二次函数中考(平行四边形)含答案
- 格式:doc
- 大小:413.50 KB
- 文档页数:9
专题6 二次函数与平行四边形存在性问题以二次函数为载体的平行四边形存在性问题是中考的热点难点之一,其图形复杂,知识覆盖面广,综合性较强,对学生分析问题和解决问题的能力要求高.对这类题,常规解法是先画出平行四边形,再依据“平行四边形的一组对边平行且相等”或“平行四边形的对角线互相平分”来解决.由于先要画出草图,若考虑不周,很容易漏解.解决抛物线中的平行四边形存在性问题,常用的结论和方法有:线段中点坐标公式、平行四边形顶点坐标公式、画平行四边形.1. 平面直角坐标系中,点 A 的坐标是11(,)x y ,点B 的坐标是22(,)x y ,则线段AB 的中点坐标是1212(,)22x x y y ++. 2. 平行四边形ABCD 的顶点坐标分别为(,)A A x y 、(,)B B x y 、(,)C C x y 、(,)D D x y ,则A C B D x x x x +=+,A CB D y y y y +=+.3.已知不在同一直线上的三点A、B、C,在平面内找到一个点D,使以A、B、C、D为顶点的四边形是平行四边形,有三种情况:【例1】(2020•甘孜州)如图,在平面直角坐标系xOy中,直线y=kx+3分别交x轴、y轴于A,B两点,经过A,B两点的抛物线y=﹣x2+bx+c与x轴的正半轴相交于点C(1,0).(1)求抛物线的解析式;(2)若P为线段AB上一点,∠APO=∠ACB,求AP的长;(3)在(2)的条件下,设M是y轴上一点,试问:抛物线上是否存在点N,使得以A,P,M,N为顶点的四边形为平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法解决问题即可.(2)求出AB ,OA ,AC ,利用相似三角形的性质求解即可.(3)分两种情形:①P A 为平行四边形的边时,点M 的横坐标可以为±2,求出点M 的坐标即可解决问题.②当AP 为平行四边形的对角线时,点M ″的横坐标为﹣4,求出点M ″的坐标即可解决问题.【解析】(1)∵直线y =kx +3分别交y 轴于B ,令x =0,得到y =3,∴B (0,3)由题意抛物线经过B (0,3),C (1,0),∴{c =3−1+b +c =0, 解得,{b =−2c =3, ∴抛物线的解析式为y =﹣x 2﹣2x +3;(2)对于抛物线y =﹣x 2﹣2x +3,令y =0,解得x =﹣3或1,∴A (﹣3,0),∵B (0,3),C (1,0),∴OA =OB =3,OC =1,AB =3√2,∵∠APO =∠ACB ,∠P AO =∠CAB ,∴△P AO ∽△CAB ,∴AP AC =AO AB , ∴AP 4=3√2, ∴AP =2√2.(3)由(2)可知,P (﹣1,2),AP =2√2,①当AP 为平行四边形的边时,点N 的横坐标为2或﹣2,∴N (﹣2,3),N ′(2,﹣5),②当AP 为平行四边形的对角线时,点N ″的横坐标为﹣4,∴N ″(﹣4,﹣5),综上所述,满足条件的点N 的坐标为(﹣2,3)或(2,﹣5)或(﹣4,﹣5).【点评】本题考查二次函数综合题,考查了待定系数法,相似三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.【例2】(2020•天水)如图所示,拋物线y =ax 2+bx +c (a ≠0)与x 轴交于A 、B 两点,与y 轴交于点C ,且点A 的坐标为A (﹣2,0),点C 的坐标为C (0,6),对称轴为直线x =1.点D 是抛物线上一个动点,设点D 的横坐标为m (1<m <4),连接AC ,BC ,DC ,DB .(1)求抛物线的函数表达式;(2)当△BCD 的面积等于△AOC 的面积的34时,求m 的值; (3)在(2)的条件下,若点M 是x 轴上一动点,点N 是抛物线上一动点,试判断是否存在这样的点M ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形.若存在,请直接写出点M 的坐标;若不存在,请说明理由.【分析】(1)由题意得出方程组,解方程组即可;(2)过点D 作DE ⊥x 轴于E ,交BC 于G ,过点C 作CF ⊥ED 交ED 的延长线于F ,求出点B 的坐标为(4,0),由待定系数法求出直线BC 的函数表达式为y =−32x +6,则点D 的坐标为(m ,−34m 2+32m +6),点G 的坐标为(m ,−32m +6),求出S △BCD =−32m 2+6m =92,解方程即可;(3)求出点D 的坐标为(3,154),分三种情况,①当DB 为对角线时,证出DN ∥x 轴,则点D 与点N关于直线x =1对称,得出N (﹣1,154)求出BM =4,即可得出答案;②当DM 为对角线时,由①得N (﹣1,154),DN =4,由平行四边形的性质得出DN =BM =4,进而得出答案; ③当DN 为对角线时,点D 与点N 的纵坐标互为相反数,N (1+√14,−154)或N (1−√14,−154),再分两种情况解答即可.【解析】(1)由题意得:{−b 2a =14a −2b +c =0c =6, 解得:{ a =−34b =32c =6, ∴抛物线的函数表达式为:y =−34x 2+32x +6; (2)过点D 作DE ⊥x 轴于E ,交BC 于G ,过点C 作CF ⊥ED 交ED 的延长线于F ,如图1所示: ∵点A 的坐标为(﹣2,0),点C 的坐标为(0,6),∴OA =2,OC =6,∴S △AOC =12OA •OC =12×2×6=6,∴S △BCD =34S △AOC =34×6=92,当y =0时,−34x 2+32x +6=0,解得:x 1=﹣2,x 2=4,∴点B 的坐标为(4,0),设直线BC 的函数表达式为:y =kx +n ,则{0=4k +n 6=n, 解得:{k =−32n =6, ∴直线BC 的函数表达式为:y =−32x +6,∵点D 的横坐标为m (1<m <4),∴点D 的坐标为:(m ,−34m 2+32m +6),点G 的坐标为:(m ,−32m +6),∴DG =−34m 2+32m +6﹣(−32m +6)=−34m 2+3m ,CF =m ,BE =4﹣m ,∴S △BCD =S △CDG +S △BDG =12DG •CF +12DG •BE =12DG ×(CF +BE )=12×(−34m 2+3m )×(m +4﹣m )=−32m 2+6m ,∴−32m 2+6m =92,解得:m 1=1(不合题意舍去),m 2=3,∴m 的值为3;(3)由(2)得:m =3,−34m 2+32m +6=−34×32+32×3+6=154, ∴点D 的坐标为:(3,154), 分三种情况讨论:①当DB 为对角线时,如图2所示:∵四边形BDNM 是平行四边形,∴DN ∥BM ,∴DN ∥x 轴,∴点D 与点N 关于直线x =1对称,∴N (﹣1,154),∴DN =3﹣(﹣1)=4,∴BM =4,∵B (4,0),∴M (8,0);②当DM 为对角线时,如图3所示:由①得:N (﹣1,154),DN =4,∵四边形BDNM 是平行四边形,∴DN =BM =4,∵B (4,0),∴M (0,0);③当DN 为对角线时,∵四边形BDNM 是平行四边形,∴DM =BN ,DM ∥BN ,∴∠DMB =∠MBN ,∴点D 与点N 的纵坐标互为相反数,∵点D (3,154),∴点N 的纵坐标为:−154, 将y =−154代入y =−34x 2+32x +6中, 得:−34x 2+32x +6=−154, 解得:x 1=1+√14,x 2=1−√14,当x =1+√14时,如图4所示:则N (1+√14,−154), 分别过点D 、N 作x 轴的垂线,垂足分别为E 、Q ,在Rt △DEM 和Rt △NQB 中,{DM =BN DE =NQ, ∴Rt △DEM ≌Rt △NQB (HL ),∴BQ =EM ,∵BQ =1+√14−4=√14−3,∴EM=√14−3,∵E(3,0),∴M(√14,0);当x=1−√14时,如图5所示:则N(1−√14,−15 4),同理得点M(−√14,0);综上所述,点M的坐标为(8,0)或(0,0)或(√14,0)或(−√14,0).【点评】本题是二次函数综合题目,考查了待定系数法求函数的解析式、坐标与图形性质、平行四边形的性质、全等三角形的判定与性质等知识;本题综合性强,有一定难度.【例3】(2020•青海)如图1(注:与图2完全相同)所示,抛物线y=−12x2+bx+c经过B、D两点,与x轴的另一个交点为A,与y轴相交于点C.(1)求抛物线的解析式.(2)设抛物线的顶点为M,求四边形ABMC的面积.(请在图1中探索)(3)设点Q在y轴上,点P在抛物线上.要使以点A、B、P、Q为顶点的四边形是平行四边形,求所有满足条件的点P的坐标.(请在图2中探索)【分析】(1)用待定系数法解答便可;(2)求出抛物线与坐标轴的交点A、C坐标及抛物线顶点M的坐标,再将四边形ABMC的面积分为三角形的面积的和,进行计算便可;(3)分两种情况:AB为平行四边形的边;AB为平行四边形的对角线.分别解答便可.【解析】(1)把B (3,0)和D (﹣2,−52)代入抛物线的解析式得, {−92+3b +c =0−2−2b +c =−52, 解得,{b =1c =32, ∴抛物线的解析式为:y =−12x 2+x +32;(2)令x =0,得y =−12x 2+x +32=32, ∴C(0,32),令y =0,得y =−12x 2+x +32=0, 解得,x =﹣1,或x =3,∴A (﹣1,0),∵y =−12x 2+x +32=−12(x −1)2+2, ∴M (1,2),∴S 四边形ABMC =S △AOC +S △COM +S △MOB=12OA ⋅OC +12OC ⋅x M +12OB ⋅y M=12×1×32+12×32×1+12×3×2=92;(3)设Q (0,n ),①当AB 为平行四边形的边时,有AB ∥PQ ,AB =PQ , a ).P 点在Q 点左边时,则P (﹣4,n ),把P (﹣4,n )代入y =−12x 2+x +32,得n =−212,∴P (﹣4,−212); ②当AB 为平行四边形的边时,有AB ∥PQ ,AB =PQ , 当P 点在Q 点右边时,则P (4,n ), 把P (4,n )代入y =−12x 2+x +32,得 n =−52, ∴P (4,−52);③当AB 为平行四边形的对角线时,如图2,AB 与PQ 交于点E , 则E (1,0), ∵PE =QE , ∴P (2,﹣n ),把P (2,﹣n )代入y =−12x 2+x +32,得 ﹣n =32, ∴n =−32, ∴P (2,32).综上,满足条件的P 点坐标为:(﹣4,−212)或(4,−52)或(2,32).【点评】本题是二次函数的综合题,主要考查了待定系数法,二次函数的图象与性质,四边形的面积计算,平行四边形的性质,第(2)题关键是把四边形分割成三角形进行解答,第(3)题关键是分情况讨论.【例4】(2020•玉林)如图,已知抛物线:y 1=﹣x 2﹣2x +3与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点C .(1)直接写出点A ,B ,C 的坐标;(2)将抛物线y1经过向右与向下平移,使得到的抛物线y2与x轴交于B,B'两点(B'在B的右侧),顶点D的对应点为点D',若∠BD'B'=90°,求点B'的坐标及抛物线y2的解析式;(3)在(2)的条件下,若点Q在x轴上,则在抛物线y1或y2上是否存在点P,使以B′,C,Q,P 为顶点的四边形是平行四边形?如果存在,求出所有符合条件的点P的坐标;如果不存在,请说明理由.【分析】(1)令x=0或y1=0,解方程可得结论.(2)设平移后的抛物线的解析式为y2=﹣(x﹣a)2+b,如图1中,过点D′作D′H⊥OB′于H.,连接BD′,B′D′.构建方程组解决问题即可.(3)观察图象可知,当点P的纵坐标为3或﹣3时,存在满足条件的平行四边形.分别令y1和y2等于3或﹣3,解方程即可解决问题.【解析】(1)对于y1=﹣x2﹣2x+3,令y1=0,得到﹣x2﹣2x+3=0,解得x=﹣3或1,∴A(﹣3,0),B(1,0),令x=0,得到y1=3,∴C(0,3).(2)设平移后的抛物线的解析式为y2=﹣(x﹣a)2+b,如图1中,过点D′作D′H⊥OB′于H,连接BD′.∵D′是抛物线的顶点,∴D′B=D′B′,D′(a,b),∵∠BD′B′=90°,D′H⊥BB′,∴BH=HB′,∴D′H=BH=HB′=b,∴a=1+b,又∵y2=﹣(x﹣a)2+b,经过B(1,0),∴b=(1﹣a)2,解得a=2或1(不合题意舍弃),b=1,∴B′(3,0),y2=﹣(x﹣2)2+1=﹣x2+4x﹣3.(3)如图2中,观察图象可知,当点P的纵坐标为3或﹣3时,存在满足条件的平行四边形.对于y1=﹣x2﹣2x+3,令y1=3,x2+2x=0,解得x=0或﹣2,可得P1(﹣2,3),令y1=﹣3,则x2+2x﹣6=0,解得x=﹣1±√7,可得P2(﹣1−√7,﹣3),P3(﹣1+√7,﹣3),对于y2=﹣x2+4x﹣3,令y2=3,方程无解,令y2=﹣3,则x2﹣4x=0,解得x=0或4,可得P4(0,﹣3),P5(4,﹣3),综上所述,满足条件的点P的坐标为(﹣2,3)或(﹣1−√7,﹣3)或(﹣1+√7,﹣3)或(0,﹣3)或(4,﹣3).【点评】本题属于二次函数综合题,考查了二次函数的性质,平行四边形的判定和性质,等腰直角三角形的性质等知识,解题的关键是学会利用参数构建方程组解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.【例5】(2020•绵阳)如图,抛物线过点A (0,1)和C ,顶点为D ,直线AC 与抛物线的对称轴BD 的交点为B (√3,0),平行于y 轴的直线EF 与抛物线交于点E ,与直线AC 交于点F ,点F 的横坐标为4√33,四边形BDEF 为平行四边形.(1)求点F 的坐标及抛物线的解析式;(2)若点P 为抛物线上的动点,且在直线AC 上方,当△P AB 面积最大时,求点P 的坐标及△P AB 面积的最大值;(3)在抛物线的对称轴上取一点Q ,同时在抛物线上取一点R ,使以AC 为一边且以A ,C ,Q ,R 为顶点的四边形为平行四边形,求点Q 和点R 的坐标.【分析】(1)由待定系数法求出直线AB 的解析式为y =−√33x +1,求出F 点的坐标,由平行四边形的性质得出﹣3a +1=163a ﹣8a +1﹣(−13),求出a 的值,则可得出答案; (2)设P (n ,﹣n 2+2√3n +1),作PP '⊥x 轴交AC 于点P ',则P '(n ,−√33n +1),得出PP '=﹣n 2+73√3n ,由二次函数的性质可得出答案;(3)联立直线AC 和抛物线解析式求出C (73√3,−43),设Q (√3,m ),分两种情况:①当AQ 为对角线时,②当AR 为对角线时,分别求出点Q 和R 的坐标即可. 【解析】(1)设抛物线的解析式为y =ax 2+bx +c (a ≠0), ∵A (0,1),B (√3,0), 设直线AB 的解析式为y =kx +m , ∴{√3k +m =0m =1,解得{k =−√33m =1,∴直线AB 的解析式为y =−√33x +1,∵点F 的横坐标为4√33,∴F 点纵坐标为−√33×4√33+1=−13, ∴F 点的坐标为(43√3,−13), 又∵点A 在抛物线上, ∴c =1,对称轴为:x =−b2a =√3, ∴b =﹣2√3a ,∴解析式化为:y =ax 2﹣2√3ax +1, ∵四边形DBFE 为平行四边形. ∴BD =EF , ∴﹣3a +1=163a ﹣8a +1﹣(−13), 解得a =﹣1,∴抛物线的解析式为y =﹣x 2+2√3x +1;(2)设P (n ,﹣n 2+2√3n +1),作PP '⊥x 轴交AC 于点P ',则P '(n ,−√33n +1), ∴PP '=﹣n 2+73√3n ,S △ABP =12OB •PP '=−√32n 2+72n =−√32(n −76√3)2+4924√3, ∴当n =76√3时,△ABP 的面积最大为4924√3,此时P (76√3,4712). (3)∵{y =−√33x +1y =−x 2+2√3x +1,∴x =0或x =73√3, ∴C (73√3,−43), 设Q (√3,m ), ①当AQ 为对角线时, ∴R (−43√3,m +73),∵R 在抛物线y =−(x −√3)2+4上, ∴m +73=−(−43√3−√3)2+4,解得m =−443,∴Q (√3,−443),R (−43√3,−373); ②当AR 为对角线时, ∴R (103√3,m −73), ∵R 在抛物线y =−(x −√3)2+4上, ∴m −73=−(103√3−√3)2+4, 解得m =﹣10, ∴Q (√3,﹣10),R (103√3,−373).综上所述,Q (√3,−443),R (−43√3,−373);或Q (√3,﹣10),R (103√3,−373).【点评】本题是二次函数综合题,考查了待定系数法,二次函数的性质,二次函数图象上点的坐标特征,平行四边形的性质等知识,熟练掌握二次函数的性质及方程思想,分类讨论思想是解题的关键. 【例6】(2020•雅安)已知二次函数y =ax 2+2x +c (a ≠0)的图象与x 轴交于A 、B (1,0)两点,与y 轴交于点C (0,﹣3),(1)求二次函数的表达式及A 点坐标;(2)D 是二次函数图象上位于第三象限内的点,求点D 到直线AC 的距离取得最大值时点D 的坐标; (3)M 是二次函数图象对称轴上的点,在二次函数图象上是否存在点N ,使以M 、N 、B 、O 为顶点的四边形是平行四边形?若有,请写出点N 的坐标(不写求解过程).【分析】(1)利用待定系数法解决问题即可.(2)如图1中连接AD ,CD .由题意点D 到直线AC 的距离取得最大,推出此时△DAC 的面积最大.