反比例函数中k的几何意义 (3)
- 格式:doc
- 大小:443.50 KB
- 文档页数:6
中考数学复习考点知识归类讲解 专题12 反比例函数比例系数k 的几何意义知识对接考点一、反比例函数比例系数k 的几何意义(1)意义:从反比例函数y =(k≠0)图象上任意一点向x 轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|. (2)常见的面积类型:失分点警示已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k <0. 例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:3y x=或3y x =-专项训练 一、单选题1.如图,已知反比例函数2y x=-的图像上有一点P ,过点P 作PA x ⊥轴,垂足为点A ,则POA 的面积是()A.2 B.1 C.1-D.122.如图,在平面直角坐标系中,A,B是反比例函数kyx=在第一象限的图象上的两点,且其横坐标分别为1,4,若AOB的面积为54,则k的值为()A.23B.1C.2D.1543.若图中反比例函数的表达式均为4yx=,则阴影面积为4的有()A.1个B.2个C.3个D.4个4.如图,点A是反比例函数4yx=-图象上的一个动点,过点A作AB⊥x轴,AC⊥y轴,垂足分别为B,C,则矩形ABOC的面积为()A .-4B .2C .4D .85.如图,等腰ABC 中,5AB AC ==,8BC =,点B 在y 轴上,//BC x 轴,反比例函数k y x=(0k >,0x >)的图象经过点A ,交BC 于点D .若AB BD =,则k 的值为()A .60B .48C .36D .206.在平面直角从标系中,30°的直角三角尺直角顶点与坐标原点重合,双曲线11k y x=(x >0),经过点B ,双曲线22k y x=(x <0),经过点C ,则12k k =( )A.﹣3 B.3 C.D7.如图,A、B是双曲线y=kx图象上的两点,过A点作AC⊥x轴于点C,交OB于点D,BD=2OD,且ADO的面积为8,则DCO的面积为()A.12B.1 C.32D.28.如图,平行于y轴的直线l分别与反比例函数kyx=(x>0)和1yx=-(x>0)的图象交于M、N两点,点P是y轴上一动点,若△PMN的面积为2,则k的值为()A.2 B.3 C.4 D.59.如图,过x轴正半轴上的任意一点P,作y轴的平行线,分别与反比例函数y3=x(x>0)和y6=x-(x>0)的图象交于B、A两点.若点C是y轴上任意一点,则△ABC的面积为()A .3B .6C .9D .9210.如图.在平面直角坐标系中,△AOB 的面积为278,BA 垂直x 轴于点A ,OB 与双曲线y =k x相交于点C ,且BC ∶OC =1∶2,则k 的值为()A .﹣3B .﹣94C .3D .92二、填空题11.如图,平面直角坐标系中,O 是坐标原点,点A 是反比例函数()0k y k x=≠图象上的一点,过点A 分别作AM x ⊥轴于点M ,AN y ⊥轴于点N .若四边形AMON 的面积为12,则k 的值是__________.12.如图,在反比例函数3yx=的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第二象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数kyx=的图象上运动,tan∠CAB=2,则k的值为_____13.如图,点P在反比例函数4yx=-的图像上,过点P作PA x⊥轴于点A,则POA的面积是_______.14.如图所示,反比例函数kyx=(0k≠,0x>)的图像经过矩形OABC的对角线AC的中点D .