等因素相关的塑性变形机制。
对于AZ31镁合金而言,其塑性变形机制主要涉及到位错滑移、孪晶滑移和孪晶形核等三种机制。
其中,位错滑移是指晶体中的位错沿晶体的晶格面和晶格线移动的过程。
在AZ31镁合金中,位错滑移是最主要的塑性变形机制,其滑移面主要是(basal)面和<1010>面,滑移向量主要是[0001]和[1011]方向。
此外,AZ31镁合金中还存在着孪晶结构,孪晶滑移和孪晶形核也是重要的塑性变形机制。
孪晶滑移是指晶体中的孪晶体双晶之间发生的滑移,其滑移向量主要是<1120>方向。
而孪晶形核是指晶体中的孪晶体双晶的形成过程,其主要原因是应力超过了晶体破裂强度,从而在滑移区形成孪晶体双晶。
除了塑性变形机制之外,再结晶行为也是AZ31镁合金的重要研究方向之一。
再结晶是指已变形晶体再次形成新的等轴晶体的过程,其可以消除塑性失稳、细化晶粒并改善材料的力学性能。
在AZ31镁合金中,再结晶主要涉及到晶界迁移和晶粒再结晶两种机制。
晶界迁移是指已有的晶界沿一定方向运动形成新的晶界,它主要发生在高温下。
晶粒再结晶是指形成新的等轴晶体,其主要原因是由于晶界不稳定所致,一般发生在较低温度下。
综上,AZ31镁合金的塑性变形机制涉及到位错滑移、孪晶滑移和孪晶形核等多种机制,而其再结晶行为也具有晶界迁移和晶粒再结晶两种机制。
深入研究其塑性变形机制和再结晶行为,对于其优化材料性能、改善加工效率和缓解材料失稳问题具有重要的理论和实际应用价值综合分析,AZ31镁合金的塑性变形机制和再结晶行为是相互关联的复杂过程,其研究具有重要的理论和应用价值。
AZ31镁合金等温条件下组织演变及晶粒长大模型刘立志;王忠堂【摘要】对AZ31镁合金板材进行固溶处理,在150~450℃的温度范围内,研究等温条件下加热温度和保温时间对AZ31镁合金晶粒尺寸变化规律的影响.研究结果表明:当加热温度一定时,晶粒尺寸随保温时间延长而增大;保温时间一定时,加热温度在150~250℃范围内,晶粒尺寸随温度升高先增加再减小;温度大于250℃时,晶粒尺寸随温度升高逐渐增大.基于250~450℃实验数据,构建晶粒长大模型,并验证了该模型的准确性.【期刊名称】《沈阳理工大学学报》【年(卷),期】2016(035)001【总页数】5页(P35-39)【关键词】AZ31镁合金;组织演变;晶粒长大模型;等温条件【作者】刘立志;王忠堂【作者单位】沈阳理工大学材料科学与工程学院,沈阳110159;沈阳理工大学材料科学与工程学院,沈阳110159【正文语种】中文【中图分类】TG146.2镁合金材料具有较高的比强度和比刚度、优良的散热性能、电磁屏蔽性能、减震性能和机械加工性能,广泛应用于汽车、航空航天、家电、3C等产品的制造[1-3]。
镁合金是密排六方结构,常温条件下塑性成形能力较差,这从很大程度上限制了镁合金的发展及推广应用。
陈振华等[2]认为镁合金板材塑性变形主要由基面滑移和锥面孪晶产生,温度升高后则非基面滑移系启动,塑性显著提高,但孪晶比例及其作用则逐渐降低。
孪晶变形对室温和低温塑性变形的重要贡献在于改变晶粒取向有助于启动非基面滑移系,提高塑性变形能力。
杨平等[3]研究发现,在低温时,轧制板材在轧制方向和平面内形成了很高强度的基面织构,这些织构在温度较低时阻碍了基面滑移系的启动,影响了镁合金板材塑性成形性能。
曾真等[4]研究发现镁合金二次孪生有效促进再结晶形核,显著细化晶粒。
再结晶晶粒取向规律性不强,有效削弱基面织构。
退火过程中基体不断长大,当再结晶驱动力足够大时,基体会吞并周围拉伸孪晶,同时诱发织构改变,基体取向的织构逐渐增强,拉伸孪晶取向的织构逐步减弱。