过点D 作x 轴的垂线交AC 于点G ,设点D 的坐标为(x ,x 2+2x ﹣3),则G (x ,﹣x ﹣3),推出DG =﹣x ﹣3﹣(x 2+2x ﹣3)=﹣x ﹣3﹣x 2﹣2x +3=﹣x 2﹣3x ,利用二次函数的性质求解即可. (3)分两种情形:OB 是平行四边形的边或对角线分别求解即可. 【解析】(1)把B (1,0),C (0,﹣3)代入y =ax 2+2x +c 则有{c =−3a +2+c =0,解得{a =1c =−3,∴二次函数的解析式为y =x 2+2x ﹣3,令y =0,得到x 2+2x ﹣3=0,解得x =﹣3或1, ∴A (﹣3,0).(2)如图1中连接AD ,CD . ∵点D 到直线AC 的距离取得最大, ∴此时△DAC 的面积最大, 设直线AC 解析式为:y =kx +b , ∵A (﹣3,0),C (0,﹣3), ∴{b =−3−3k +b =0, 解得,{k =−1b =−3,∴直线AC 的解析式为y =﹣x ﹣3,过点D 作x 轴的垂线交AC 于点G ,设点D 的坐标为(x ,x 2+2x ﹣3),则G(x,﹣x﹣3),∵点D在第三象限,∴DG=﹣x﹣3﹣(x2+2x﹣3)=﹣x﹣3﹣x2﹣2x+3=﹣x2﹣3x,∴S△ACD=12•DG•OA=12(﹣x2﹣3x)×3=−32x2−92x=−32(x+32)2+278,∴当x=−32时,S最大=278,点D(−32,−154),∴点D到直线AC的距离取得最大时,D(−32,−154).(3)如图2中,当OB是平行四边形的边时,OB=MN=1,OB∥MN,可得N(﹣2,﹣3)或N′(0,﹣3),当OB为对角线时,点N″的横坐标为2,x=2时,y=4+4﹣3=5,∴N″(2,5).综上所述,满足条件的点N的坐标为(﹣2,﹣3)或(0,﹣3)或(2,5).【点评】本题考查待定系数法求二次函数解析式、二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.1.(2020•齐齐哈尔)综合与探究在平面直角坐标系中,抛物线y=12x2+bx+c经过点A(﹣4,0),点M为抛物线的顶点,点B在y轴上,且OA=OB,直线AB与抛物线在第一象限交于点C(2,6),如图①.(1)求抛物线的解析式;(2)直线AB的函数解析式为y=x+4,点M的坐标为(﹣2,﹣2),cos∠ABO=√22;连接OC,若过点O的直线交线段AC于点P,将△AOC的面积分成1:2的两部分,则点P的坐标为(﹣2,2)或(0,4);(3)在y轴上找一点Q,使得△AMQ的周长最小.具体作法如图②,作点A关于y轴的对称点A',连接MA'交y轴于点Q,连接AM、AQ,此时△AMQ的周长最小.请求出点Q的坐标;(4)在坐标平面内是否存在点N,使以点A、O、C、N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.【分析】(1)将点A 、C 的坐标代入抛物线表达式即可求解;(2)点A (﹣4,0),OB =OA =4,故点B (0,4),即可求出AB 的表达式;OP 将△AOC 的面积分成1:2的两部分,则AP =13AC 或23AC ,即可求解;(3)△AMQ 的周长=AM +AQ +MQ =AM +A ′M 最小,即可求解; (4)分AC 是边、AC 是对角线两种情况,分别求解即可.【解析】(1)将点A 、C 的坐标代入抛物线表达式得:{12×16−4b +c =012×4+2b +c =6,解得{b =2c =0,故抛物线的表达式为:y =12x 2+2x ;(2)点A (﹣4,0),OB =OA =4,故点B (0,4), 设直线AB 的解析式为y =kx +4, 将点A 坐标代入得,﹣4k +4=0, ∴k =1.∴直线AB 的表达式为:y =x +4; 则∠ABO =45°,故cos ∠ABO =√22;对于y =12x 2+2x ,函数的对称轴为x =﹣2,故点M (﹣2,﹣2); OP 将△AOC 的面积分成1:2的两部分,则AP =13AC 或23AC ,则y P y C=13或23,即y P 6=13或23,解得:y P =2或4,故点P (﹣2,2)或(0,4); 故答案为:y =x +4;(﹣2,﹣2);√22;(﹣2,2)或(0,4);(3)△AMQ 的周长=AM +AQ +MQ =AM +A ′M 最小, 点A ′(4,0),设直线A ′M 的表达式为:y =kx +b ,则{4k +b =0−2k +b =−2,解得{k =13b =−43, 故直线A ′M 的表达式为:y =13x −43,令x=0,则y=−43,故点Q(0,−43);(4)存在,理由:设点N(m,n),而点A、C、O的坐标分别为(﹣4,0)、(2,6)、(0,0),①当AC是边时,点A向右平移6个单位向上平移6个单位得到点C,同样点O(N)向右平移6个单位向上平移6个单位得到点N(O),即0±6=m,0±6=n,解得:m=n=±6,故点N(6,6)或(﹣6,﹣6);②当AC是对角线时,由中点公式得:﹣4+2=m+0,6+0=n+0,解得:m=﹣2,n=6,故点N(﹣2,6);综上,点N的坐标为(6,6)或(﹣6,﹣6)或(﹣2,6).【点评】本题考查的是二次函数综合运用,涉及到一次函数的性质、平行四边形的性质、图形的平移、面积的计算等,其中(4),要注意分类求解,避免遗漏.2.(2020•平顶山二模)如图,已知二次函数y=−38x2+bx+c的图象与x轴交于点A、C,与y轴交于点B,直线y=34x+3经过A、B两点.(1)求b、c的值.(2)若点P是直线AB上方抛物线上的一动点,过点P作PF⊥x轴于点F,交直线AB于点D,求线段PD的最大值.(3)在(2)的结论下,连接CD,点Q是抛物线对称轴上的一动点,在抛物线上是否存在点G,使得以C、D、G、Q为顶点的四边形是平行四边形,若存在,请直接写出点G的坐标;若不存在,请说明理由.【分析】(1)由直线AB 的解析式可求出点A ,B 的坐标,将A ,B 两点的坐标代入y =−38x 2+bx +c 可得出答案;(2)设点P (m ,−38m 2−34m +3),则D (m ,34m +3),可得出PD =−38m 2−32m ,由二次函数的性质可得出答案;(3)分类讨论,一是当CD 为平行四边形对角线时,二是当CD 为平行四边形一边时,利用中点坐标公式及平移规律即可求出点G 的坐标.【解析】(1)∵直线y =34x +3经过A 、B 两点. ∴当x =0时,y =3,当y =0时,x =﹣4,∴直线y =34x +3与坐标轴的交点坐标为A (﹣4,0),B (0,3).分别将x =0,y =3,x =﹣4,y =0代入y =−38x 2+bx +c 得,{c =30=−38×(−4)2−4b +c , 解得,b =−34,c =3,(2)由(1)得y =−38x 2−34x +3,设点P (m ,−38m 2−34m +3),则D (m ,34m +3),∴PD =−38m 2−34m +3−(34m +3)=−38m 2−32m =−38(m +2)2+32, ∴当m =﹣2时,PD 最大,最大值是32.(3)存在点G ,使得以C 、D 、G 、Q 为顶点的四边形是平行四边形,G 点的坐标为(1,158)或(3,−218)或(−5,−218); ∵y =−38x 2−34x +3, ∴y =0时,x =﹣4或x =2, ∴C (2,0),由(2)可知D (﹣2,32),抛物线的对称轴为x =﹣1,设G (n ,−38n 2−34n +3),Q (﹣1,p ),CD 与y 轴交于点E ,E 为CD 的中点, ①当CD 为对角线时, n +(﹣1)=0, ∴n =1, 此时G (1,158).②当CD 为边时,若点G 在点Q 上边,则n +4=﹣1,则n =﹣5,此时点G 的坐标为(﹣5,−218). 若点G 在点Q 上边,则﹣1+4=n ,则n =3,此时点G 的坐标为(3,−218).综合以上可得使得以C 、D 、G 、Q 为顶点的四边形是平行四边形的G 点的坐标为(1,158)或(3,−218)或(−5,−218);【点评】本题是二次函数综合题,考查了二次函数的有关性质、一次函数的性质、平行四边形的判定和性质,熟练掌握二次函数的性质是解题的关键.3.(2020•菏泽)如图,抛物线y =ax 2+bx ﹣6与x 轴相交于A ,B 两点,与y 轴相交于点C ,OA =2,OB =4,直线l 是抛物线的对称轴,在直线l 右侧的抛物线上有一动点D ,连接AD ,BD ,BC ,CD . (1)求抛物线的函数表达式;(2)若点D 在x 轴的下方,当△BCD 的面积是92时,求△ABD 的面积;(3)在(2)的条件下,点M 是x 轴上一点,点N 是抛物线上一动点,是否存在点N ,使得以点B ,D ,M ,N 为顶点,以BD 为一边的四边形是平行四边形,若存在,求出点N 的坐标;若不存在,请说明理由.【分析】(1)根据OA =2,OB =4确定点A 和B 的坐标,代入抛物线的解析式列方程组解出即可; (2)如图1,过D 作DG ⊥x 轴于G ,交BC 于H ,利用待定系数法求直线BC 的解析式,设D (x ,34x 2−32x﹣6),则H (x ,32x ﹣6),表示DH 的长,根据△BCD 的面积是92,列方程可得x 的值,因为D 在对称轴的右侧,所以x =1不符合题意,舍去,利用三角形面积公式可得结论; (3)分两种情况:N 在x 轴的上方和下方,根据y =±154确定N 的坐标,并正确画图. 【解析】(1)∵OA =2,OB =4, ∴A (﹣2,0),B (4,0),把A (﹣2,0),B (4,0)代入抛物线y =ax 2+bx ﹣6中得:{4a −2b −6=016a +4b −6=0,∴抛物线的解析式为:y =34x 2−32x ﹣6;(2)如图1,过D 作DG ⊥x 轴于G ,交BC 于H ,当x =0时,y =﹣6, ∴C (0,﹣6),设BC 的解析式为:y =kx +n ,则{n =−64k +n =0,解得:{k =32n =−6, ∴BC 的解析式为:y =32x ﹣6,设D (x ,34x 2−32x ﹣6),则H (x ,32x ﹣6),∴DH =32x ﹣6﹣(34x 2−32x ﹣6)=−34x 2+3x ,∵△BCD 的面积是92,∴12DH ⋅OB =92,∴12×4×(−34x 2+3x)=92,解得:x =1或3,∵点D 在直线l 右侧的抛物线上, ∴D (3,−154),∴△ABD 的面积=12AB ⋅DG =12×6×154=454;(3)分两种情况:①如图2,N 在x 轴的上方时,四边形MNBD 是平行四边形,∵B (4,0),D (3,−154),且M 在x 轴上, ∴N 的纵坐标为154,当y =154时,即34x 2−32x ﹣6=154,解得:x =1+√14或1−√14, ∴N (1−√14,154)或(1+√14,154);②如图3,点N 在x 轴的下方时,四边形BDNM 是平行四边形,此时M 与O 重合,∴N(﹣1,−15 4);综上,点N的坐标为:(1−√14,154)或(1+√14,154)或(﹣1,−154).【点评】此题主要考查二次函数的综合问题,会求函数与坐标轴的交点,会利用待定系数法求函数解析式,会利用数形结合的思想解决平行四边形的问题,并结合方程思想解决问题.4.(2020•东莞市校级一模)已知,抛物线y=x2+bx+c与x轴交点为A(﹣1,0)和点B,与y轴交点为C (0,﹣3),直线L:y=kx﹣1与抛物线的交点为点A和点D.(1)求抛物线和直线L的解析式;(2)如图,点M为抛物线上一动点(不与A、D重合),当点M在直线L下方时,过点M作MN∥x轴交L于点N,求MN的最大值;(3)点M为抛物线上一动点(不与A、D重合),M'为直线AD上一动点,是否存在点M,使得以C、D、M、M′为顶点的四边形是平行四边形?如果存在,请直接写出点M的坐标,如果不存在,请说明理由.【分析】(1)用待定系数法即可求解;(2)设点M的坐标为(m,m2﹣2m﹣3),则点N(﹣m2+2m+2,m2﹣2m﹣3),则MN=﹣m2+m+2,进而求解;(3)分CD 为边、CD 为对角线两种情况,利用图象平移和中点公式求解即可. 【解析】(1)将点A 、C 的坐标代入抛物线表达式得{1−b +c =0c =−3,解得:{b =−2c =−3,故抛物线的表达式为:y =x 2﹣2x ﹣3①,将点A 的坐标代入直线L 的表达式得:0=﹣k ﹣1,解得:k =﹣1, 故直线L 的表达式为:y =﹣x ﹣1②;(2)设点M 的坐标为(m ,m 2﹣2m ﹣3), 点N 的纵坐标与点M 的纵坐标相同,将点N 的纵坐标代入y =﹣x ﹣1得:m 2﹣2m ﹣3=﹣x ﹣1, 解得:x =﹣m 2+2m +2,故点N (﹣m 2+2m +2,m 2﹣2m ﹣3), 则MN =﹣m 2+2m +2﹣m =﹣m 2+m +2,∵﹣1<0,故MN 有最大值,当m =−b2a =12时,MN 的最大值为94;(3)设点M (m ,n ),则n =m 2﹣2m ﹣3③,点M ′(s ,﹣s ﹣1), ①当CD 为边时,点C 向右平移2个单位得到D ,同样点M (M ′)向右平移2个单位得到M ′(M ), 即m ±2=s 且n =﹣s ﹣1④,联立③④并解得:m =0(舍去)或1或1±√172, 故点M 的坐标为(1,﹣4)或(1+√172,1−√172)或(1−√172,1+√172); ②当CD 为对角线时,由中点公式得:12(0+2)=12(m +s )且12(﹣3﹣3)=12(n ﹣s ﹣1)⑤,联立③⑤并解得:m =0(舍去)或﹣1,故点M (1,﹣4); 综上,点M 的坐标为(1,﹣4)或(1+√172,1−√172)或(1−√172,1+√172). 【点评】本题考查的是二次函数综合运用,涉及到一次函数的性质、平行四边形的性质等,其中(3),要注意分类求解,避免遗漏.【题组二】5.(2020•雁塔区校级二模)已知抛物线L :y =x 2+bx +c 经过点A (﹣1,0)和(1,﹣2)两点,抛物线L 关于原点O 的对称的为抛物线L ′,点A 的对应点为点A ′. (1)求抛物线L 和L ′的表达式;(2)是否在抛物线L 上存在一点P ,抛物线L ′上存在一点Q ,使得以AA ′为边,且以A 、A ′、P 、Q 为顶点的四边形是平行四边形?若存在,求出P 点坐标;若不存在,请说明理由.【分析】(1)利用待定系数法可求抛物线L 解析式,由中心对称的性质可求抛物线L ′的表达式; (2)分两种情况讨论,由平行四边形的性质可求解.【解析】(1)∵抛物线L :y =x 2+bx +c 经过点A (﹣1,0)和(1,﹣2)两点, ∴{0=1−b +c −2=1+b +c , 解得:{b =−1c =−2,∴抛物线L 的解析式为:y =x 2﹣x ﹣2, ∵y =x 2﹣x ﹣2=(x −12)2−94, ∴顶点坐标为(12,−94),∵抛物线L 关于原点O 的对称的为抛物线L ′, ∴抛物线L ′的解析式为:y =﹣(x +12)2+94; (2)∵点A 关于原点O 对应点为点A ′, ∴点A '(1,0), ∴AA '=2,∵以AA ′为边,且以A 、A ′、P 、Q 为顶点的四边形是平行四边形, ∴PQ =AA '=2,PQ ∥AA ', 设点P (x ,x 2﹣x ﹣2), 当点P 在点Q 的左侧, ∴点Q 的横坐标为x +2, ∴x 2﹣x ﹣2=﹣(x +2+12)2+94, ∴x =﹣1,∴点P (﹣1,0)(不合题意舍去);当点P在点Q的右侧,∴点Q的横坐标为x﹣2,∴x2﹣x﹣2=﹣(x﹣2+12)2+94,∴x1=√2+1,x2=−√2+1,∴点P1(√2+1,√2),P2(−√2+1,−√2).【点评】本题是二次函数综合题,考查了二次函数的性质,中心对称的性质,平行四边形的性质,灵活运用这些性质解决问题是本题的关键.6.(2020•怀化)如图所示,抛物线y=x2﹣2x﹣3与x轴相交于A、B两点,与y轴相交于点C,点M为抛物线的顶点.(1)求点C及顶点M的坐标.(2)若点N是第四象限内抛物线上的一个动点,连接BN、CN,求△BCN面积的最大值及此时点N的坐标.(3)若点D是抛物线对称轴上的动点,点G是抛物线上的动点,是否存在以点B、C、D、G为顶点的四边形是平行四边形.若存在,求出点G的坐标;若不存在,试说明理由.(4)直线CM交x轴于点E,若点P是线段EM上的一个动点,是否存在以点P、E、O为顶点的三角形与△ABC相似.若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)令抛物线解析式中x=0即可求出C点坐标,写出抛物线顶点式,即可求出顶点M坐标;(2)过N点作x轴的垂线交直线BC于Q点,设N(n,n2﹣2n﹣3),求出BC解析式,进而得到Q点坐标,最后根据S△BCN=S△NQC+S△NQB即可求解;(3)设D点坐标为(1,t),G点坐标为(m,m2﹣2m﹣3),然后分成①DG是对角线;②DB是对角线;③DC是对角线时三种情况进行讨论即可求解;(4)连接AC ,由CE =CB 可知∠EBC =∠E ,求出MC 的解析式,设P (x ,﹣x ﹣3),然后根据△PEO 相似△ABC ,分成EO BA=EP BC和EO BC=EP BA讨论即可求解.