若矩形OABC 的面积为8,则k 的值为________.15.如图,点A 与点B 分别在函数11(0)k y k x =>与220)k y k x=<(的图象上,线段AB 的中点M 在y 轴上.若△AOB 的面积为3,则12k k -的值是___.三、解答题16.如图,一次函数122y x =-的图象分别交x 轴、y 轴于A 、B ,P 为AB 上一点且PC 为AOB 的中位线,PC 的延长线交反比例函数ky x=(0k >)的图象于点Q ,32OQCS=.(1)求A 点和B 点的坐标; (2)求k 的值和Q 点的坐标.17.点O 为平面直角坐标系的原点,点A 、C 在反比例函数a y x=的图象上,点B 、D 在反比例函数b y x=的图象上,且0a b >>.(1)若点A 的坐标为()6,4,点B 恰好为OA 的中点,过点A 作AN x ⊥轴于点N ,交b y x=的图象于点P . ①请求出a 、b 的值; ②试求OBP 的面积.(2)若////AB CD x 轴,32CD AB ==,AB 与CD 间的距离为6,试说明-a b 的值是否为某一固定值?如果是定值,试求出这个定值;若不是定值,请说明理由.18.如图,点C 在反比例函数y 1=x的图象上,CA ∥y 轴,交反比例函数y 3=x的图象于点A ,CB ∥x 轴,交反比例函数y 3=x的图象于点B ,连结AB 、OA 和OB ,已知CA =2,则△ABO 的面积为__.19.如图是反比例函数2yx=与反比例函数在第一象限中的图象,点P是4yx=图象上一动点,PA⊥X轴于点A,交函数2yx=图象于点C,PB⊥Y轴于点B,交函数2yx=图象于点D,点D的横坐标为a.(1)用字母a表示点P的坐标;(2)求四边形ODPC的面积;(3)连接DC交X轴于点E,连接DA、PE,求证:四边形DAEP是平行四边形.20.如图,点A(﹣2,y1)、B(﹣6,y2)在反比例函数y=kx(k<0)的图象上,AC⊥x轴,BD⊥y轴,垂足分别为C、D,AC与BD相交于点E.(1)根据图象直接写出y1、y2的大小关系,并通过计算加以验证;(2)结合以上信息,从①四边形OCED的面积为2,②BE=2AE这两个条件中任选一个作为补充条件,求k 的值.你选择的条件是(只填序号). 21.如图,一次函数()20y kx k k =-≠的图象与反比例函数1(10)m y m x-=-≠的图象交于点C ,与x 轴交于点A ,过点C 作CB y ⊥轴,垂足为B ,若3ABC S =△.(1)求点A 的坐标及m 的值;(2)若AB =22.如图,过C 点的直线y =﹣12x ﹣2与x 轴,y 轴分别交于点A ,B 两点,且BC =AB ,过点C 作CH ⊥x 轴,垂足为点H ,交反比例函数y =k x(x >0)的图象于点D ,连接OD ,△ODH 的面积为6(1)求k 值和点D 的坐标;(2)如图,连接BD ,OC ,点E 在直线y =﹣12x ﹣2上,且位于第二象限内,若△BDE 的面积是△OCD 面积的2倍,求点E 的坐标.11 / 11 23.如图,直线l 分别交x 轴,y 轴于A 、B 两点,交反比例函数(0)k y k x =≠的图象于P 、Q 两点.若2AB BP =,且AOB 的面积为4(1)求k 的值;(2)当点P 的横坐标为1-时,求POQ △的面积.。
反比例函数中K的几何意义
在反比例函数中,K表示比例系数或常数,也被称为反比例常数。
它
是用来确定两个变量之间反比关系的重要参数。
反比例函数的一般形式为:y=K/x,其中K表示比例系数。
K的几何意义可以通过分析反比例函数的图像得出。
反比例函数的图
像是一个双曲线,特点是曲线趋向于两个坐标轴。
下面将详细讨论K的几
何意义。
1.K的符号对于曲线的位置以及开口方向具有重要影响。
如果K为正数,那么曲线将位于第一和第三象限,并且开口方向为右上和左下。
如果
K为负数,那么曲线将位于第二和第四象限,并且开口方向为左上和右下。
2.K的绝对值越大,曲线就越“陡峭”。
当K增大时,曲线将更加接
近于坐标轴,并且在原点附近的斜率会越来越大。
反之,当K变小时,曲
线将更加平缓,斜率将减小。
3.K决定了特定坐标点的函数值。
例如,在函数y=K/x中,当x为K 时,y的值将为1、这是因为x与y成反比关系,而K是这种关系的常数。
4.K还决定了曲线相对于坐标轴的位置。
具体而言,当K增大时,曲
线将向坐标轴移动,而当K减小时,曲线将远离坐标轴。
总之,K代表了反比例函数中的比例系数或常数,它对于函数的位置、开口方向、陡峭程度以及特定坐标点的函数值都具有重要影响。
通过对K
的分析,我们可以更好地理解和解释反比例函数的几何特征。
反比例函数k的几何意义的三种形式教案教学目标(1)了解反比例函数的概念;(2)理解反比例函数y=kx(k≠0)中k的几何意义;(3)能根据反比例函数表达式和图像解决简单的实际问题;(4)通过探究反比例函数中k的几何意义,进一步体会数形结合思想在数学中的应用.教学重点反比例函数的概念及k的几何意义教学难点探究反比例函数的几何意义及应用教学方法讲练结合、探究讨论教学准备多媒体课件教学过程一、情境导入1. 回顾反比例函数的概念2. 引入新课:今天我们将进一步学习反比例函数的几何意义.二、探究新知1. 探究反比例函数的几何意义问题1:如何用几何图形表示反比例函数y=kx(k≠0)中k的几何意义?(1)当k>0时,图象在第一、三象限,y随x的增大而减小;(2)当k<0时,图象在第二、四象限内,y随x的增大而增大.2. 通过典型例题的解析,进一步巩固反比例函数的几何意义.【例1】图1是反比例函数y=kx(k≠0)的图象,其中点A(2,3)表示该函数的图象上坐标为(2,3)的点,在图中标注出与点A对称的另外一点B,并求出点B的坐标_____________.解析:在图1中找出点A关于原点的对称点B,由图象可知,点B的坐标为(-2,-3).此类问题只要找准两个点关于原点的对称性,即可轻松作答.【例2】图2是反比例函数y=-的图象,利用函数图象求出-x|x|的最大值是_______.解析:在图2中,当x<0时,-x|x|=-(-x)·(-x)=-x2,此时函数值随着x的增大而增大;当x>0时,-x|x|=-(x)·(x)=-x2,此时函数值随着x的增大而减小.结合图象可知,当x=0时,-x|x|有最大值.问题转化为求-()2的最大值问题.由图象知点A坐标为(-2,4),则有4=(-2)×()2,∴()2=8.∴-x|x|的最大值是-8.此类问题只要将代数问题转化为几何问题,利用数形结合思想即可轻松作答.【例3】已知点A(1,2),B(3,4),C(5,6),且点B在反比例函数y=kx(k≠0)的图象上.求:①此函数图象一定经过点____________;②是判断线段AB与点C之间有公共点还是无公共点?说明理由.③当AC平行于x轴时,求此反比例函数的解析式.解析:设D(8,1),利用待定系数法求出反比例函数的解析式.通过作差法比较AD与BC的大小关系,从而得到线段AB与点C之间有公共点.先利用待定系数法求出直线AC的解析式,再令直线AC与直线BC平行即可求出k的值.三、课堂小结通过本节课的学习,你有什么收获?。
知识讲解1.反比例函数的概念如图所示,过双曲线)0(k≠=kxy上任一点),(yxP作x轴、y轴的垂线PM、PN,垂足为M、N,所得矩形PMON的面积S=PM∙PN=|y|∙|x|.,yxk=∴||kSkxy==,。
这就说明,过双曲线上任意一点作x轴、y轴的垂线,所得到的矩形的面积为常数|k|。
这是系数k几何意义,明确了k的几何意义,会给解题带来许多方便。