【解析】(1)令y =x 2﹣2x ﹣3中x =0,此时y =﹣3, 故C 点坐标为(0,﹣3), 又∵y =x 2﹣2x ﹣3=(x ﹣1)2﹣4, ∴抛物线的顶点M 的坐标为(1,﹣4);(2)过N 点作x 轴的垂线交直线BC 于Q 点,连接BN ,CN ,如图1所示: 令y =x 2﹣2x ﹣3=0, 解得:x =3或x =﹣1, ∴B (3,0),A (﹣1,0), 设直线BC 的解析式为:y =ax +b ,将C (0,﹣3),B (3,0)代入直线BC 的解析式得:{−3=b 0=3a +b ,解得:{a =1b =−3,∴直线BC 的解析式为:y =x ﹣3,设N 点坐标为(n ,n 2﹣2n ﹣3),故Q 点坐标为(n ,n ﹣3),其中0<n <3,则S △BCN =S △NQC +S △NQB =12⋅QN ⋅(x Q −x C )+12⋅QN ⋅(x B −x Q )=12⋅QN ⋅(x Q −x C +x B −x Q )=12⋅QN ⋅(x B −x C ),(其中x Q ,x C ,x B 分别表示Q ,C ,B 三点的横坐标),且QN =(n ﹣3)﹣(n 2﹣2n ﹣3)=﹣n 2+3n ,x B ﹣x C =3,故S △BCN =12⋅(−n 2+3n)⋅3=−32n 2+92n =−32(n −32)2+278,其中0<n <3, 当n =32时,S △BCN 有最大值为278,此时点N 的坐标为(32,−154),(3)设D 点坐标为(1,t ),G 点坐标为(m ,m 2﹣2m ﹣3),且B (3,0),C (0,﹣3) 分情况讨论:①当DG 为对角线时,则另一对角线是BC ,由中点坐标公式可知:线段DG 的中点坐标为(x D +x G 2,y D +y G 2),即(1+m 2,t+m 2−2m−32),线段BC 的中点坐标为(x B +x C 2,y B +y C 2),即(3+02,0−32),此时DG 的中点与BC 的中点为同一个点,∴{1+m 2=32t+m 2−2m−32=−32,解得{m =2t =0, 经检验,此时四边形DCGB 为平行四边形,此时G 坐标为(2,﹣3);②当DB 为对角线时,则另一对角线是GC ,由中点坐标公式可知:线段DB 的中点坐标为(x D +x B 2,y D +y B 2),即(1+32,t+02), 线段GC 的中点坐标为(x G +x C 2,y G +y C 2),即(m+02,m 2−2m−3−32), 此时DB 的中点与GC 的中点为同一个点,∴{1+32=m+02t+02=m 2−2m−3−32,解得{m =4t =2, 经检验,此时四边形DCBG 为平行四边形,此时G 坐标为(4,5);③当DC 为对角线时,则另一对角线是GB ,由中点坐标公式可知:线段DC 的中点坐标为(x D +x C 2,y D +y C 2),即(1+02,t−32), 线段GB 的中点坐标为(x G +x B 2,y G +y B 2),即(m+32,m 2−2m−3+02), 此时DC 的中点与GB 的中点为同一个点,∴{1+02=m+32t−32=m 2−2m−3+02,解得{m =−2t =8, 经检验,此时四边形DGCB 为平行四边形,此时G 坐标为(﹣2,5);综上所述,G 点坐标存在,为(2,﹣3)或(4,5)或(﹣2,5);(4)连接AC ,OP ,如图2所示:设MC 的解析式为:y =kx +m ,将C (0,﹣3),M (1,﹣4)代入MC 的解析式得:{−3=m −4=k +m, 解得:{k =−1m =−3∴MC 的解析式为:y =﹣x ﹣3,令y =0,则x =﹣3,∴E 点坐标为(﹣3,0),∴OE =OB =3,且OC ⊥BE ,∴CE =CB ,∴∠CBE =∠E ,设P (x ,﹣x ﹣3),又∵P 点在线段EM 上,∴﹣3<x <1,则EP =√(x +3)2+(−x −3)2=√2(x +3),BC =√32+32=3√2,由题意知:△PEO 相似于△ABC ,分情况讨论:①△PEO ∽△CBA ,∴EOBA=EP BC , ∴34=√2(x+3)3√2, 解得x =−34,满足﹣3<x <1,此时P 的坐标为(−34,−94);②△PEO ∽△ABC ,∴EO BC =EP BA , ∴3√2=√2(x+3)4, 解得x =﹣1,满足﹣3<x <1,此时P 的坐标为(﹣1,﹣2).综上所述,P 点的坐标为(−34,−94)或(﹣1,﹣2).【点评】本题是二次函数综合题目,考查了二次函数的图象和性质、待定系数法求直线的解析式、平行四边形的性质、相似三角形的性质和判定、等腰三角形的判定与性质等知识;本题综合性较强,具有一定的难度,熟练掌握二次函数的图形和性质,学会用代数的方法求解几何问题.7.(2020•碑林区校级三模)在平面直角坐标系中,O为坐标原点,抛物线L:y=ax2﹣4ax(a>0)与x轴正半轴交于点A.抛物线L的顶点为M,对称轴与x轴交于点D.(1)求抛物线L的对称轴.(2)抛物线L:y=ax2﹣4ax关于x轴对称的抛物线记为L',抛物线L'的顶点为M',若以O、M、A、M'为顶点的四边形是正方形,求L'的表达式.(3)在(2)的条件下,点P在抛物线L上,且位于第四象限,点Q在抛物线L'上,是否存在点P、点Q使得以O、D、P、Q为顶点的四边形是平行四边形,若存在,求出点P坐标,若不存在,请说明理由.【分析】(1)根据抛物线的对称轴公式计算即可.(2)利用正方形的性质求出点M,M′的坐标即可解决问题.(3)分OD是平行四边形的边或对角线两种情形求解即可.【解析】(1)∵抛物线L:y=ax2﹣4ax(a>0),∴抛物线的对称轴x=−−4a2a=2.(2)如图1中,对于抛物线y=ax2﹣4ax,令y=0,得到ax2﹣4ax=0,解得x=0或4,∴A(4,0),∵四边形OMAM′是正方形,∴OD=DA=DM=DM′=2,∴M((2,﹣2),M′(2,2)把M(2,﹣2)代入y=ax2﹣4ax,可得﹣2=4a﹣8a,∴a=1 2,∴抛物线L′的解析式为y=−12(x﹣2)2+2=−12x2+2x.(3)如图3中,由题意OD=2.当OD 为平行四边形的边时,PQ =OD =2,设P (m ,12m 2﹣2m ),则Q [m ﹣2,−12(m ﹣2)2+2(m ﹣2)]或[m +2,−12(m +2)2+2(m +2)],∵PQ ∥OD ,∴12m 2﹣2m =−12(m ﹣2)2+2(m ﹣2)或12m 2﹣2m =−12(m +2)2+2(m +2), 解得m =3±√3或1±√3,∴P (3+√3,√3)或(3−√3,−√3)或(1−√3,√3)和(1+√3,−√3),当OD 是平行四边形的对角线时,点P 的横坐标为1,此时P (1,−32),∵点P 在第四象限,∴满足条件的点P 的坐标为(3−√3,−√3)或(1+√3,−√3)或(1,−32).【点评】本题属于二次函数综合题,考查了二次函数的性质,正方形的性质,平行四边形的判定和性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.8.(2020•泰安二模)如图①抛物线y =ax 2+bx +4(a ≠0)与x 轴,y 轴分别交于点A (﹣1,0),B (4,0),点C 三点.(1)试求抛物线解析式;(2)点D (3,m )在第一象限的抛物线上,连接BC ,BD .试问,在对称轴左侧的抛物线上是否存在一点P ,满足∠PBC =∠DBC ?如果存在,请求出点P 的坐标;如果不存在,请说明理由;(3)点N 在抛物线的对称轴上,点M 在抛物线上,当以M 、N 、B 、C 为顶点的四边形是平行四边形时,请直接写出点M 的坐标.【分析】(1)把已知点A 、B 代入抛物线y =ax 2+bx +4中即可求解;(2)将二次函数与方程、几何知识综合起来,先求点D 的坐标,再根据三角形全等证明∠PBC =∠DBC ,最后求出直线BP 解析式即可求出P 点坐标;(3)根据平行四边形的判定即可写出点M 的坐标.【解析】如图:(1)∵抛物线y =ax 2+bx +3(a ≠0)与x 轴,y 轴分别交于点A (﹣1,0),B (4,0),点C 三点. ∴{a −b +4=016a +4b +4=0, 解得{a =−1b =3. ∴抛物线的解析式为y =﹣x 2+3x +4.(2)存在.理由如下:y =﹣x 2+3x +4=﹣(x ﹣1.5)2+6.25.∵点D (3,m )在第一象限的抛物线上,∴m =4,∴D (3,4),∵C (0,4)∵OC =OB ,∴∠OBC =∠OCB =45°.连接CD ,∴CD ∥x 轴,∴∠DCB =∠OBC =45°,∴∠DCB =∠OCB ,在y 轴上取点G ,使CG =CD =3,再延长BG 交抛物线于点P ,。
中考数学复习《二次函数与平行四边形的综合》专项检测卷(附带答案)学校:___________班级:___________姓名:___________考号:___________1.如图1,已知抛物线2y x x =-++23与x 轴交于点A ,B ,与y 轴交于点C ,点D 是抛物线的顶点,点M 是直线BC 上方抛物线上的一动点.(1)求抛物线的顶点D 的坐标和直线BC 的解析式;(2)如图1,连接AM 交BC 于点P ,若12MP AP =,求此时点M 的坐标; (3)如图2,直线y x b =+与抛物线交于A ,E 两点,过顶点D 作DF y ∥轴,交直线AE 于点F .若点G 是抛物线上一动点,试探究在直线AE 上是否存在一点H ,使得以点D ,F ,G ,H 为顶点的四边形是平行四边形,若存在,请直接写出点H 的坐标,若不存在,请说明理由.2.如图,二次函数28y ax bx =++的图像与坐标轴分别交于点A 、B 、C ,5cos B 和:1:2AO BO =.(1)求二次函数表达式;(2)在第二象限内,线段AC 上有一点D ,作PD 平行于x 轴,交二次函数图像于点P 、H (点P 在y 轴左侧),作点Q 与点P 关于y 轴对称.①证明:四边形AQHO 为平行四边形;①若ACQ 是以AC 为斜边的直角三角形,求点P 的横坐标;①直角坐标系内存在点(,)E x y ,使得四边形CQEH 为平行四边形,请直接写出y 与x 的函数表达式,并求当线段PD 的长度最大时,点E 的坐标.3.如图,二次函数()20y x bx c b =-++>的图像与x 轴分别交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点()0,4C ,二次函数的最大值为254,P 为直线BC 上方抛物线上的一动点.(1)求抛物线和直线BC 的解析式;(2)如图1,过点P 作PD BC ⊥,垂足为D ,连接CP .是否存在点P ,使以点C ,D ,P 为顶点的三角形与AOC 相似?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)如图2,点Q 也是直线BC 上方抛物线上的一动点(点Q 在点P 的左侧),分别过点P ,Q 作y 轴的平行线,分别交直线BC 于点M ,N ,连接PQ .若四边形PQNM 是平行四边形,且周长l 最大时,求l 的最大值及相应的点P 的横坐标.4.已知,如图1,在平行四边形ABCD 中,对角线6cm AC =,8cm BC =和10cm AB =,如图2,点G 从点B 出发,沿BC 方向匀速运动,速度为1cm/s ,过点G 作GH BC ⊥交AB 于点H ;将平行四边形ABCD 沿对角线AC 剪开,DEF 从图1的位置与点G 同时出发,沿射线BC 方向匀速运动,速度为2cm /s ,当点G 停止运动时,DEF 也停止运动.设运动时间为()08t t <≤,解答下列问题:(1)当t 为何值时,点F 在线段GD 的垂直平分线上?(2)设四边形AHGD 的面积为()2cm S ,试确定S 与t 的函数关系式,并求S 的最大值; (3)连接EG ,试求当AG 平分BAC ∠时,四边形EGFD 与四边形AHGE 面积之比.5.如图,已知抛物线与x 轴相交于A ,B 两点,与y 轴交于点C ,且()3,0A -,()1,0B 和()0,3C ,顶点为P .(1)求抛物线的解析式;(2)若以A ,C ,P ,M 为顶点的四边形是平行四边形,求点M 的坐标.6.已知抛物线23y ax bx =++与x 轴交于点()1,0A -,点()3,0B ,与y 轴交于点C ,顶点为点D ,点P 为抛物线上的一个动点(1)求抛物线的解析式;(2)若过点C 的直线交线段AB 于点E ,且:3:5ACE CEB S S =,求线段CE 的长是多少?(3)当点P 在第一象限时,连接PC 和PB ,求PBC 面积的最大值时多少?(4)若点Q 在x 轴上,当以点D ,C ,P ,Q 为顶点的四边形是平行四边形时,请求出点P 的坐标.7.如图,抛物线21262y x x =--与x 轴相交于点A 、点B ,与y 轴相交于点C .(1)请直接写出点A ,B ,C 的坐标;(2)点()(),06P m n m <<在抛物线上,当m 取何值时,PBC 的面积最大?并求出PBC 面积的最大值.(3)点F 是抛物线上的动点,作FE AC ∥交x 轴于点E ,是否存在点F ,使得以A 、C 、E 、F 为顶点的四边形是平行四边形?若存在,请写出所有符合条件的点F 的坐标;若不存在,请说明理由.8.综合与探究:如图1,已知抛物线2142y x x =-++与x 轴相交于A ,B 两点(点A 在点B 的左侧),与y 轴相交于点C ,直线BD 与y 轴相交于点D ,交线段AC 于点E ,且27BD DE =.(1)求A ,B ,C 三点的坐标;(2)求直线BD 的函数表达式;(3)如图2,若抛物线的对称轴l 与直线BD 交于点P ,试探究,在平面内是否存在一点Q ,使以点A ,C ,P ,Q 为顶点的四边形为平行四边形.若存在,求出点Q 的坐标,若不存在,请说明理由.9.综合与探究如图,抛物线214433y x x =--+与x 轴交于A ,B 两点(点B 在点A 的左侧),与y 轴交于点C ,P 是直线BC 上方抛物线上一动点.(1)求A,B,C三点的坐标,并直接写出直线BC的函数表达式.(2)连接PB,PC,求PBC面积的最大值及此时点P的坐标.(3)在(2)的条件下,若F是抛物线对称轴上一点,在抛物线上是否存在点Q,使以B,F,P,Q为顶点的四边形是平行四边形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.10.如图1,在平面直角坐标系xOy中,抛物线223=-++与x轴分别交于点A和点B,与y轴交于点C,y x x连接BC.(1)求ABC的面积;(2)如图2,点P是该抛物线上一个动点,并沿抛物线从点B运动至点A,连接PO、PB,并以PO、PB为边作平行四边形POQB.①当平行四边形POQB的面积为9时,求点P的坐标;①直接写出在整个运动过程中,点Q与线段BC的最大距离是.11.如图,在平面直角坐标系中,抛物线24y ax bx =++交y 轴于点A ,交x 轴于点()6,0B -和点()2,0C ,连接AB 、AQ 、BQ ,BQ 与y 轴交于点N .(1)求抛物线表达式;(2)点713Q ⎛⎫ ⎪⎝⎭,,点M 在x 轴上,点E 在平面内,且四边形ANEM 是平行四边形. ①求点E 的坐标;①设射线AM 与BN 相交于点P ,交BE 于点H ,将BPH 绕点B 旋转一周,旋转后的三角形记为11BP H △,求11BP 的最小值.12.如图,已知二次函数2y x bx c =++的图象与x 轴交于点(1,0)A ,(3,0)B 与y 轴交于点C .(1)求二次函数的解析式;(2)点E 是二次函数第四象限图象上一点,过点E 作x 轴的垂线,交直线BC 于点D ,求四边形AEBD 面积的最大值及此时点E 的坐标;(3)若点P 为抛物线上的一点,点F 为对称轴上的一点,且以点A ,B ,P ,F 为顶点的四边形为平行四边形,直接写出点P 的坐标.13.如图,抛物线22y x x c =-++与x 轴交于A ,B 两点,与y 轴交于点C ,直线3y x =-+经过B ,C 两点.(1)求抛物线的函数表达式.(2)已知P 为抛物线22y x x c =-++上一点(不与点B 重合),若点P 关于x 轴对称的点P '恰好在直线BC 上,求点P 的坐标;(3)在(2)的条件下,以AB 为对角线画平行四边形AMBP ',将抛物线22y x x c =-++的顶点沿直线y x b=-+平移得到的抛物线恰好经过点M ,求平移后的抛物线的函数表达式.14.如图,抛物线22(0)y x x m m =-++>与y 轴交于A 点,其顶点为D .直线122y x m =--分别与x 轴、y 轴交于B 、C 两点,与直线AD 相交于E 点.(1)求A 、D 的坐标(用m 的代数式表示);(2)将ACE 沿着y 轴翻折,若点E 的对称点P 恰好落在抛物线上,求m 的值;(3)抛物线22(0)y x x m m =-++>上是否存在一点P ,使得以P 、A 、C 、E 为顶点的四边形是平行四边形?若存在,求此抛物线的解析式;若不存在,请说明理由.15.若直线5y x =-与y 轴交于点A ,与x 轴交于点B ,二次函数2y ax bx c =++的图象经过点A ,点B ,且与x 轴交于点()1,0C -.(1)求二次函数的解析式;(2)若点P 为直线AB 下方抛物线上一点,过点P 作直线AB 的垂线,垂足为E ,作PF y ∥轴交直线AB 于点F ,求线段PF 最大值及此时点P 的坐标;(3)将抛物线沿x 轴的正方向平移2个单位长度得到新抛物线y ',Q 是新抛物线y '与x 轴的交点(靠近y 轴),N 是原抛物线对称轴上一动点,在新抛物线上存在一点M ,使得以M 、N 、B 、Q 为顶点的四边形是平行四边形,请直接写出符合条件的点M 的坐标.参考答案:1.(1)()1,4D 3y x =-+(2)点M 的坐标的()1,4或()2,3(3)存在,点H 的坐标为()0,1或()2,3或117317++⎝⎭,或117317--⎝⎭,2.(1)228y x x =-++ (2)①12-①21102y x =-+ (4,2)E3.(1)抛物线的解析式为234y x x =-++,直线BC 的解析式为4y x =-+(2)点P 的坐标为1846,525⎛⎫ ⎪⎝⎭或12136,525⎛⎫ ⎪⎝⎭(3)l 的最大值为12,相应的点P 的横坐标224.(1)2 (2)23924(08)8S t t t =-++<≤ (3)168955.(1)223y x x =--+(2)()2,1-- ()4,1- ()2,76.(1)223y x x =-++;(3)278;(4)点P 的坐标为()11-或()11-或()1或()1.7.(1)()2,0A - ()6,0B ()0,6C -;(2)3m =,PBC 面积的最大值272;(3)存在,()2+或()2-或()4,6-.8.(1)()2,0A - ()4,0B ()0,4C (2)1433y x =-+ (3)()3,3-或()1,3--或()3,59.(1)()()2060A B -,,, ()04C , 243y x =+ (2)PBC 的面积最大值为9,此时点P 的坐标为()35-,(3)713⎛⎫ ⎪⎝⎭,或753⎛⎫- ⎪⎝⎭,或()73--,10.(1)6(2)①(0,3)或(2,3);212 11.(1)214433y x x =--+ (2)①()2,2E --;①6212.(1)243y x x =-+; (2)94,33,24⎛⎫- ⎪⎝⎭; (3)点P 的坐标为2,1或()4,3或()0,3.13.(1)223y x x =-++(2)(2,5)P --.(3)2(6)1y x =---14.(1)()()0,,1,1A m D m + (2)32m = (3)2524y x x =-++或2124y x x =-++15.(1)245y x x =--(2)PF 有最大值254,点P 的坐标为53524,⎛⎫- ⎪⎝⎭ (3)满足条件的点M 的坐标有()4,9M -或()6,5-或()2,27-。