(请学生思考,图中三角形OEF的面积和系数k的关系。
)2.反比例函数的图象在用描点法画反比例函数y=kx的图象时,应注意自变量x的取值不能为0,应从1或-1开始对称取点.例题1函数y=1x-(x>0)的图象大致是( )例题2 函数y=kx+1与函数y=kx在同一坐标系中的大致图象是( )yOxAyO xByOxCyOxD y y y y3.反比例函数y=kx 中k 的意义注意:反比例函数y=k x (k ≠0)中比例系数k 的几何意义,即过双曲线y=kx(k ≠0)上任意一点引x 轴、y 轴垂线,所得矩形面积为│k │.例题1:如图,P 、C 是函数x4y =(x>0)图像上的任意两点,过点P 作x 轴的垂线PA,垂足为A ,过点C 作x 轴的垂线CD,垂足为D ,连接OC 交PA 于点E ,设⊿POA 的面积为S1,则S1= ,梯形CEAD 的面积为S2,则S1与S2的大小关系是S1 S2, ⊿POE 的面积S3和梯形CEAD 的面积为S2的大小关系是S2 S3.例题1图 例题2图 例题3图例题2:如图所示,直线l 与双曲线)0(ky >=k x交A 、B 两点,P 是AB 上的点,试比较⊿AOC 的面积S1,⊿BOD 的面积S2,⊿POE 的面积S3的大小: 。
例题3:如图所示,点A(x1,y1)、B(x2,y2)都在双曲线)0x (k>=xy 上,且x2-x1=4,y1-y2=2;分别过点A 、B 向x 轴、y 轴作垂线,垂足分别为C 、D 、E 、F ,AC 与BF 相交于G 点,四边形FOCG 的面积为2,五边形AEODB 的面积为14,那么双曲线的解析式为 。
在反比例函数中,k代表常数。
它在几何上表示函数图像与坐标轴的关系,具体解题技巧如下:
求解比例关系:在已知的反比例函数中,通过给定的函数表达式或已知的点,可以建立函数的比例关系。
使用这些已知信息,可以得出k 的值。
图像特征分析:观察反比例函数的图像特征,特别是与坐标轴的关系。
在反比例函数中,k 的值可以表示函数图像与坐标轴之间的比例关系。
当k > 0 时,函数图像与坐标轴之间存在正比例关系。
函数图像可能与x 轴正向逼近,与y 轴正向逼近,或同时逼近两个轴。
当k < 0 时,函数图像与坐标轴之间存在反比例关系。
函数图像可能与x 轴正向逼近,与y 轴负向逼近,或同时逼近两个轴。
当k = 0 时,函数图像与x 轴平行或与y 轴平行,即函数图像不存在与坐标轴的交点。
推测几何意义:根据反比例函数的性质,可以推测k 的几何意义。
当k > 0 时,k 可以表示函数图像与坐标轴之间的比例系数。
它可以表示函数图像在与x 轴或y 轴的交点处的斜率。
当k < 0 时,k 的绝对值可以表示函数图像与坐标轴之间的反比例系数。
它可以表示函数图像在与x 轴或y 轴的交点处的斜率的相反数。
需要注意的是,以上是一般性的解题技巧,具体问题可能需要结合具体的题目和函数表达式进行分析和求解。
同时,绘制函数图像可以帮助更好地理解和观察几何意义。
19.6反比例函数中比例系数k的几何意义一、复习旧知:1.反比例函数的表达式有______种形式,分别是_________________________.2.反比例函数的图象是_______________.3.反比例函数的图象性质是:_____________________________________________________________________ _____________________________________________________________________ 二、创设情境---自主探究1.已知:如图1,∠AED=∠B ,AD=y ,AE=2,AB=x ,AC=6,写出y 与x 的函数关系式.2.