●探究(1)在图1中,已知线段AB,CD,其中点分别为E,F。
①若A(-1,0),B(3,0),则E点坐标为__________;②若C(-2,2),D(-2,-1),则F点坐标为__________;(2)在图2中,已知线段AB的端点坐标为A(a,b),B(c,d),求出图中AB中点D的坐标(用含a,b,c,d的代数式表示),并给出求解过程;●归纳无论线段AB处于直角坐标系中的哪个位置,当其端点坐标为A(a,b),B(c,d),AB中点为D(x,y)时,x=_________,y=___________;(不必证明)●运用在图2中,一次函数y=x-2与反比例函数的图象交点为A,B。
①求出交点A,B的坐标;②若以A,O,B,P为顶点的四边形是平行四边形,请利用上面的结论求出顶点P的坐标。
图 2 图 3 图1以二次函数为载体的平行四边形存在性问题是近年来中考的热点,其图形复杂,知识覆盖面广,综合性较强,对学生分析问题和解决问题的能力要求高.对这类题,常规解法是先画出平行四边形,再依据“平行四边形的一组对边平行且相等”或“平行四边形的对角线互相平分”来解决.由于先要画出草图,若考虑不周,很容易漏解.为此,笔者另辟蹊径,借助探究平行四边形顶点坐标公式来解决这一类题.1 两个结论,解题的切入点数学课标,现行初中数学教材中没有线段的中点坐标公式,也没有平行四边形的顶点坐标公式,我们可帮助学生来探究,这可作为解题的切入点。
1.1 线段中点坐标公式平面直角坐标系中,点A 坐标为(x 1,y 1),点B 坐标为(x 2,y 2),则线段AB 的中点坐标为(221x x +,221y y +). 证明 : 如图1,设AB 中点P 的坐标为(x P ,y P ).由x P -x 1=x 2-x P ,得x P =221x x +,同理y P =221y y +,所以线段AB 的中点坐标为(221x x +,221y y +).1.2 平行四边形顶点坐标公式 □ABCD 的顶点坐标分别为A (x A ,y A )、B (x B ,y B )、C (x C ,y C )、D (x D ,y D ),则:x A +x C =x B +x D ;y A +y C =y B +y D .证明: 如图2,连接AC 、BD ,相交于点E .∵点E 为AC 的中点,∴E 点坐标为(2C A x x +,2C A y y +). 又∵点E 为BD 的中点, ∴E 点坐标为(2D B x x +,2D B y y +). ∴x A +x C =x B +x D ;y A +y C =y B +y D .即平行四边形对角线两端点的横坐标、纵坐标之和分别相等.2 一个基本事实,解题的预备知识如图3,已知不在同一直线上的三点A 、B 、C ,在平面内另找一个点D ,使以A 、B 、C 、D 为顶点的四边形是平行四边形.答案有三种:以AB 为对角线的□ACBD 1,以AC 为对角线的□ABCD 2,以BC 为对角线的□ABD 3C .图43 两类存在性问题解题策略例析与反思3.1 三个定点、一个动点,探究平行四边形的存在性问题例1 已知抛物线y=x 2-2x+a (a <0)与y 轴相交于点A ,顶点为M .直线y=21x-a 分别与x 轴、y 轴相交于B 、C 两点,并且与直线AM 相交于点N .(1)填空:试用含a 的代数式分别表示点M 与N 的坐标,则M ( ), N ( );(2)如图4,将△NAC 沿y 轴翻折,若点N 的对应点N ′恰好落在抛物线上,AN ′与x 轴交于点D ,连接CD ,求a 的值和四边形ADCN 的面积;(3)在抛物线y=x 2-2x+a (a <0)上是否存在一点P ,使得以P 、A 、C 、N 为顶点的四边形是平行四边形?若存在,求出点P 的坐标;若不存在,试说明理由.解:(1)M (1,a-1),N (a 34,-a 31);(2)a=-49;S 四边形ADCN =16189; (3)由已知条件易得A (0,a )、C (0,-a )、N (a 34,-a 31).设P (m ,m 2-2m +a ). ①当以AC 为对角线时,由平行四边形顶点坐标公式(解题时熟练推导出),得:⎪⎪⎩⎪⎪⎨⎧+-+-=-+=+a m m a a a m a 23134002,∴⎪⎪⎩⎪⎪⎨⎧-==81525a m . ∴P 1(25,-85); ②当以AN 为对角线时,得:⎪⎪⎩⎪⎪⎨⎧+-+-=-+=+a m m a a a m a 23103402,∴⎪⎪⎩⎪⎪⎨⎧==81525a m (不合题意,舍去). ③当以CN 为对角线时,得:⎪⎪⎩⎪⎪⎨⎧+-+=--+=+a m m a a a m a 23103402,∴⎪⎪⎩⎪⎪⎨⎧-=-=8321a m . ∴P 2(-21,87). ∴在抛物线上存在点P 1(25,-85)和P 2(-21,87),使得以P 、A 、C 、N 为顶点的四边形是平行四边形.反思:已知三个定点的坐标,可设出抛物线上第四个顶点的坐标,运用平行四边形顶点坐标公式列方程(组)求解.这种题型由于三个定点构成的三条线段中哪条为对角线不清楚,往往要以这三条线段分别为对角线分类,分三种情况讨论.图53.2 两个定点、两个动点,探究平行四边形存在性问题例2 如图5,在平面直角坐标系中,抛物线A (-1,0),B (3,0),C (0,-1)三点.(1)求该抛物线的表达式;(2)点Q 在y 轴上,点P 在抛物线上,要使以点Q 、P 、A 、B 为顶点的四边形是平行四边形,求所有满足条件点P 的坐标.解 :(1)易求抛物线的表达式为y=132312--x x ; (2)由题意知点Q 在y 轴上,设点Q 坐标为(0,t );点P 在抛物线上,设点P 坐标为(m ,132312--m m ). 尽管点Q 在y 轴上,也是个动点,但可理解成一个定点,这样就转化为三定一动了. ①当以AQ 为对角线时,由四个顶点的横坐标公式得:-1+0=3+m ,∴m=-4,∴P 1(-4,7);②当以BQ 为对角线时,得:-1+m=3+0,∴m=4,∴P 2(4,35); ③当以AB 为对角线时,得:-1+3=m+0,∴m=2,∴P 3(2,-1).综上,满足条件的点P 为P 1(-4,7)、P 2(4,35)、P 3(2,-1). 反思:这种题型往往特殊,一个动点在抛物线上,另一个动点在x 轴(y 轴)或对称轴或某一定直线上.设出抛物线上的动点坐标,另一个动点若在x 轴上,纵坐标为0,则用平行四边形顶点纵坐标公式;若在y 轴上,横坐标为0,则用平行四边形顶点横坐标公式.该动点哪个坐标已知就用与该坐标有关的公式.本例中点Q 的纵坐标t 没有用上,可以不设.另外,把在定直线上的动点看成一个定点,这样就转化为三定一动了,分别以三个定点构成的三条线段为对角线分类,分三种情况讨论.例3 如图6,在平面直角坐标系中,已知抛物线经过A (-4,0),B (0,-4),C (2,0)三点.(1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值;(3)若点P 是抛物线上的动点,点Q 是直线y =-x 上的动点,判断有几个位置能使以点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.解:(1)易求抛物线的解析式为y=21x 2+x-4; (2)s=-m 2-4m (-4<m <0);s 最大=4(过程略);(3)尽管是直接写出点Q 的坐标,这里也写出过程.由题意知O (0,0)、B (0,-4). 由于点Q 是直线y=-x 上的动点,设Q (s ,-s ),把Q 看做定点;设P (m ,21m 2+m -4). ①当以OQ 为对角线时,⎪⎩⎪⎨⎧-++-=-+=+42140002m m s m s ∴s=-252±.∴Q 1(-2+52,2-52),Q 2(-2-52,2+52);②当以BQ 为对角线时,⎪⎩⎪⎨⎧--=-+++=+s m m s m 44210002 ∴s 1=-4,s 2=0(舍).∴Q 3(-4,4);③当以OB 为对角线时,⎪⎩⎪⎨⎧-++-=-+=+42140002m m s m s ∴s 1=4,s 2=0(舍).∴Q 4(4,-4).综上,满足条件的点Q 为Q 1(-2+52,2-52)、Q 2(-2-52,2+52)、Q 3(-4,4)、Q 4(4,-4).反思:该题中的点Q 是直线y =-x 上的动点,设动点Q 的坐标为(s ,-s ),把Q 看做定点,就可根据平行四边形顶点坐标公式列方程组了.4 问题总结这种题型,关键是合理有序分类:无论是三定一动,还是两定两动,统统把抛物线上的动点作为第四个动点,其余三个作为定点,分别以这三个定点构成的三条线段为对角线分类,分三种情况讨论,然后运用平行四边形顶点坐标公式转化为方程(组).这种解法,不必画出平行四边形草图,只要合理分类,有序组合,从对角线入手不会漏解,条理清楚,而且适用范围广.其本质是用代数的方法解决几何问题,体现的是分类讨论思想、数形结合的思想.如图,在平面直角坐标系中,已知Rt△AOB的两条直角边OA、OB分别在y轴和x轴上,并且OA、OB的长分别是方程x2—7x+12=0的两根(OA<0B),动点P从点A开始在线段AO 上以每秒l个单位长度的速度向点O运动;同时,动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A运动,设点P、Q运动的时间为t秒.(1)求A、B两点的坐标。
模式1:平行四边形分类标准:讨论对角线例如:请在抛物线上找一点p 使得P C B A 、、、四点构成平行四边形,则可分成以下几种情况(1)当边AB 是对角线时,那么有BC AP //(2)当边AC 是对角线时,那么有CP AB //(3)当边BC 是对角线时,那么有BP AC //例题1:(山东省阳谷县育才中学模拟10)本题满分14分)在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S.求S 关于m 的函数关系式,并求出S 的最大值;(3)若点P 是抛物线上的动点,点Q 是直线y=-x 上的动点,判断有几个位置能使以点P 、Q 、B 、0为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.练习:图1,抛物线322++-=x x y 与x 轴相交于A 、B 两点(点A 在B 的左侧),与y 轴相交于点C ,顶点为D .(1)直接写出A 、B 、C 三点的坐标和抛物线的对称轴;(2)连结BC ,与抛物线的对称轴交于点E ,点P 为线段BC 上的一个动点,过点P 作PF //DE 交抛物线于点F ,设点P 的横坐标为m .①用含m 的代数式表示线段PF 的长,并求出当m 为何值时,四边形PEDF 为平行四边形?②设△BCF 的面积为S ,求S 与m 的函数关系.模式2:梯形分类标准:讨论上下底例如:请在抛物线上找一点p 使得P C B A 、、、四点构成梯形,则可分成以下几种情况(1)当边AB 是底时,那么有PC AB //(2)当边AC 是底时,那么有BP AC //(3)当边BC 是底时,那么有AP BC //例题2:已知,矩形OABC 在平面直角坐标系中位置如图1所示,点A 的坐标为(4,0),点C 的坐标为)20(-,,直线x y 32-=与边BC 相交于点D .(1)求点D 的坐标;(2)抛物线c bx ax y ++=2经过点A 、D 、O ,求此抛物线的表达式;(3)在这个抛物线上是否存在点M ,使O 、D 、A 、M 为顶点的四边形是梯形?若存在,请求出所有符合条件的点M 的坐标;若不存在,请说明理由.练习:已知二次函数的图象经过A (2,0)、C (0,12) 两点,且对称轴为直线x =4,设顶点为点P ,与x 轴的另一交点为点B .(1)求二次函数的解析式及顶点P 的坐标;(2)如图1,在直线 y =2x 上是否存在点D ,使四边形OPBD 为等腰梯形?若存在,求出点D 的坐标;若不存在,请说明理由;(3)如图2,点M 是线段OP 上的一个动点(O 、P 两点除外),以每秒2个单位长度的速度由点P 向点O 运动,过点M 作直线MN //x 轴,交PB 于点N . 将△PMN 沿直线MN 对折,得到△P 1MN .在动点M 的运动过程中,设△P 1MN 与梯形OMNB 的重叠部分的面积为S ,运动时间为t 秒,求S 关于t 的函数关系式. 模式3:直角三角形分类标准:讨论直角的位置或者斜边的位置例如:请在抛物线上找一点p 使得P B A 、、三点构成直角三角形,则可分成以下几种情况(1)当A ∠为直角时,AB AC ⊥(2)当B ∠为直角时,BA BC ⊥(3)当C ∠为直角时,CB CA ⊥例题3:如图1,已知抛物线y =x 2+bx +c 与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C (0,-3),对称轴是直线x =1,直线BC 与抛物线的对称轴交于点D .(1)求抛物线的函数表达式;(2)求直线BC 的函数表达式;(3)点E 为y 轴上一动点,CE 的垂直平分线交CE 于点F ,交抛物线于P 、Q 两点,且点P 在第三象限. ①当线段34PQ AB =时,求tan∠CED 的值; ②当以C 、D 、E 为顶点的三角形是直角三角形时,请直接写出点P 的坐标.练习:如图1,直线434+-=x y 和x 轴、y 轴的交点分别为B 、C ,点A 的坐标是(-2,0).(1)试说明△ABC 是等腰三角形;(2)动点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M 运动t 秒时,△MON 的面积为S .① 求S 与t 的函数关系式;② 设点M 在线段OB 上运动时,是否存在S =4的情形?若存在,求出对应的t 值;若不存在请说明理由;③在运动过程中,当△MON 为直角三角形时,求t 的值.模式4:等腰三角形分类标准:讨论顶角的位置或者底边的位置例如:请在抛物线上找一点p 使得P B A 、、三点构成等腰三角形,则可分成以下几种情况(1)当AAC=∠为顶角时,AB(2)当BBC=∠为顶角时,BA(3)当C∠为顶角时,CBCA=例题4:已知:如图1,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=2,OC=3,过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E.(1)求过点E、D、C的抛物线的解析式;(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G.如果DF与(1)中的6,那么EF=2GO是否成抛物线交于另一点M,点M的横坐标为5立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在成立,请说明理由.练习:(2012江汉市中考模拟)已知抛物线y =ax 2+bx +c (a >0)经过点B (12,0)和C (0,-6),对称轴为x =2.(1)求该抛物线的解析式.(2)点D 在线段AB 上且AD =AC ,若动点P 从A 出发沿线段AB 以每秒1个单位长度的速度匀速运动,同时另一个动点Q 以某一速度从C 出发沿线段CB 匀速运动,问是否存在某一时刻,使线段PQ 被直线CD 垂直平分?若存在,请求出此时的时间t (秒)和点Q 的运动速度;若存在,请说明理由.(3)在(2)的结论下,直线x =1上是否存在点M ,使△MPQ 为等腰三角形?若存在,请求出所有点M 由.模式5:相似三角形突破口:寻找比例关系以及特殊角例题5:(据荆州资料第58页第2题改编)在梯形ABCD 中,AD ∥BC ,BA ⊥AC ,∠B = 450,AD = 2,BC = 6,以BC 所在直线为x 轴,建立如图所示的平面直角坐标系,点A 在y 轴上。