已知:如图2,在△ABC 中,∠C=90°,BC=x ,AC=y ,S △ABC =6,则y 与x 的函数 表达式为:________________.3.已知:如图3,在矩形ACBH 中,BC=x ,AC=y ,S 矩形ACBH =12,则y 与x 的函数 表达式为:4观察2题和3题中图形面积与函数表达式中的k 值有怎样的关系.三、学习新知---合作探究已知点A (-6,2)、B (3,m )是反比例函数图象上的两点,根据要求完成下列问题: 1.反比例函数的表达式:________________________; 点B 坐标__________. 2.在平面直角坐标系中画出函数图象.图1图2图33.过点A 分别向x 轴和y 轴作垂线,垂足为点C 和点H ,连接AO (1)则S △AOC =_________. (2)则S 矩形ACOH =__________.4. 过点B 分别向x 轴和y 轴作垂线,垂足为点E 和点F ,连接BO (1)则S △BOF =__________. (2)则S 矩形BEOF =___________.5.观察问题3和问题4的结果有怎样的关系,它们的结果与反比例函数解析式中的k 又有怎样的关系?小结:如图,在反比例函数xky =(k ≠0)上任意一点P(x,y),过这一点分别作x 轴和y 轴的垂线PM 、PN ,连接OP ,则S △POM =___________ ; S 矩形PMON =___________.四、学以致用—自主练习1.已知:反比例函数图象上一点A ,过点A 作AC ⊥x 轴于点C ,作AB ⊥y 轴于 点B ,连接AO.(1)若点A (2,3),则反比例解析式k=_____; S △AOC =____; S 矩形ABOC =_____.(2)若S △AOC =4,且反比例函数图象在一、三象限内,则反比例函数表达式:__________ (3)若S 矩形ABOC =5,则反比例函数表达式:______________________________________ 2.计算与双曲线xky =(k ≠0)上的点有关的图形面积.。
反比例函数中k的几何意义【教学目标】1.理解反比例函数中k的几何意义;2.会运用面积法和坐标法解决反比例函数中的面积问题.【学情分析】学生在第6章已经学习过反比例函数的图象及性质,知道反比例函数中k的几何意义,并在作业题中接触过部分反比例函数面积问题,对本课的开展起到积极的促进作用。
但学生对面积法及坐标法尚不能灵活运用,需要教师加以引导.【教学重难点】重点:运用面积法和坐标法解决反比例函数中的面积问题;难点:对于复杂的面积问题,灵活性较强,对学生难度较大.【教学过程】一、知识回顾二、课前预热1.如图,点A在反比例函数y=kx(x>0)的图象上,AP⊥x轴于点P,AQ⊥y轴于点Q,若四边形OP AQ的面积为6,则k的值为_______.2.如图,点P是反比例函数y=6x的图象上的任意一点,过点P分别作两坐标轴的垂线,与坐标轴构成矩形OAPB,点D是矩形OAPB内任意一点,连结DA,DB,DP,DO,则图中阴影部分的面积是_______.(第1题图)(第2题图)(第3题图)3.如图,点A 是反比例函数图象上一点,过点A 作AB ⊥y 轴于点B ,点C ,D 在x 轴上,且BC ∥AD ,四边形ABCD 的面积为3,则这个反比例函数的表达式为_____________. 4.如图,直线l ⊥x 轴于点P ,且与反比例函数y 1= k 1 x (x >0)及y 2= k 2x (x >0)的图象分别交于A ,B 两点,连结OA ,OB ,已知△OAB 的面积为4,则k 1-k 2=_____________.(第4题图)(例1图)(学生投影展示讲解) 三、例题互动例1.如图,在反比例函数y =6x 上有两点A (2,3)和B (6,1),求△AOB 的面积.(师生问答互动) 法1.