中考数学总复习《二次函数中的平行四边形存在性问题》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________1.如图,三角形ABC 是以BC 为底边的等腰三角形,点A 、C 分别是一次函数334y x =-+的图象与y 轴、x 轴的交点,点B 在二次函数218y x bx c =++的图象上,且该二次函数图象上存在一点D 使四边形ABCD 能构成平行四边形.(1)求B 、D 坐标,并写出该二次函数表达式;(2)动点P 从A 到D ,同时动点Q 从C 到A 都以每秒1个单位的速度运动,问: ①当P 运动到何处时,有PQ AC ⊥?②当P 运动到何处时,四边形PDCQ 的面积最小?此时四边形PDCQ 的面积是多少?2.如图,二次函数()24y x =+的图象与x 轴交于点A ,与y 轴交于点B .(1)求抛物线的对称轴;(2)在平面直角坐标系内是否存在一点P ,使以P 、A 、O 、B 为顶点的四边形为平行四边形?若存在,求出点P 的坐标;若不存在,请说明理由.3.如图,二次函数()24y x =+的图象与x 轴交于点A ,与y 轴交于点B .(1)求点A B 、的坐标; (2)求抛物线的对称轴;(3)平面内是否存在一点P ,使以P A O B 、、、为顶点的四边形为平行四边形?若存在,求出点P 的坐标;若不存在,请说明理由.4.如图,已知二次函数2y x bx c =-++的图像交x 轴于点()10A -,和()50B ,,交y 轴于点C .(1)求这个二次函数的表达式;(2)如图1,点M 从点B 出发,以每秒2个单位长度的速度沿线段BC 向点C 运动,点N 从点O 出发,以每秒1个单位长度的速度沿线段OB 向点B 运动,点M ,N 同时出发.设运动时间为t 秒()05t <<.当t 为何值时,BMN 的面积最大?最大面积是多少?(3)已知P 是抛物线上一点,在直线BC 上是否存在点Q ,使以A ,C ,P ,Q 为顶点的四边形是平行四边形?若存在,求点Q 坐标;若不存在,请说明理由. 5.已知二次函数213442y x x =--与x 数轴交于点A 、B (A 在B 的左侧),与y 轴交于点C ,连接BC . 发现:点A 的坐标为__________,求出直线BC 的解析式;拓展:如图1,点P 是直线BC 下方抛物线上一点,连接PB 、PC ,当PBC 面积最大时,求出P 点的坐标; 探究:如图2,抛物线顶点为D ,抛物线对称轴交BC 于点E ,M 是线段BC 上一动点(M 不与B 、C 两点重合),连接PM ,设M 点的横坐标为()08<<m m ,当m 为何值时,四边形PMED 为平行四边形?6.解答题如图,在平面直角坐标系中,二次函数24y ax bx =+-的图像交坐标轴于()1,0A -、()4,0B 两点,点P 是抛物线上的一个动点.(1)求这个二次函数的解析式;(2)若点P 在直线BC 下方,P 运动到什么位置时,四边形PBOC 面积最大?求出此时点P 的坐标和四边形PBOC 的最大面积;(3)直线BC 上是否存在一点Q ,使得以点A B P Q 、、、组成的四边形是平行四边形?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.7.如图,二次函数23y ax bx =++的图象与x 轴交于点()30A -,和()4,0B ,点A 在点B 的左侧,与y 轴交于点C .(1)求二次函数的函数解析式;(2)如图,点P 在直线BC 上方的抛物线上运动,过点P 作PD AC ∥交BC 于点D ,作PE x ⊥轴交BC 于点E ,求724PD PE +的最大值及此时点P 的坐标;(3)在(2)中724PD PE +取最大值的条件下,将抛物线沿水平方向向右平移4个单位,再沿竖直方向向上平移3个单位,点Q 为点P 的对应点,平移后的抛物线与y 轴交于点G ,M 为平移后的抛物线的对称轴上一点,在平移后的抛物线上确定一点N ,使得以点Q 、G 、M 、N 为顶点的叫边形是平行四边形,写出所有符合条件的点N 的坐标,并写出求解点N 的坐标的其中一种情况的过程. 8.如图,二次函数234y x bx c =++的图象与x 轴交于点A 和B ,点B 的坐标是(4,0),与y 轴交于点C (0,-3),点D 在抛物线上运动.(1)求抛物线的表达式;(2)当点E 在x 轴上运动时,探究以点B ,C ,D ,E 为顶点的四边形是平行四边形,并直接写出点E 的坐标. 9.在平面直角坐标系中,二次函数22y ax bx =++的图象与x 轴交于(30)A -,,()1,0B 两点,与y 轴交于点C .(1)求这个二次函数的解析式;(2)点M 为抛物线上一动点,在x 轴上是否存在点Q ,使以A 、C 、M 、Q ,为顶点的四边形是平行四边形?若存在,直接写出M 的坐标;若不存在,说明理由. 10.如图,直线122y x =+分别与x 轴、y 轴交于C ,D 两点,二次函数2y x bx c =-++的图像经过点D ,与直线相交于点E ,且:4:3CD DE =.(1)求点E 的坐标和二次函数表达式. (2)过点D 的直线交x 轴于点M .①当DM 与x 轴的夹角等于2DCO ∠时,请直接写出点M 的坐标;①当DM CD ⊥时,过抛物线上一动点P (不与点D ,E 重合),作DM 的平行线交直线CD 于点Q ,若以D ,M ,P ,Q 为顶点的四边形是平行四边形,求点P 的横坐标.11.如图,在平面直角坐标系中,二次函数的图像交坐标轴于()()1,04,0A B C -、、三点,且OB OC =,点P 是抛物线上的一个动点.(1)求这个二次函数的解析式;(2)若点P 在直线BC 下方,P 运动到什么位置时,四边形PBOC 面积最大?求出此时点P 的坐标和四边形PBOC 的最大面积;(3)直线BC 上是否存在一点Q ,使得以点A B P Q 、、、组成的四边形是平行四边形?若存在,求出点Q 的坐标;若不存在,请说明理由.12.已知二次函数220y ax x c a =++≠()的图像与x 轴交于10()A B 、,两点,与y 轴交于点(03)C -,.(1)求二次函数的表达式;(2)D 是二次函数图像上位于第三象限内的点,求ACD 的面积最大时点D 的坐标;(3)M 是二次函数图像对称轴上的点,在二次函数图像上是否存在点N ,使以M N B O 、、、为顶点的四边形是平行四边形?若有,请写出点N 的坐标.(不写求解过程)13.在平面直角坐标系中,二次函数22y ax bx =++的图像与x 轴交于()()3,0,1,0A B -两点,与y 轴交于点C . (1)求二次函数的解析式;(2)点P 是直线AC 上方的抛物线上一动点,当ACP △面积最大时,求出点P 的坐标;(3)点M 为抛物线上一动点,在x 轴上是否存在点Q ,使以A C M Q 、、、为顶点的四边形是平行四边形?若存在,直接写出点Q 的坐标;若不存在,说明理由.14.如图1,二次函数2y ax bx =+的图像过点A (-1,3),顶点B 的横坐标为1.(1)求二次函数的解析式;(2)点P 为二次函数第一象限图象上一点,点Q 在x 轴上,若以A 、B 、P 、Q 为顶点的四边形是平行四边形,求点P 的坐标;(3)如图3,一次函数y kx =(k >0)的图象与该二次函数的图像交于O 、C 两点,点T 为该二次函数图像上位于直线OC 下方的动点,过点T 作直线1:l y x b k=-+交线段OC 于点M (不与O 、C 重合),过点T 作直线TN //y 轴交OC 于点N ,若在点T 运动的过程中,2ON OM =常数m ,求m 、k 的值. 15.如图,在平面直角坐标系中,二次函数214y x bx c =-++的图象与坐标轴交于、、A B C 三点,其中点A的坐标为()0,8,点B 的坐标为()4,0-.(1)求该二次函数的表达式及点C 的坐标;(2)点D 为该二次函数在第一象限内图象上的动点,连接AC CD 、,以AC CD 、为邻边作平行四边形ACDE ,设平行四边形ACDE 的面积为.S ①求S 的最大值;①当S 取最大值时,Р为该二次函数对称轴上--点,当点D 关于直线CP 的对称点E 落在y 轴上时,求点Р的坐标.参考答案1.【答案】(1)()4,0B - ()8,3D 211384y x x =--(2)当点P 运动到距离点52A 个单位处时,四边形PDCQ 面积最小,最小值为8182.【答案】(1)4x =-(2)()4,16或()4,16--或()4,16-3.【答案】(1)()4,0A - ()0,16B (2)4x =-(3)()4,16或()4,16-或()4,16--. 4.【答案】(1)245y x x =-++(2)当52t =时,BMN 的面积最大,最大面积是258(3)存在,Q 的坐标为()712-,或()72-,或()14,或()23, 5.【答案】发现:()2,0-,直线BC 的解析式为1y x 42=-;拓展:()4,6P -;探究:当5m =时,四边形PMED 为平行四边形6.【答案】(1)234y x x =--(2)当P 点坐标为(2,6)-时,16(3)Q 的坐标为(2,6)--或(10,6)7.【答案】(1)211344y x x =-++(2)724PD PE +的最大值为12,此时522⎛⎫ ⎪⎝⎭,(3)1611632N ⎛⎫ ⎪⎝⎭, 2471632N ⎛⎫-- ⎪⎝⎭,32147216N ⎛⎫- ⎪⎝⎭,.8.【答案】(1)239344y x x =--(2)(1,0)或(7,0)或41502⎛⎫+- ⎪ ⎪⎝⎭,或41502⎛⎫- ⎪ ⎪⎝⎭, 9.【答案】(1)224233y x x =--+(2)存在,点M 的坐标为(2,2)-或---,(172)或(17,2)-+-10.【答案】(1)2722y x x =-++(2)①302⎛⎫- ⎪⎝⎭,或302⎛⎫⎪⎝⎭,;①3192-或3192+ 11.【答案】(1)234y x x =--(2)(2,6)P -,四边形PBOC 的最大面积为16(3)存在,Q 的坐标为(2,6)--或(10,6) 12.【答案】(1)223y x x =+-(2)315(,)24D --(3)存在,点N 的坐标为(2,5)或(0,3)-或(2,3)--13.【答案】(1)224233y x x =--+;(2)35(,)22P -(3)存在 12(1,0),(5,0)Q Q -- 34(27,0),(27,0)+-Q Q .14.【答案】(1)22y x x =-;(2)点P 的坐标(15,4)+或(13,2)+;(3)554m =12k =.15.【答案】(1)y =-14x 2+x +8,C 点坐标为(8,0);(2)①32;①P (2,2)或(2,6)。
中考二次函数应用题(及答案解析)二次函数应用题1.汽车智能辅助驾驶已开始得到应用,其自动刹车的工作原理是用雷达测出车辆与前方障碍物之间的距离(并集合车速转化为所需时间),当此距离等于报警距离时就开始报警提醒,等于危险距离时就自动刹车.若将报警时间划分为4段,分别为准备时间t 0、人的反应时间t 1、系统反应时间t 2、制动时间t 3,相应的距离分别为d 0,d 1,d 2,d 3,如下图所示.当车速为v (米/秒),且(0,33.3]v ∈时,通过大数据统计分析得到下表给出的数据(其中系数k 随地面湿滑程度等路面情况而变化,[1,2]∈k ).阶段 0.准备 1.人的反应 2.系统反应 3.制动时间时间 t 0 t 1=0.8秒 t 2=0.2秒 t 3距离d 0=10米d 1d 22320v d k =米(1)请写出报警距离d (米)与车速v (米/秒)之间的函数关系式d (v );(2)若要求汽车不论在何种路面情况下行驶,报警距离均小于50米,则汽车的行驶速度应限制在多少千米/小时?2.某商场销售一种小商品,进货价为8元/件,当售价为10元/件时,每天的销售量为100件.在销售过程中发现:销售单价每上涨1元,每天的销售量就减少10件.设销售单价为x (元/件)(10x ≥的整数),每天销售利润为y (元). (1)求y 与x 的函数关系式,并写出x 的取值范围;(2)若每件该小商品的利润率不超过100%,且每天的进货总成本不超过800元,求该小商品每天销售利润y 的取值范围.3.网络购物越来越方便快捷,远方的朋友通过网购就可以迅速品尝到茂名的新鲜荔枝,同时也增加了种植户的收入,种植户老张去年将全部荔枝按批发价卖给水果商,收入6万元,今年的荔枝产量比去年增加2000千克,计划全部采用互联网销售,网上销售比去年的批发价高50%,若按此价格售完,今年的收入将达到10.8万元. (1)去年的批发价和今年网上售价分别是多少?(2)若今年老张按(1)中的网上售价销售,则每天的销量相同,20天恰好可将荔枝售完,经调查发现,当网上售价每上升0.1元/千克,每日销量将减少5千克,将网上售价定为多少,才能使日销量收入最大?4.为响应江阴市“创建全国文明城市”号召,某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18m ,另外三边由36m 长的栅栏围成.设矩形ABCD 空地中,垂直于墙的边AB =x cm ,面积为y m 2如图所示).(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)若该单位用8600元购买了甲、乙、丙三种绿色植物共400棵(每种植物的单价和每棵栽种的合理用地面积如表).问丙种植物最多可以购买多少棵?此时,这批植物可以全部栽种到这块空地上吗?请说明理由.甲 乙 丙 单价(元/棵) 14 16 28 合理用地(m 2/棵)0.410.45.某社区委员会决定把一块长40m ,宽30m 的矩形空地改建成健身广场;设计图如图所示,矩形四周修建4个全等的长方形花坛,花坛的长比宽多5米,其余部分修建健身活动区,设花坛的长为()m 610x x ≤≤,健身活动区域的面积为2m S .(1)求出S 与x 之间的函数关系式; (2)求健身活动区域的面积S 的最大值. 6.问题提出(1)如图①,在矩形ABCD 中,4AB =,6BC =,点F 是AB 的中点,点E 在BC 上,2BE EC =,连接FE 并延长交DC 的延长线于点G ,求CG 的长;问题解决(2)如图②,某生态农庄有一块形状为平行四边形ABCD 的土地,其中4km AB =,6km BC =,60B ∠=︒.管理者想规划出一个形状为EMP 的区域建成亲子采摘中心,根据设计要求,点E 是AD 的中点,点P 、M 分别在BC 、AB 上,PM AB ⊥.设BP 的长为(km)x ,EMP 的面积为y 2(km ).①求y 与x 之间的函数关系式;②为容纳更多的游客,要求EMP 的面积尽可能的大,请求出EMP 面积的最大值,并求出此时BP 的长.7.2022年北京冬奥会即将召开,激起了人们对冰雪运动的极大热情.如图是某跳台滑雪训练场的横截面示意图,取某一位置的水平线为x 轴,过跳台终点A 作水平线的垂线为y 轴,建立平面直角坐标系,图中的抛物线211:215C y x x =-++近似表示滑雪场地上的一座小山坡,某运动员从点O 正上方4米处的A 点滑出,滑出后沿一段抛物线221:4C y x bx c =-++运动.(1)求山坡坡顶的高度;(2)当运动员运动到离A 处的水平距离为2米时,离水平线的高度为7米,求抛物线2C 的函数解析式(不要求写出自变量x 的取值范围);(3)在(2)的条件下,当运动员运动的水平距离为多少米时,运动员与小山坡的竖直距离为1米?8.为了提高巴中市民的生活质量,巴中市对老旧小区进行了美化改造.如图,在老旧小区改造中,某小区决定用总长27m 的栅栏,再借助外墙围成一个矩形绿化带ABCD ,中间用栅栏隔成两个小矩形,已知房屋外墙长9m .(1)当AB 长为多少时,绿化带ABCD 的面积为242m(2)当AB 长为多少时,绿化带ABCD 的面积最大,最大面积是多少?9.某商场销售一款服装,经市场调查发现,每月的销售量y (件)与销售单价x (元/件)之间的函数关系如表格所示.同时,商场每出售1件服装,还要扣除各种费用150元.销售单价x (元/件) 260 240 220 销售量y (件)637791(1)求y 与x 之间的函数关系式;(2)当销售单价为多少元时,商场每月能够获得最大利润?最大利润是多少?(3)4月底,商场还有本款服装库存580件.若按(2)中获得最大月利润的方式进行销售,到12月底商场能否销售完这批服装?请说明理由.10.为缓解停车难的问题,太阳山小区利用一块长方形空地建了一个小型的惠民停车场,其布局如图所示.已知停车场的长为52m ,宽为28m ,阴影部分设计为停车位,其余部分是等宽的通道,已知停车位占地面积为640m 2.(1)求通道的宽是多少米;(2)该停车场共有64个车位,据调查发现:当每个车位的月租金为400元时,可全部租出;当每个车位的月租金每上涨10元时,就会少租出1个车位,当每个车位的月租金上涨时,停车场的月租金收入会超过27000元吗?【参考答案】二次函数应用题1.(1)()210033.320v d v v k =++<≤(2)汽车的行驶速度应限制在72千米/小时 【解析】 【分析】(1)根据0123=+++d d d d d 即可得到答案;(2)由已知得21020v d v k=++,要求50d <,即要求2140120k v v <-恒成立,根据12k 可得2401120v v ->,即可解得答案. (1)解:由题意得 20123100.80.220v d d d d d v v k =+++=+++,故答案为:()210033.320v d v v k =++<≤;(2)解:对任意()12k k ,均要求50d <, 2105020v v k∴++<恒成立,即2140120k v v <-恒成立, 12k ,∴111402020k, ∴2401120v v ->, 化简整理得2208000v v +-<, 解得4020v -<<,020v ∴<<,∴汽车的行驶速度应限制在20米/秒以下,即72千米/小时以下,答:汽车的行驶速度应限制在72千米/小时. 【点睛】本题考查二次函数的实际应用和列函数关系式,解题的关键是读懂题意,根据12k 得出2401120v v ->. 2.(1)2102801600y x x =-+- (10x ≥的整数) (2)200360y ≤≤ 【解析】 【分析】(1)销售单价为x 元/件时,每件的利润为(8)x -元,此时销量为[10010(10)]x --,由此计算每天的利润y 即可;(2)首先求出利润不超过100%时的销售单价的范围,且每天的进货总成本不超过800元,再结合(1)的解析式,利用二次函数的性质求解即可. (1)解:(1)根据题意得: (8)[10010(10)]y x x =--- 整理,得 2102801600y x x =-+-(10x ≥的整数) (2)解:∵每件小商品的利润不超过100%,∴8100%8x -⨯≤, ∴16x ≤,∵每天进货总成本不超过800元, ∴[100(10)10]8800x --⨯⨯≤, ∴10x ≥,∴1016x ≤≤,∵2210280160010(14)360y x x x =-+-=--+, 当14x =时,有360y =最大值当10x =时,有210(1014)360200y =-⨯-+=最小值,∴小商品每天销售利润y 的取值范围是:200360y ≤≤ 【点睛】本题考查二次函数的实际应用问题,准确表示出题中的数量关系,熟练运用二次函数的性质求解是解题关键.3.(1)去年的批发价为6元,今年网上售价为9元 (2)网上售价定为10.5元,才能使日销量收入最大 【解析】 【分析】(1)设去年的售价为x 元,则今年的售价为(1+50%)x 元,去年的产量为y 千克,则今年的产量为(y +2000)千克,由题意,得()()60000150?2000108000xy x y =⎧⎨++=⎩%,计算求解即可;(2)由题意得,今年的产量为:10000+2000=12000千克,则网上日销售量为:12000÷20=600千克,设日销售收入为w 元,网上售价为a 元,由题意得,960050.1a w a -⎛⎫=-⨯ ⎪⎝⎭,求出满足要求的a 值即可. (1)解:设去年的售价为x 元,则今年的售价为(1+50%)x 元,去年的产量为y 千克,则今年的产量为(y +2000)千克,由题意得,()()60000150?2000108000xy x y =⎧⎨++=⎩%、解得610000x y =⎧⎨=⎩∴今年的售价为(1+50%)x =9元∴去年的批发价为6元,今年的网上售价为9元. (2)解:由题意得,今年的产量为10000+2000=12000千克,则网上日销售量为12000÷20=600千克,设日销售收入为w 元,网上售价为a 元,由题意得,960050.1a w a -⎛⎫=-⨯ ⎪⎝⎭∴2501050w a a =-+221110255022a ⎛⎫=--+ ⎪⎝⎭∵500a =-< ∴当212a =时,日销量最大,最大为110252∴网上售价定为10.5元,才能使日销量收入最大.【点睛】本题考查了解方程组,二次函数的应用.解题的关键在于正确的列等式求解并熟练掌握二次函数的图象与性质. 4.(1)y =﹣2x 2+36x (9≤x <18)(2)丙种植物最多可以购买214棵,此时这批植物可以全部栽种到这块空地上.理由见解析 【解析】 【分析】(1)根据矩形的面积公式计算即可;(2)利用二次函数的性质求出y 的最大值,设购买了乙种绿色植物a 棵,购买了丙种绿色植物b 棵,由题意得1440016288600a b a b --++=(),可得71500a b +=,推出b 的最大值为214,此时2a =,再求出实际植物面积即可判断. (1)解:∵AB =x , ∴BC =36﹣2x ,∴y =x (36﹣2x )=﹣2x 2+36x , ∵0<36﹣2x ≤18, ∴9≤x <18.∴y 与x 之间的函数关系式为y =﹣2x 2+36x (9≤x <18); (2)解:∵y =﹣2x 2+36x =﹣2(x ﹣9)2+162, ∴x =9时,y 有最大值162(m 2),设购买了乙种绿色植物a 棵,购买了丙种绿色植物b 棵, 由题意:14(400﹣a ﹣b )+16a +28b =8600, ∴a +7b =1500, ∴b 的最大值为214, 此时a =2.需要种植的面积=0.4×(400﹣214﹣2)+1×2+0.4×214=161.2(m 2)<162m 2, ∴丙种植物最多可以购买214棵,此时这批植物可以全部栽种到这块空地上. 【点睛】本题考查二次函数的应用,解题的关键是理解题意,灵活运用所学知识解决问题. 5.(1)24201200S x x =-++;()610x ≤≤ (2)活动区域面积S 的最大值为21176m 【解析】 【分析】(1)利用健身区域的面积等于矩形的面积减掉周围四个长方形花坛的面积即可求解; (2)把(1)中求得的S 与x 之间的函数关系式化成二次函数的顶点式,利用二次函数的增减性即可求解. (1)(1)由题意解得:()2=4030454201200S x x x x ⨯--=-++;()610x ≤≤ (2)(2)2254201200412252S x x x ⎛⎫=-++=--+ ⎪⎝⎭,∵40a =-<,抛物线开口向下,对称轴为52x =, ∴当610x ≤≤时,S 随x 的增大而减小, ∴当6x =时,S 有最大值,最大值为1176, 答:活动区域面积S 的最大值为21176m . 【点睛】本题考查了二次函数的应用及二次函数的性质,读懂题意,找出题目中的等量关系是解题的关键. 6.(1)1CG =(2)①2y x =;②EMP 2,此时BP 的长为11km 2【解析】 【分析】(1)证明FEB GEC △∽△,依据相似三角形的性质进行求解即可;(2)①分点P 在点H 左侧和右侧两种情况讨论求解即可;②由二次函数的性质可得解. (1)在矩形ABCD 中,90ABC BCD BCG ∠=∠=∠=︒, ∵FEB GEC ∠=∠, ∴FEB GEC △∽△, ∴BF BECG CE=, ∵4AB =,6BC =,点F 是AB 的中点,2BE EC =, ∴2BF =,4BE =,2CE =, ∴242CG =, ∴1CG =. (2)①过点E 作EH //AB 交BC 于点H ,交射线MP 于点G ,易得四边形ABHE 是平行四边形, ∴4EH AB ==.∵EH //AB ,PM AB ⊥,∴60PHG B ∠=∠=︒,EG PM ⊥,即EG 是PME △边MP 上的高. ∵点E 是AD 的中点, ∴3BH AE ==.如图1-1,当点P 在点H 左侧时,3PH x =-,∴1322x HG PH -==, ∴311422x xEG EH HG --=+=+=. 如图1-2,当点P 在点H 右侧时,3PH x =-,∴1322x HG PH -==, ∴311422x xEG EH HG --=-=-=, ∴PME △的边MP 上的高112xEG -=. 在Rt MBP 中,3sin 60x MP BP =⋅︒= ∴2113113113222x x y MP EG x -=⋅==. ②)222311333111213112y x x x x ⎫==-=-⎪⎝⎭ ∴当112x =时,1213y =最大 ∴EMP 21213,此时BP 的长为11km 2.【点睛】本题是一道相似形的综合题,考查了全等三角形的判定及性质,相似三角形的判定及性质,三角函数值的运用.在解答时添加辅助线构建全等形和相似形是关键. 7.(1)山坡坡顶的高度为6米; (2)21244y x x =-++;(3)当运动员运动水平线的水平距离为1米 【解析】 【分析】(1)抛物线C 1的顶点纵坐标即为山坡的高度;(2)由两点坐标A (0,4),(2,7)待定系数法求函数解析式即可; (3)根据两函数y 值的差为1米,列方程求解即可; (1)根据题意可()22111:215655C y x x x =-++=--+知:∴坡顶坐标为()5,6, ∴山坡坡顶的高度为6米; (2)解:根据题意把()0,4A ,点()2,7代入抛物线221:4C y x bx c =-++,得:4127c b c =⎧⎨-++=⎩,解得:42c b =⎧⎨=⎩∴抛物线2C 的函数解析式21244y x x =-++;(3)解:∵运动员与小山坡的竖直距离为1米, ∴22112421145x x x x ⎛⎫-++--++= ⎪⎝⎭,解得:1x =-2x =故当运动员运动水平线的水平距离为1米; 【点睛】本题考查了二次函数的实际应用,求二次函数解析式和顶点坐标,根据题意弄清条件所表达的坐标是解题关键.8.(1)AB 长为7m 时,绿化带ABCD 的面积为242m (2)当AB 长为6m 时,绿化带ABCD 的面积最大,为254m 【解析】 【分析】(1)设AB 长为x m ,则BC 长为()273x -m ,由题意得:()27342x x -=,计算求出满足要求的解即可;(2)设绿化带ABCD 的面积为2m y ,AB 长为x m ,由题意得()273y x x =-,根据函数的图象与性质,x 的取值范围,求出符合要求的解即可. (1)解:设AB 长为x m ,则BC 长为()273x -m 由题意得:()27342x x -= 整理得:29140x x -+=解得:12x =,27x =∵02739x <-≤,∴69x ≤<,∴x =7∴AB 长为7m 时,绿化带ABCD 的面积为242m .(2)解:设绿化带ABCD 的面积为2m y ,AB 长为x m ,由题意得()229243273327324y x x x x x ⎛⎫=-=-+=--+ ⎪⎝⎭ ∵6930x ≤<-<,, ∴当x =6时,54y =最大∴当AB 长为6m 时,绿化带ABCD 的面积最大,最大面积为254m .【点睛】本题考查了一元二次方程的应用,二次函数的应用.解题的关键在于熟练掌握解一元二次方程,二次函数的图象与性质.9.(1)724510y x =-+ (2)当售价为250元时,商场每月所获利润最大,最大利润为7000元(3)不能,理由见解析【解析】【分析】(1)根据表格数据判断为一次函数,设y kx b =+,用待定系数法求出解析时; (2)利润=单件利润⨯销售数量,化简为二次函数的顶点式,根据函数性质判断; (3)计算按(2)中获得最大月利润的方式进行销售时的数量,与580比较.(1)解:由表格可知,此函数为一次函数,故设y kx b =+;则有24077{22091k b k b +=+=, 解得710245k b ⎧=-⎪⎨⎪=⎩, 724510y x ∴=-+; (2)设销售利润为w 元,由题意得:7(150)(245)10w x x =--+ 273503675010x x =-+-27(250)700010x =--+ 7010a =-<, w ∴有最大值,∴当250x =时,w 取最大值,7000w =最大,答:当售价为250元时,商场每月所获利润最大,最大利润为7000元;(3)当250x =时,70y =(件),70(124)560580⨯-=<,∴12月底不能销售完这批服装.【点睛】本题考查一次函数和二次函数的实际应用,解题关键用待定系数法求出一次函数解析式,注意二次函数最值讨论时,一般整理成顶点式,再通过看a 值确定最大值或最小值. 10.(1)通道的宽是6米;(2)停车场的月租金收入会超过27000元.【解析】(1)解:设通道的宽是x m ,则阴影部分可合成长为(52-2x )米,宽为(28-2x )米的长方形, 依题意得:(28-2x )(52-2x )=640,整理得:x 2-40x +204=0,解得:x 1=6,x 2=34.又∵28-2x >0,∴x <14,∴x =6.答:通道的宽是6米;(2)解:设当每个车位的月租金上涨y 元时,停车场的月租金收入为w 元,则可租出(6410y -)个车位, 依题意得:w =(400+y )(6410y -)=110-y 2+24y +25600=110-(y -120)2+27040, ∵110-<0, ∴当y =120时,w 取得最大值,最大值为27040.又∵27040>27000,∴停车场的月租金收入会超过27000元.【点睛】本题考查了一元二次方程的应用和二次函数的应用,理解题意,设出未知数,列出方程和二次函数关系式是解题关键.。
中考数学| 各类计算题型二次函数存在性问题:平行四边形【一】已知抛物线y=−mx2+4x+2m与x轴交于点A,B 与y轴交点C(0,2).(1)抛物线的解析式。
(2)抛物线的对称轴为l,顶点为D,点C关于直线l的对称点为E,是否存在x轴上的点M,y轴上的点N,使四边形DNME的周长最小?若存在,求出周长的最小值;若不存在,请说明理由。
(3)若点P在抛物线上,点Q在x轴上,当以点D. E. P、Q 为顶点的四边形是平行四边形时,求点P的坐标。
【二】如图,抛物线y= -x2+2x+n经过点M(-1,0)顶点为C.(1)求点C的坐标;(2)设直线y=2x与抛物线交于A、B两点(点A在点B的左侧).①在抛物线的对称轴上是否存在点G,使∠AGC=∠BGC?若存在,求出点G的坐标;若不存在,请说明理由;②点P在直线y=2x上,点Q在抛物线上,当以O、M、P、Q为顶点的四边形是平行四边形时,求点Q的坐标.【三】已知抛物线y=ax2+bx+8(a≠0)经过点A (-3,-7),B(3.5),顶点为E,抛物线的对称轴与直线AB交于C。
(1)求直线AB的解析式和抛物线的解析式(2)在抛物线上两点AE之间的部分(不包含A,E 两点),是否存在点D,使得S△DAC=2S△DCE?若存在,求出点D的坐标,若不存在,请说明理由;(3)若点P在抛物线上,点Q在x轴上,当以点A,E,P,Q为顶点的四边形是平行四边形时,直接写出满足条件的点P的坐标。
【四】如图,直线y=x−4与x轴、y轴分别交于A. B两点,抛物线y=1/3x2+bx+c经过A. B两点,与x轴的另一个交点为C,连接BC.(1)求抛物线的解析式及点C的坐标;(2)点M在抛物线上,连接MB,当∠MBA+∠CBO=45∘时,求点M的坐标;(3)点P从点C出发,沿线段CA由C向A运动,同时点Q从点B出发,沿线段BC由B向C运动,P、Q的运动速度都是每秒1个单位长度,当Q点到达C点时,P、Q同时停止运动,试问在坐标平面内是否存在点D,使P、Q运动过程中的某一时刻,以C. D. P、Q为顶点的四边形为菱形?若存在,直接写出点D的坐标;若不存在,说明理由。
一、平行四边形真题与模拟题分类汇编(难题易错题)1.在图1中,正方形ABCD的边长为a,等腰直角三角形FAE的斜边AE=2b,且边AD和AE在同一直线上.操作示例当2b<a时,如图1,在BA上选取点G,使BG=b,连结FG和CG,裁掉△FAG和△CGB 并分别拼接到△FEH和△CHD的位置构成四边形FGCH.思考发现小明在操作后发现:该剪拼方法就是先将△FAG绕点F逆时针旋转90°到△FEH的位置,易知EH与AD在同一直线上.连结CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,从而又可将△CGB绕点C顺时针旋转90°到△CHD的位置.这样,对于剪拼得到的四边形FGCH (如图1),过点F作FM⊥AE于点M(图略),利用SAS公理可判断△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.进而根据正方形的判定方法,可以判断出四边形FGCH是正方形.实践探究(1)正方形FGCH的面积是;(用含a, b的式子表示)(2)类比图1的剪拼方法,请你就图2—图4的三种情形分别画出剪拼成一个新正方形的示意图.联想拓展小明通过探究后发现:当b≤a时,此类图形都能剪拼成正方形,且所选取的点G的位置在BA方向上随着b的增大不断上移.当b>a时(如图5),能否剪拼成一个正方形?若能,请你在图5中画出剪拼成的正方形的示意图;若不能,简要说明理由.【答案】(1)a2+b2;(2)见解析;联想拓展:能剪拼成正方形.见解析.【解析】分析:实践探究:根据正方形FGCH的面积=BG2+BC2进而得出答案;应采用类比的方法,注意无论等腰直角三角形的大小如何变化,BG永远等于等腰直角三角形斜边的一半.注意当b=a时,也可直接沿正方形的对角线分割.详解:实践探究:正方形的面积是:BG2+BC2=a2+b2;剪拼方法如图2-图4;联想拓展:能,剪拼方法如图5(图中BG=DH=b)..点睛:本题考查了几何变换综合,培养学生的推理论证能力和动手操作能力;运用类比方法作图时,应根据范例抓住作图的关键:作的线段的长度与某条线段的比值永远相等,旋转的三角形,连接的点都应是相同的.2.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).【答案】(1)作图参见解析;(2)作图参见解析.【解析】试题分析:(1)过点O向线段OM作垂线,此直线与格点的交点为N,连接MN即可;(2)根据勾股定理画出图形即可.试题解析:(1)过点O向线段OM作垂线,此直线与格点的交点为N,连接MN,如图1所示;(2)等腰直角三角形MON面积是5,因此正方形面积是20,如图2所示;于是根据勾股定理画出图3:考点:1.作图﹣应用与设计作图;2.勾股定理.3.(感知)如图①,四边形ABCD、CEFG均为正方形.可知BE=DG.(拓展)如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.(应用)如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=2ED,∠A=∠F,△EBC的面积为8,菱形CEFG的面积是_______.(只填结果)【答案】见解析【解析】试题分析:探究:由四边形ABCD 、四边形CEFG 均为菱形,利用SAS 易证得△BCE ≌△DCG ,则可得BE=DG ;应用:由AD ∥BC ,BE=DG ,可得S △ABE +S △CDE =S △BEC =S △CDG =8,又由AE=3ED ,可求得△CDE 的面积,继而求得答案. 试题解析:探究:∵四边形ABCD 、四边形CEFG 均为菱形, ∴BC=CD ,CE=CG ,∠BCD=∠A ,∠ECG=∠F . ∵∠A=∠F , ∴∠BCD=∠ECG .∴∠BCD-∠ECD=∠ECG-∠ECD , 即∠BCE=∠DCG . 在△BCE 和△DCG 中,BC CD BCE DCG CE CG ⎧⎪∠∠⎨⎪⎩=== ∴△BCE ≌△DCG (SAS ), ∴BE=DG .应用:∵四边形ABCD 为菱形, ∴AD ∥BC , ∵BE=DG ,∴S △ABE +S △CDE =S △BEC =S △CDG =8, ∵AE=3ED , ∴S △CDE =1824⨯= , ∴S △ECG =S △CDE +S △CDG =10 ∴S 菱形CEFG =2S △ECG =20.4.如图1,在正方形ABCD 中,AD=6,点P 是对角线BD 上任意一点,连接PA ,PC 过点P 作PE ⊥PC 交直线AB 于E . (1) 求证:PC=PE;(2) 延长AP 交直线CD 于点F.