构造矩形 法2.转化为梯形 法3.水平宽×铅垂高÷2例2.如图,矩形OABC 的两边在坐标轴上,且与反比例函数y = kx (x >0)的图象交于点D ,E ,其中E 是BC 的中点.若四边形ODBE 的面积为2,求k 的值和△BDE 的面积.(师生问答互动) 法1.面积法 法2.坐标法归纳:D 、E 其中一点为中点,另一点也必为中点.)变式1.如图,矩形OABC 的两边在坐标轴上,且与反比例函数y = kx(x >0)的图象交于点D ,E ,其中BD =2AD .若△AOD 的面积为1,求:(1)BE :CE 的值;(2)四边形BEOD 的面积. (学生上台板演)变式2.如图,反比例函数y = kx(x >0)的图象经过矩形OABC 对角线的交点M ,分别与AB ,BC 相交于D ,E ,若四边形ODBE 的面积为6,求k 的值. (师生问答互动)变式3.如图,矩形OABC 的顶点坐标分别为O (0,0),A (4,0),B (4,3),C (0,3),双曲线y = kx (x >0)交AB ,BC 于点D ,E ,直线DE 分别与y 轴和x 轴相交于点F 和G .若EF ·EG =2512,求:(1)DG 的长度;(2)k 的值.(师生问答互动)归纳:直线截双曲线的基本结论课后思考:直线与双曲线的两支相交,是否还有相同的结论?四、课堂小结本节课我们一起探究反比例函数中的面积问题,你学到了哪些方法?收获了哪些有关反比例函数的基本结论?。
反比例函数的K的几何意义教学设计教学设计:反比例函数的K的几何意义一、教学目标:1.了解反比例函数的特点和性质;2.理解反比例函数中K的几何意义;3.通过几何图形展示反比例函数中K的变化对图像的影响;4.能够根据K的取值判断反比例函数是否为增函数或减函数。
二、教学准备:白板、白板笔、幻灯片、投影仪。
三、教学过程设计:1.导入(10分钟)教师先出示一张幻灯片,上面写有反比例函数的定义和性质,并向学生解释反比例函数的概念和特点,引发学生对反比例函数的兴趣。
然后,教师可以问学生:反比例函数的图像有什么特点?学生可以提出自己的看法。
2.探究(30分钟)让学生自己动手,通过具体的例子来研究反比例函数中K的几何意义。
教师提供几个反比例函数的实例,比如y=k/x,其中K=1,K=2,K=3等等。
然后,让学生根据这些K的值,画出对应的函数图像。
注:在探究过程中,教师可以引导学生思考并回答以下问题:1)当K=1时,图像是什么样的?2)当K>1时,图像是什么样的?3)当K<1时,图像是什么样的?4)当K=0时,图像是什么样的?学生可以通过观察图像的变化,总结出K值与图像的关系。
3.总结(10分钟)教师引导学生讨论,并总结K在反比例函数中的几何意义:1)当K>1时,图像呈现出下降的趋势,K表示图像的陡峭程度;2)当K<1时,图像呈现出上升的趋势,K表示图像的平缓程度;3)当K=0时,图像是一条水平线;4)当K<0时,图像是不连续的。
4.巩固与拓展(30分钟)让学生根据已有的知识,自己解决以下问题:1)反比例函数y=k/x在横轴和纵轴之间是否有一个因果关系?如果有,请给出一个具体的例子说明;2)反比例函数y=k/x中,当K>0时,函数的图像是什么样的?当K<0时,函数的图像又是什么样的?3)反比例函数y=k/x中,当K=1时,函数是否为增函数?当K<1时,函数是否为减函数?学生可以自行思考并回答这些问题。
反比例函数k 的几何意义全文共四篇示例,供读者参考第一篇示例:反比例函数是一种常见的函数形式,它在数学中起着重要的作用。
在数学中,反比例函数通常表示为y = k/x,其中k是一个常数。
在本文中,我们将探讨反比例函数k的几何意义,以便更好地理解它在数学中的应用。
让我们来看看反比例函数y = k/x的图像是什么样子的。
当k大于0时,函数图像呈现出一种特殊的形状,即一条从第一象限经过原点的曲线。
这种曲线被称为双曲线。
双曲线在数学中有着广泛的应用,例如在物理学和工程学中,它往往用来描述两个量之间呈反比例关系的情况。
在几何意义上,反比例函数k的值可以理解为曲线在坐标系中的形态和性质。
当k越大时,曲线越扁平,即曲线的曲率越小。
反之,当k 越小时,曲线越尖锐,曲率越大。
反比例函数k的值可以用来描述曲线的形状和性质。
反比例函数k的几何意义还可以从另一个角度来理解。
在数学中,函数y = k/x表示了两个变量之间的反比例关系。
当x增大时,y的值会减小。
这表明两个变量之间存在一种相反变化的关系。
在几何上,这种反比例关系可以理解为一种“交换”的关系,即当一个变量增大时,另一个变量会减小,反之亦然。
反比例函数k在数学中具有重要的几何意义。
它不仅可以描述曲线的形状和性质,还可以揭示两个变量之间的反比例关系。
通过深入研究反比例函数k的几何意义,我们可以更好地理解它在数学中的应用,并丰富我们对数学的认识和理解。
【文章字数不足,如有需要可继续添加内容】。
第二篇示例:反比例函数是数学中常见的一类函数,其数学表达式为y = k/x,其中k为一个常数且k≠0。
反比例函数在数学中有很多重要的应用,尤其是在几何中具有重要的意义。
我们来看反比例函数在几何中的基本性质。
对于反比例函数y =k/x,我们可以通过绘制其图像来直观地理解其性质。
当x取正值时,y 的值随着x的增大而减小;当x取负值时,y的值随着x的增大而增加。
这说明反比例函数是一个非对称的函数,它在坐标系中的图像呈现出一种特殊的形态。
教学目标: (一)知识与技能
1.理解和掌握反比例函数 (k ≠0)中k 的几何意义
2.能灵活运用函数图象和性质解决一些较综合的问题 (二)过程与方法
1.让学生自己尝试在 的图象上任取一点P(x 、y),过P 点分别向X 轴、Y 轴作垂
线,从而探究求出两垂线与坐标轴形成的矩形的面积及三角形的面积,从而探究所形成的矩
形与三角形的面积与k 的关系。
2.深刻领会函数解析式与函数图象之间的联系,体会数形结合及转化的思想方法。
(三)情感态度与价值观
培养学生自主探究,合作交流的精神。
学情分析:
知识基础:本节课学习前,学生已经具有了函数概念的知识积累,在上一节课的学习中,学生已经掌握了反比例函数的概念。
学习方法:学生已经积累的学习函数的方法有:画图象,观察图像归纳函数性质,了解函数变化规律和函数的变换趋势等。
学生喜欢用探究式的学习方式,通过自己的分析来体验知识间的内在联系。
能力水平:处在这个年龄段的学生多数可以熟练的进行抽象逻辑思维,但其辩证逻辑思维的能力水平还较低。
另外,学生参与活动的积极性高,但仍然缺乏合作交流等方面的能力。
教学重点、难点:
1.重点:理解并掌握反比例函数 (k ≠0)中k 的几何意义;并能利用它们解决一些综合问题
2.难点:学会从图象上分析、解决问题 教学过程:
(一)创设情境、导入新课
1、反比例函数的解析式是什么?如何确定比例系数K 的值?
2、反比例函数的比例系数K 能决定什么?
反比例函数的比例系数K 除了能确定图像位置和增减性外还能确定什么呢?
x
y 6
=x
k y x
k
y =
1.如图,点P 是反比例函数图象上的一点,过点P 分别向x 轴、y 轴作垂线,若阴影部分面积为3,则这个反比例函数的关系式是.
x
y
o
M
N
p
3
-=∴k .
3||k |,|k S 矩形P m O n =∴=,
,四象限图像在二又 .
3
x
y -=∴解析式为由题意得:
本节课我们来探究反比例函数的比例系数K 的几何意义。
(二)新课探究 活动1:议一议
如图,已知点P 是反比例函数 的图象上任
意一点,过P 点分别向X 轴、Y 轴作垂线,
垂足分别为M 、N ,那么四边形OMPN 的面积是多 少?△OMP 的面积是多少?