①如图2,若点F 是CD 的中点,求△APE 的面积; ②若ΔAPE 的面积是21625,则DF 的长为 (3) 如图3,点E 在边AB 上,连接EC 交BD 于点M,作点E 关于BD 的对称点Q ,连接PQ ,MQ ,过点P 作PN ∥CD 交EC 于点N ,连接QN ,若PQ=5,,则△MNQ 的面积是【答案】(1)略;(2)①8,②4或9;(3)5 6【解析】【分析】(1)利用正方形每个角都是90°,对角线平分对角的性质,三角形外角等于和它不相邻的两个内角的和,等角对等边等性质容易得证;(2)作出△ADP和△DFP的高,由面积法容易求出这个高的值.从而得到△PAE的底和高,并求出面积.第2小问思路一样,通过面积法列出方程求解即可;(3)根据已经条件证出△MNQ是直角三角形,计算直角边乘积的一半可得其面积.【详解】(1) 证明:∵点P在对角线BD上,∴△ADP≌△CDP,∴AP=CP, ∠DAP =∠DCP,∵PE⊥PC,∴∠EPC=∠EPB+∠BPC=90°,∵∠PEA=∠EBP+∠EPB=45°+90°-∠BPC=135°-∠BPC,∵∠PAE=90°-∠DAP=90°-∠DCP,∠DCP=∠BPC-∠PDC=∠BPC-45°,∴∠PAE=90°-(∠BPC-45°)= 135°-∠BPC,∴∠PEA=∠PAE,∴PC=PE;(2)①如图2,过点P分别作PH⊥AD,PG⊥CD,垂足分别为H、G.延长GP交AB于点M.∵四边形ABCD是正方形,P在对角线上,∴四边形HPGD是正方形,∴PH=PG,PM ⊥AB, 设PH=PG=a,∵F 是CD 中点,AD =6,则FD=3,ADFS =9,∵ADF S =ADP DFP SS+=1122AD PH DF PG ⨯+⨯, ∴1163922a a ⨯+⨯=,解得a=2, ∴AM=HP=2,MP=MG-PG=6-2=4, 又∵PA=PE, ∴AM=EM,AE=4,∵APE S =1144822EA MP ⨯=⨯⨯=,②设HP =b,由①可得AE=2b,MP=6-b,∴APE S=()121626225b b ⨯⨯-=, 解得b=2.4 3.6或, ∵ADF S =ADP DFP SS+=1122AD PH DF PG ⨯+⨯, ∴11166222b DF b DF ⨯⨯+⨯=⨯, ∴当b=2.4时,DF=4;当b =3.6时,DF =9, 即DF 的长为4或9; (3)如图,∵E 、Q 关于BP 对称,PN ∥CD, ∴∠1=∠2,∠2+∠3=∠BDC=45°, ∴∠1+∠4=45°, ∴∠3=∠4,易证△PEM ≌△PQM, △PNQ ≌△PNC, ∴∠5=∠6, ∠7=∠8 ,EM=QM,NQ=NC, ∴∠6+∠7=90°, ∴△MNQ 是直角三角形,设EM=a,NC=b 列方程组2227252372 a b a b ⎧+=-⎪⎪⎨⎛⎫⎪+= ⎪ ⎪⎪⎝⎭⎩, 可得12ab=56, ∴MNQ56S=, 【点睛】本题是四边形综合题目,考查了正方形的性质、等腰直角三角形的判定与性质、全等三角形的判定与性质等知识;本题综合性强,有一定难度,熟练掌握正方形的性质,证明三角形全等是解决问题的关键.要注意运用数形结合思想.5.如图,已知矩形ABCD 中,E 是AD 上一点,F 是AB 上的一点,EF ⊥EC ,且EF =EC . (1)求证:△AEF ≌△DCE .(2)若DE =4cm ,矩形ABCD 的周长为32cm ,求AE 的长.【答案】(1)证明见解析;(2)6cm. 【解析】分析:(1)根据EF ⊥CE ,求证∠AEF=∠ECD .再利用AAS 即可求证△AEF ≌△DCE . (2)利用全等三角形的性质,对应边相等,再根据矩形ABCD 的周长为32cm ,即可求得AE 的长.详解:(1)证明:∵EF ⊥CE , ∴∠FEC=90°,∴∠AEF+∠DEC=90°,而∠ECD+∠DEC=90°, ∴∠AEF=∠ECD . 在Rt △AEF 和Rt △DEC 中,∠FAE=∠EDC=90°,∠AEF=∠ECD ,EF=EC . ∴△AEF ≌△DCE . (2)解:∵△AEF ≌△DCE . AE=CD . AD=AE+4.∵矩形ABCD 的周长为32cm , ∴2(AE+AE+4)=32.解得,AE=6(cm).答:AE的长为6cm.点睛:此题主要考查学生对全等三角形的判定与性质和矩形的性质等知识点的理解和掌握,难易程度适中,是一道很典型的题目.6.在矩形纸片ABCD中,AB=6,BC=8,现将纸片折叠,使点D与点B重合,折痕为EF,连接DF.(1)说明△BEF是等腰三角形;(2)求折痕EF的长.【答案】(1)见解析;(2).【解析】【分析】(1)根据折叠得出∠DEF=∠BEF,根据矩形的性质得出AD∥BC,求出∠DEF=∠BFE,求出∠BEF=∠BFE即可;(2)过E作EM⊥BC于M,则四边形ABME是矩形,根据矩形的性质得出EM=AB=6,AE=BM,根据折叠得出DE=BE,根据勾股定理求出DE、在Rt△EMF中,由勾股定理求出即可.【详解】(1)∵现将纸片折叠,使点D与点B重合,折痕为EF,∴∠DEF=∠BEF.∵四边形ABCD是矩形,∴AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,即△BEF 是等腰三角形;(2)过E作EM⊥BC于M,则四边形ABME是矩形,所以EM=AB=6,AE=BM.∵现将纸片折叠,使点D与点B重合,折痕为EF,∴DE=BE,DO=BO,BD⊥EF.∵四边形ABCD是矩形,BC=8,∴AD=BC=8,∠BAD=90°.在Rt△ABE中,AE2+AB2=BE2,即(8﹣BE)2+62=BE2,解得:BE==DE=BF,AE=8﹣DE=8﹣==BM,∴FM=﹣=.在Rt△EMF中,由勾股定理得:EF==.故答案为:.【点睛】本题考查了折叠的性质和矩形性质、勾股定理等知识点,能熟记折叠的性质是解答此题的关键.7.如图,抛物线y=mx2+2mx+n经过A(﹣3,0),C(0,﹣32)两点,与x轴交于另一点B.(1)求经过A,B,C三点的抛物线的解析式;(2)过点C作CE∥x轴交抛物线于点E,写出点E的坐标,并求AC、BE的交点F的坐标(3)若抛物线的顶点为D,连结DC、DE,四边形CDEF是否为菱形?若是,请证明;若不是,请说明理由.【答案】(1)y=12x2+x﹣32;(2)F点坐标为(﹣1,﹣1);(3)四边形CDEF是菱形.证明见解析【解析】【分析】将A、C点的坐标代入抛物线的解析式中,通过联立方程组求得该抛物线的解析式;根据(1)题所得的抛物线的解析式,可确定抛物线的对称轴方程以及B、C点的坐标,由CE∥x轴,可知C、E关于对称轴对称。
二次函数(平行四边形)1。
如图,在平面直角坐标系xOy中,抛物线y=(x﹣m)2﹣m2+m的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.(1)当m=2时,求点B的坐标;(2)求DE的长?(3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以,A,B,D,P为顶点的四边形是平行四边形?解答:解:(1)当m=2时,y=(x﹣2)2+1,把x=0代入y=(x﹣2)2+1,得:y=2,∴点B的坐标为(0,2).(2)延长EA,交y轴于点F,∵AD=AC,∠AFC=∠AED=90°,∠CAF=∠DAE,∴△AFC≌△AED,∴AF=AE,∵点A(m,﹣m2+m),点B(0,m),∴AF=AE=|m|,BF=m﹣(﹣m2+m)=m2,∵∠ABF=90°﹣∠BAF=∠DAE,∠AFB=∠DEA=90°,∴△ABF∽△DAE,∴=,即:=,∴DE=4.(3)①∵点A的坐标为(m,﹣m2+m),∴点D的坐标为(2m,﹣m2+m+4),∴x=2m,y=﹣m2+m+4,∴y=﹣•++4,∴所求函数的解析式为:y=﹣x2+x+4,②作PQ⊥DE于点Q,则△DPQ≌△BAF,(Ⅰ)当四边形ABDP为平行四边形时(如图1),点P的横坐标为3m,点P的纵坐标为:(﹣m2+m+4)﹣(m2)=﹣m2+m+4,把P(3m,﹣m2+m+4)的坐标代入y=﹣x2+x+4得:﹣m2+m+4=﹣×(3m)2+×(3m)+4,解得:m=0(此时A,B,D,P在同一直线上,舍去)或m=8.(Ⅱ)当四边形ABDP为平行四边形时(如图2),点P的横坐标为m,点P的纵坐标为:(﹣m2+m+4)+(m2)=m+4,把P(m,m+4)的坐标代入y=﹣x2+x+4得:m+4=﹣m2+m+4,解得:m=0(此时A,B,D,P在同一直线上,舍去)或m=﹣8,综上所述:m的值为8或﹣8.【例二】已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一交点为B 。
二次函数与特殊平行四边形存在性问题探讨【方法综述】知识准备:特殊四边形包括平行四边形、菱形、矩形和正方形。
它们的判定方法如下:矩形判的定方法有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形有三个角是直角的四边形是矩形菱形判定方法有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形四条边相等的四边形是矩形正方形的判定方法平行四边形+矩形的特性;平行四边形+菱形的特性解答时常用的技巧:(1).根据平行四边形的对角线互相平分这条性质,应用中点坐标公式,可以采用如下方法:已知点A、B、C三点坐标已知,点P在某函数图像上,是否存在以点A、B、C、P为顶点的四边形为平行四边形,求点P的坐标。
如,当AP、BC为平行四边形对角线时,由中点坐标公式,可得a+m=c+e,n+b=d+f则m= c+e-a;n= d+f-b,点P坐标可知,将其带入到函数关系式进行验证,如果满足函数关系式,即为所求P点,同理,根据分类讨论可以得到其它情况的解答方法。
(2).菱形在折叠的情况下,可以看成是等腰三角形以底边所在直线折叠所得,因此,菱形的存在性讨论,亦可以看做等腰三角形的存在性讨论。
(3).矩形中的直角证明出来常规直角的探究外,还有主要是否由隐形圆的直径所对圆周角得到。
【类型1】二次函数与矩形存在型问题【例1】.如图,直线y=x﹣3与坐标轴交于A、B两点,抛物线y=x2+bx+c经过点B,与直线y=x﹣3交于点E(8,5),且与x轴交于C,D两点.(1)求抛物线的解析式;(2)抛物线上有一点M,当∠MBE=75°时,求点M的横坐标;(3)点P在抛物线上,在坐标平面内是否存在点Q,使得以点P,Q,B,C为顶点的四边形是矩形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.【变式训练】如图,在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A、B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)求出点A的坐标和点D的横坐标;(2)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a的值;(3)设P是抛物线的对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,直接写出点P的坐标;若不能,请说明理由.【类型2】二次函数与矩形存在型问题【例2】如图,抛物线y=ax2+bx+52过点A(1,0),B(5,0),与y轴相交于点C.(1)求抛物线的解析式;(2)定义:平面上的任一点到二次函数图象上与它横坐标相同的点的距离,称为点到二次函数图象的垂直距离.如:点O到二次函数图象的垂直距离是线段OC的长.已知点E 为抛物线对称轴上的一点,且在x轴上方,点F为平面内一点,当以A,B,E,F为顶点的四边形是边长为4的菱形时,请求出点F到二次函数图象的垂直距离.(3)在(2)中,当点F到二次函数图象的垂直距离最小时,在以A,B,E,F为顶点的菱形内部是否存在点Q,使得AQ,BQ,FQ之和最小,若存在,请求出最小值;若不存在,请说明理由.【变式训练】如图,抛物线y=ax2+bx+4交x轴于点A(﹣1,0)、B(4,0),交y轴于点C,点P是直线BC上方抛物线上的一点.(1)求抛物线的解析式;(2)求△PBC的面积的最大值以及此时点P的坐标;(3)在(2)的条件下,将直线BC 向右平移74个单位得到直线l ,直线l 交对称轴右侧的抛物线于点Q ,连接PQ ,点R 为直线BC 上的一动点,请问在在平面直角坐标系内是否存在一点T ,使得四边形PQTR 为菱形,若存在,请直接写出点T 的坐标;若不存在,请说明理由.【类型3】二次函数与正方形存在型问题【例3】在平面直角坐标系中,抛物线y =−13x 2+bx +c 交x 轴于A (﹣3,0),B (4,0)两点,交y 轴于点C .(1)求抛物线的表达式;(2)如图,直线y =34x +94与抛物线交于A ,D 两点,与直线BC 交于点E .若M (m ,0)是线段AB 上的动点,过点M 作x 轴的垂线,交抛物线于点F ,交直线AD 于点G ,交直线BC 于点H .①当点F 在直线AD 上方的抛物线上,且S △EFG =59S △OEG 时,求m 的值;②在平面内是否存在点P ,使四边形EFHP 为正方形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.【变式训练】.如图,已知直线y x c =-+交x 轴于点B ,交y 轴于点C ,抛物线23y ax bx =++经过点(1,0)A -,与直线y x c =-+交于B 、C 两点,点P 为抛物线上的动点,过点P 作PE x ⊥轴,交直线BC 于点F ,垂足为E .(1)求抛物线的解析式;(2)当点P 位于抛物线对称轴右侧时,点Q 为抛物线对称轴左侧一个动点,过点Q 作QD x ⊥轴,垂足为点D .若四边形DEPQ 为正方形时求点P 的坐标;(3)若PQF △是以点P 为顶角顶点的等腰直角三角形时,请直接写出点P 的横坐标.【巩固练习】1.如图,在平面直角坐标系中,二次函数y =﹣x 2+bx +c 的图象与x 轴交于A 、B 两点,A 点的坐标为(﹣3,0),B 点在原点的左侧,与y 轴交于点C (0,3),点P 是直线BC 上方的抛物线上一动点(1)求这个二次函数的表达式;(2)连接PO 、PC ,并把△POC 沿CO 翻折,得到四边形POP ′C (如图1所示),那么是否存在点P ,使四边形POP ′C 为菱形?若存在,请此时点P 的坐标:若不存在,请说明理由; (3)当点P 运动到什么位置时,四边形ABCP 的面积最大,并求出其最大值.2.如图:在平面直角坐标系中,直线l :y=13x ﹣43与x 轴交于点A ,经过点A 的抛物线y=ax 2﹣3x+c 的对称轴是x=32. (1)求抛物线的解析式;(2)平移直线l 经过原点O ,得到直线m ,点P 是直线m 上任意一点,PB ⊥x 轴于点B ,PC ⊥y 轴于点C ,若点E 在线段OB 上,点F 在线段OC 的延长线上,连接PE ,PF ,且PE=3PF .求证:PE ⊥PF ;(3)若(2)中的点P 坐标为(6,2),点E 是x 轴上的点,点F 是y 轴上的点,当PE ⊥PF 时,抛物线上是否存在点Q ,使四边形PEQF 是矩形?如果存在,请求出点Q 的坐标,如果不存在,请说明理由.3.如图,抛物线y =x 2+2x 的顶点为A ,与x 轴交于B 、C 两点(点B 在点C 的左侧). (1)请求出A 、B 、C 三点的坐标;(2)平移抛物线,记平移后的抛物线的顶点为D ,与y 轴交于点E ,F 为平面内一点,若以A、D、E、F为顶点的四边形是正方形,且平移后的抛物线的对称轴在y轴右侧,请求出满足条件的平移后抛物线的表达式.【答案与解析】【类型1】二次函数与矩形存在型问题【例1】.如图,直线y=x﹣3与坐标轴交于A、B两点,抛物线y=x2+bx+c经过点B,与直线y=x﹣3交于点E(8,5),且与x轴交于C,D两点.(1)求抛物线的解析式;(2)抛物线上有一点M,当∠MBE=75°时,求点M的横坐标;(3)点P在抛物线上,在坐标平面内是否存在点Q,使得以点P,Q,B,C为顶点的四边形是矩形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.【解答】解:(1)直线y=x﹣3与坐标轴交于A、B两点,则A(3,0)B(0,﹣3),把B、E点坐标代入二次函数方程,解得:抛物线的解析式y=x2﹣x﹣3…①,则:C(6,0);(2)符合条件的有M和M′,如下图所示,当∠MBE=75°时,∵OA=OB,∴∠MBO=30°,此时符合条件的M只有如图所示的一个点,MB直线的k为﹣,所在的直线方程为:y=﹣x﹣3…②,联立方程①、②可求得:x=4﹣4,即:点M的横坐标4﹣4;当∠M′BE=75°时,∠OBM′=120°,直线M′B的k值为﹣,其方程为y=﹣x﹣3,将M′B所在的方程与抛物线表达式联立,解得:x=,故:即:点M的横坐标4﹣4或.(3)存在.①当BC为矩形对角线时,矩形BP′CQ′所在的位置如图所示,设:P′(m,n),n=m2﹣m﹣3…③,P′C所在直线的k1=,P′B所在的直线k2=,则:k1•k2=﹣1…④,③、④联立得:=0,解得:m=0或6,这两个点分别和点B、C重合,与题意不符,故:这种情况不存在,舍去.②当BC为矩形一边时,情况一:矩形BCQP所在的位置如图所示,直线BC所在的方程为:y=x﹣3,则:直线BP的k为﹣2,所在的方程为y=﹣2x﹣3…⑤,联立①⑤解得点P(﹣4,5),则Q(2,8),情况二:矩形BCP″Q″所在的位置如图所示,此时,P″在抛物线上,其坐标为:(﹣10,32),Q″坐标为(﹣16,29).故:存在矩形,点Q的坐标为:(2,8)或(﹣16,29).【变式训练】如图,在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A、B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)求出点A的坐标和点D的横坐标;(2)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a的值;(3)设P是抛物线的对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,直接写出点P的坐标;若不能,请说明理由.