1、学生讨论时出现的问题是OM 应如何表示,教师给予及时点拔,使问题得以解决。
2、学生板演解题过程,教师给予纠正。
师提问:如果解析式中的k=-3呢?所形成的矩形及三角形的面积又是多少?学生计算后
进上步归纳总结反比例函数 (k ≠0)中k 的几何意义。
师板书:反比例函数 (k ≠0)的图象上任一点P (x ,y )向x 轴、y 轴作垂线段,与x 轴、y 轴所围成的矩形面积 ,△OMP 的面积S= ∣xy ∣= ∣k ∣ 活动2:例题讲解
本例1设计的目的是让学生根据矩形的面积确定K 值,学会逆向思考问题。
如果以解答题的形式出现,学生不会写格式,这时需要老师规范书写格式。
在格式上注意两点地方: (1)设出反比例函数图像上的一点P (a,b ),利用点的横坐标的绝对值表示边OM ,点的纵坐标的绝对值表示边ON ,这样矩形的面积就可以用点P 横纵坐标乘积的绝对值来表示。
(2)设出反比例函数的解析式根据图像的位置确定好K 的正负方便之后的取舍,将点P (a,b )代入所设的解析式建立K 与ab 的关系。
x
y 6
=x k y =2
1
21x
k y =
k
xy S ==
本例2的设计旨在让学生根据K值确定三角形的面积,与上一题交相呼应。
熟悉书写格式,以及注意K的取舍和点坐标如何表示边的问题。
活动3:快速抢答
题型(一)面积不变
2y x
=
x
y
O
P 1
P 2
P 3 P 4 1
2
3
4
题型(二)确定解析式
如图,点P 是反比例函数图象上的一点,过点P 分别向x 轴、y 轴作垂线,若阴影部分面积
为1,则这个反比例函数的关系式是 .
如图,点P 是反比例函数图象上的一点,图中矩形PEOF 的面积是6,则这个反比例函数的
关系式是 .
(变式一)在双曲线 (x>0)上任一点分别作x 轴、y 轴的垂线段,与x 轴y 轴围成 矩形面积为12,求函数解析式_________或
变式题型的出现弥补学生在做题过程中的审题不细致的问题,括号里的条件不容忽视。
活动4:变式拔高训练
题型(三)矩形的变式训练
变式练习一:如右上图,点A 、B 是双曲线3
y x =
上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段,
若
1S =阴影,则
12S S +=
4 .
变式练习二: 如右图,在反比例函数2
y x
=
(0x >)的图象上,有点1234P P P P ,,,,它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为
123S S S ,,,则123S S S ++= 1.5 .
x
y
A
B
O
1S
2
S 2y x
-=
k y x =12
y x
=12y x -=6y x =
A. S = 1
B. 1<S<2
C. S = 2
D. S>2
'=
''图函数图像关点对称两点,轴轴面积则1
4.如,P,P 是y 的上于原O x
的任意PA 平行于y ,P A 平行于x ,ΔPAP 的
S,___.C P(m,n)
A
o
y
x
P /
变式练习三:如图,点A 在双曲线y =
1x ,点B 在双曲线y =3
x
上,且AB ∥x 轴,C .D 在x 轴上,若四边形ABCD 为矩形,则它的面积为 2
题型(三)的训练旨在灵活运用矩形的面积与|K|的关系深刻理解K 的几何意义,活动中让学生充分的交流合作,组内展开讨论,老师给以指导。
题型(四)直角三角形的变式训练
如图所示,正比例函数 (0)y kx k =>与反比例函数 1
y x
=
的图象相交于A 、B 两点,过A 作x 轴的垂线交x 轴于B ,连接BC.若△ABC 面积为S,则__1____
⑴反比例函数图象上任意一点“对应的直角三角形”面积S 1与k 值有什么关系?
⑵反比例函数图象上任意一点“对应的矩形”面积S 2与k 值有什么关系?
S 直角三角形=
S 长方形=
K 的几何意义:
过(k ≠0)上任意一点作x 轴,y 轴
的垂线,围成长方形的面积。
x
k
y =D C
B
A
O y
x
题型(五)特殊四边形的变式训练
如图,A 、B 为双曲线x
12
-y =上的点,AD ⊥x 轴于D,BC ⊥y 轴于点C ,则四边形ABCD 的面
积为 18 。
正比例函数y=x 与反比例函数y= 1/x 的图象相交于A 、C 两点.AB ⊥x 轴于B,CD ⊥y 轴于D(如图),则四边形ABCD 的面积为( C )
(A )1 (B )3/2 (C )2 (D )
题型(四)(五)的设计旨在灵活运用直角三角形的面积与|K|/2的关系,解决三角形面积问题。
各种图形的变换考验学生的应变能力,在复杂问题中寻求实质问题是关键,能否对知识活学活用。
最后总结出四种图形与|K|的关系。
板书小结:。