【解答】解:(1)当y=0时,ax2﹣2ax﹣3a=0,解得:x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∵直线l:y=kx+b过A(﹣1,0),∴0=﹣k+b,即k=b,∴直线l:y=kx+k,∵抛物线与直线l交于点A,D,∴ax2﹣2ax﹣3a=kx+k,即ax2﹣(2a+k)x﹣3a﹣k=0,∵CD=4AC,∴点D的横坐标为4;(2)由(1)知,点D的横坐标为4,∴﹣3﹣=﹣1×4,∴k=a,∴直线l的函数表达式为y=ax+a;过E作EF∥y轴交直线l于F,设E(x,ax2﹣2ax﹣3a),则F(x,ax+a),EF=ax2﹣2ax﹣3a﹣ax﹣a=ax2﹣3ax﹣4a,∴S△ACE=S△AFE﹣S△CEF=(ax2﹣3ax﹣4a)(x+1)﹣(ax2﹣3ax﹣4a)x=(ax2﹣3ax﹣4a)=a(x﹣)2﹣a,∴△ACE的面积的最大值=﹣a,∵△ACE的面积的最大值为,∴﹣a=,解得a=﹣;(3)以点A、D、P、Q为顶点的四边形能成为矩形,令ax2﹣2ax﹣3a=ax+a,即ax2﹣3ax﹣4a=0,解得:x1=﹣1,x2=4,∴D(4,5a),∵抛物线的对称轴为直线x=1,设P(1,m),①若AD是矩形ADPQ的一条边,则易得Q(﹣4,21a),m=21a+5a=26a,则P(1,26a),∵四边形ADPQ是矩形,∴∠ADP=90°,∴AD2+PD2=AP2,∴52+(5a)2+32+(26a﹣5a)2=22+(26a)2,即a2=,∵a<0,∴a=﹣∴P(1,﹣);②若AD是矩形APDQ的对角线,则易得Q(2,﹣3a),m=5a﹣(﹣3a)=8a,则P(1,8a),∵四边形APDQ是矩形,∴∠APD=90°,∴AP2+PD2=AD2,∴(﹣1﹣1)2+(8a)2+(1﹣4)2+(8a﹣5a)2=52+(5a)2,即a2=,∵a<0,∴a=﹣,∴P(1,﹣4),综上所述,点A、D、P、Q为顶点的四边形能成为矩形,点P(1,﹣)或(1,﹣4).【类型2】二次函数与矩形存在型问题【例2】如图,抛物线y=ax2+bx+52过点A(1,0),B(5,0),与y轴相交于点C.(1)求抛物线的解析式;(2)定义:平面上的任一点到二次函数图象上与它横坐标相同的点的距离,称为点到二次函数图象的垂直距离.如:点O到二次函数图象的垂直距离是线段OC的长.已知点E 为抛物线对称轴上的一点,且在x轴上方,点F为平面内一点,当以A,B,E,F为顶点的四边形是边长为4的菱形时,请求出点F到二次函数图象的垂直距离.(3)在(2)中,当点F到二次函数图象的垂直距离最小时,在以A,B,E,F为顶点的菱形内部是否存在点Q,使得AQ,BQ,FQ之和最小,若存在,请求出最小值;若不存在,请说明理由.【分析】(1)将A,B两点代入可求解析式.(2)分类讨论,以AB为边的菱形和以AB为对角线的菱形,抓住菱形边长为4和E的横坐标为3,可解F点坐标,即可求点F到二次函数图象的垂直距离.(3)构造三角形,根据两点之间线段最短,可得最短距离为AN,根据勾股定理求AN.【解析】(1)∵抛物线y=ax2+bx+52过点A(1,0),B(5,0),∴0=a+b+5 20=25a+5b+5 2∴a=12,b=﹣3∴解析式y=12x2﹣3x+52(2)当y=0,则0=12x2﹣3x+52∴x1=5,x2=1∴A(1,0),B(5,0)∴对称轴直线x =3,顶点坐标(3,﹣2),AB =4∵抛物线与y 轴相交于点C .∴C (0,52) 如图1①如AB 为菱形的边,则EF ∥AB ,EF =AB =4,且E 的横坐标为3∴F 的横坐标为7或﹣1∵AE =AB =4,AM =2,EM ⊥AB∴EM =2√3∴F (7,2√3),或(﹣1,2√3)∴当x =7,y =12×49﹣7×3+52=6∴点F 到二次函数图象的垂直距离6﹣2√3②如AB 为对角线,如图2∵AEBF 是菱形,AF =BF =4∴AB ⊥EF ,EM =MF =2√3∴F (3,﹣2√3)∴点F到二次函数图象的垂直距离﹣2+2√3(3)当F(3,﹣2√3)时,点F到二次函数图象的垂直距离最小如图3,以BQ为边作等边三角形BQD,将△BQF绕B逆时针旋转60°到△BDN位置,连接AN,作PN⊥AB于P∵等边三角形BQD∴QD=QB=BD,∵将△BQF绕B逆时针旋转60°到△BDN位置∴NB=BF=4,∠FBN=60°,DN=FQ∵AQ+BQ+FQ=AQ+QD+DN∴当AQ,QD,DN共线时AQ+BQ+FQ的和最短,即最短值为AN的长.∵AF=BF=4=AB,∴∠ABF=60°∴∠NBP=60°且BN=4,∴BP=2,PN=2√3∴AP=6在Rt△ANP中,AN=√36+12=4√3∴AQ+BQ+FQ的和最短值为4√3.【变式训练】如图,抛物线y=ax2+bx+4交x轴于点A(﹣1,0)、B(4,0),交y轴于点C,点P是直线BC上方抛物线上的一点.(1)求抛物线的解析式;(2)求△PBC的面积的最大值以及此时点P的坐标;(3)在(2)的条件下,将直线BC 向右平移74个单位得到直线l ,直线l 交对称轴右侧的抛物线于点Q ,连接PQ ,点R 为直线BC 上的一动点,请问在在平面直角坐标系内是否存在一点T ,使得四边形PQTR 为菱形,若存在,请直接写出点T 的坐标;若不存在,请说明理由.【分析】(1)将A (﹣1,0)、B (4,0)代入抛物线公式即可求得a ,b .(2)过P 点做平行于直线BC 的直线K ,当K 与抛物线恰有一个交点时,△PBC 面积最大,求得此时的P 点坐标.再过P 做垂直于直线BC 的直线k ,求得k 与直线BC 的交点,求得交点后发现,此时恰巧交点时C ,|BC |即为△PBC 的高,再利用三角形面积公式即可求解.(3)考查菱形的性质.菱形是一个极具对称性的图形,在进行求解时,对角线互相垂直平分.因此,两个相对点的坐标中点也是另外两个相对点的坐标中点.同时,利用菱形的四条边长相等进行求解.【解析】(1)将A (﹣1,0)、B (4,0)代入抛物线公式,如下:{0=a −b +40=16a +4b +4, 求得{a =−1b =3. 抛物线解析式为:y =﹣x 2+3x +4.(2)设P 到直线BC 的距离为d ,P 点坐标为(x ,﹣x 2+3x +4)(0<x <4),∵y =﹣x 2+3x +4交y 轴于点C ,令x =0,∴y =4,∴C (0,4),由B (4,0),C (0,4)两点求得直线BC 的解析式为:y +x ﹣4=0.做直线BC 的平行线K :y =﹣x +m ,因为K 与BC 平行,我们将K 平移,根据题意,点P 是直线BC 上方抛物线上的一点,∴随着K 平行移动,以BC 为底的△PBC 的高d 在逐渐增大,当K 与抛物线y =﹣x 2+3x +4恰有一个交点时,此时以BC 为底的△PBC 的高d 最大,即此时△PBC 面积最大. ∵此时K :y =﹣x +m 与抛物线y =﹣x 2+3x +4相交,且仅有一个交点,∴﹣x +m =﹣x 2+3x +4,m =8.∴直线K :y =﹣x +8.此时求K 和抛物线的交点为:﹣x +8=﹣x 2+3x +4,解得x =2,将x =2代入直线K :y =﹣x +8,解得y =6.因此P (2,6).现在我们来求P 到直线BC 的距离,即△PBC 的高d :过P 作垂直于BC 的直线k :y =x +m .∵P 在直线k 上,∴6=2+m ,∴m =4,直线k =x +4.直线K 与直线k 的交点为:{y =−x +4y =x +4, 解得交点坐标(0,4),即交点为C 点.因此的△PBC 的高d 即为B 点和C 点两点之间的距离,∴d =|BC |=√(2−0)2+(6−4)2=2√2.在△PBC 中,∵|BC |=4√2,△PBC 的面积的最大值S △PBC =12|BC |•d =12×4√2×2√2=8.(3)存在.直线BC 向右平移74个单位得到直线l , ∴l :y =﹣(x −74)+4=﹣x +234.{y =−x +234y =−x 2+3x +4,解得{x 1=72x 2=12. 二次函数y =﹣x 2+3x +4对称轴为x =32,∵直线l 交对称轴右侧的抛物线于点Q ,∴x =72,代入y =﹣x +234=94.∴Q (72,94). 设T (a ,b ).∵R 为直线BC 上的一动点,∴设R (x ,﹣x +4).在菱形中PQTR 中,|PR |=|QP |,(2﹣x )2+([6﹣(﹣x +4)]2=(2−72)2+(6−94)2解得x =±√2668, 当x =√2668时,点R 的坐标(√2668,4−√2668),此时T 点坐标为:T (√2668+32,14−√2668). 当x =−√2668时,R (−√2668,4+√2668),此时T (−√2668+32,14+√2668) 综上所述:T 存在两点,分别为:(√2668+32,14−√2668)或(−√2668+32,14+√2668). 【类型3】二次函数与正方形存在型问题【例3】在平面直角坐标系中,抛物线y =−13x 2+bx +c 交x 轴于A (﹣3,0),B (4,0)两点,交y 轴于点C .(1)求抛物线的表达式;(2)如图,直线y =34x +94与抛物线交于A ,D 两点,与直线BC 交于点E .若M (m ,0)是线段AB 上的动点,过点M 作x 轴的垂线,交抛物线于点F ,交直线AD 于点G ,交直线BC 于点H .①当点F 在直线AD 上方的抛物线上,且S △EFG =59S △OEG 时,求m 的值;②在平面内是否存在点P ,使四边形EFHP 为正方形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.【分析】(1)根据抛物线解析式中a =−13和交x 轴于A (﹣3,0),B (4,0)两点,利用交点式可得抛物线的解析式;(2)①如图1,先利用待定系数法求直线BC 的解析式,联立方程可得交点E 的坐标,根据M (m ,0),且MH ⊥x 轴,表示点G (m ,34m +94),F (m ,−13m 2+13m +4),由S △EFG =59S △OEG ,列方程可得结论;②存在,根据正方形的性质得:FH =EF ,∠EFH =∠FHP =∠HPE =90°,同理根据M (m ,0),得H (m ,﹣m +4),F (m ,−13m 2+13m +4),分两种情况:F 在EP 的左侧,在EP 的右侧,根据EF =FH ,列方程可得结论.【解析】(1)∵抛物线y =−13x 2+bx +c 交x 轴于A (﹣3,0),B (4,0)两点, ∴y =−13(x +3)(x ﹣4)=−13x 2+13x +4;(2)①如图1,∵B (4,0),C (0,4),∴设BC 的解析式为:y =kx +n ,则{4k +n =0n =4,解得{k =−1n =4, ∴BC 的解析式为:y =﹣x +4,∴﹣x +4=34x +94,解得:x =1,∴E (1,3),∵M (m ,0),且MH ⊥x 轴,∴G (m ,34m +94),F (m ,−13m 2+13m +4), ∵S △EFG =59S △OEG ,∴12FG ×(x E −x F )=59×12ON (x E ﹣x G ), [(−13m 2+13m +4)﹣(34m +94)](1﹣m )=59×94(1−m),解得:m 1=34,m 2=﹣2;②存在,由①知:E (1,3),∵四边形EFHP 是正方形,∴FH =EF ,∠EFH =∠FHP =∠HPE =90°, ∵M (m ,0),且MH ⊥x 轴,∴H (m ,﹣m +4),F (m ,−13m 2+13m +4), 分两种情况:i )当﹣3≤m <1时,如图2,点F 在EP 的左侧,∴FH =(﹣m +4)﹣(−13m 2+13m +4)=13m 2−43m , ∵EF =FH ,∴13m 2−43m =1−m ,解得:m 1=1+√132(舍),m 2=1−√132,∴H (1−√132,7+√132),∴P (1,7+√132),ii )当1<m <4时,点F 在PE 的右边,如图3,同理得−13m 2+43m =m ﹣1,解得:m 1=1+√132,m 2=1−√132(舍), 同理得P (1,7−√132);综上,点P 的坐标为:(1,7+√132)或(1,7−√132). 【变式训练】.如图,已知直线y x c =-+交x 轴于点B ,交y 轴于点C ,抛物线23y ax bx =++经过点(1,0)A -,与直线y x c =-+交于B 、C 两点,点P 为抛物线上的动点,过点P 作PE x ⊥轴,交直线BC 于点F ,垂足为E .(1)求抛物线的解析式;(2)当点P 位于抛物线对称轴右侧时,点Q 为抛物线对称轴左侧一个动点,过点Q 作QD x ⊥轴,垂足为点D .若四边形DEPQ 为正方形时求点P 的坐标;(3)若PQF △是以点P 为顶角顶点的等腰直角三角形时,请直接写出点P 的横坐标.【解析】(1)抛物线23y ax bx =++经过点C ,则点C 坐标为(0,3),代入y x c =-+可得3c =,则直线BC 的解析式为3y x =-+.直线BC 经过点B ,则点B 坐标为(3,0)将点(1,0)A -、(3,0)B 代入抛物线23y ax bx =++解得1a =-,2b =∴抛物线的解析式为2y x 2x 3=-++.(2)抛物线的对称轴为12b x a=-=. ∴四边形DEPQ 为正方形,∴PQ PE =,//PQ x 轴.∴点Q 与点P 关于直线1x =对称.设点2(,23)P t t t -++,则2(1)PQ t =-,223PE t t =-++.∴22(1)23t t t -=-++,解得:t =t =t 2=2t =去)当t =)12P ,当t 2=()2P 22-,∴四边形DEPQ 为正方形时点P 的坐标为)2和()22-(3)点P 的横坐标为2或-1 ∴PQF △是以点P 为顶角顶点的等腰直角三角形∴∴QPF=∴PEB=90°∴//PQ x 轴∴点Q 与点P 关于直线1x =对称.设点()2,23P t t t -++,则2(1)PQ t =-,3(),F t t -+∴()2223(3)3PF t t t t t =-++--+=-+. ∴PQ PF =,∴22(1)||3t t t -=-+∣,解得:2t =或t 1=-或t =t =综上所述,点P 的横坐标为2或-1 【巩固练习】 1.如图,在平面直角坐标系中,二次函数y =﹣x 2+bx +c 的图象与x 轴交于A 、B 两点,A 点的坐标为(﹣3,0),B 点在原点的左侧,与y 轴交于点C (0,3),点P 是直线BC 上方的抛物线上一动点(1)求这个二次函数的表达式;(2)连接PO 、PC ,并把△POC 沿CO 翻折,得到四边形POP ′C (如图1所示),那么是否存在点P ,使四边形POP ′C 为菱形?若存在,请此时点P 的坐标:若不存在,请说明理由; (3)当点P 运动到什么位置时,四边形ABCP 的面积最大,并求出其最大值.【答案】(1)y =﹣x 2﹣2x +3;(2)存在.P ,32);(3)P 点的坐标为(﹣32,154),四边形ABPC 的面积的最大值为758. 【方法引导】(1)利用待定系数法直接将B 、C 两点直接代入y =x 2+bx+c 求解b ,c 的值即可得抛物线解析式;(2)利用菱形对角线的性质及折叠的性质可以判断P 点的纵坐标为﹣32,令y =﹣32即可得x 2﹣2x ﹣3=﹣32,解该方程即可确定P 点坐标;(3)由于△ABC的面积为定值,当四边形ABCP的面积最大时,△BPC的面积最大;过P 作y轴的平行线,交直线BC于Q,交x轴于F,易求得直线AC的解析式,可设出P点的横坐标,然后根据抛物线和直线BC的解析式求出Q、P的纵坐标,即可得到PQ的长,以PQ为底,B点横坐标的绝对值为高即可求得△BPC的面积,由此可得到关于四边形ABCP 的面积与P点横坐标的函数关系式,根据函数的性质即可求出四边形ABCP的最大面积及对应的P点坐标.【解析】(1)∵C点坐标为(0,3),∴y=﹣x2+bx+3,把A(﹣3,0)代入上式得,0=9﹣3b+3,解得,b=﹣2,∴该二次函数解析式为:y=﹣x2﹣2x+3;(2)存在.如图1,设P点的坐标为(x,﹣x2﹣2x+3),PP′交CO于E,当四边形POP'C为菱形时,则有PC=PO,连接PP′,则PE⊥CO于E,∴OE=CE=32,令﹣x2﹣2x+3=32,解得,x1,x2=22-+(不合题意,舍去).∴P,32).(3)如图2,过点P作y轴的平行线与BC交于点Q,与OA交于点F,设P (x ,﹣x 2﹣2x+3),设直线AC 的解析式为:y =kx+t ,则303k t t -+=⎧⎨=⎩,解得:13k t =⎧⎨=⎩, ∴直线AC 的解析式为y =x+3,则Q 点的坐标为(x ,x+3),当0=﹣x 2﹣2x+3,解得:x 1=1,x 2=﹣3,∴AO =3,OB =1,则AB =4,S 四边形ABCP =S △ABC +S △APQ +S △CPQ =12AB•OC+12QP•OF+12QP•AF =12×4×3+12[(﹣x 2﹣2x+3)﹣(x+3)]×3 =﹣32(x+32)2+758. 当x =﹣32时,四边形ABCP 的面积最大, 此时P 点的坐标为(﹣32,154),四边形ABPC 的面积的最大值为758. 【思路引导】此题考查了二次函数综合题,需要掌握二次函数解析式的确定、菱形的判定和性质以及图形面积的求法等知识,当所求图形不规则时通常要将其转换为其他规则图形面积的和差关系来求解.2.如图:在平面直角坐标系中,直线l :y=13x ﹣43与x 轴交于点A ,经过点A 的抛物线y=ax 2﹣3x+c 的对称轴是x=32.(1)求抛物线的解析式;(2)平移直线l 经过原点O ,得到直线m ,点P 是直线m 上任意一点,PB ⊥x 轴于点B ,PC ⊥y 轴于点C ,若点E 在线段OB 上,点F 在线段OC 的延长线上,连接PE ,PF ,且PE=3PF .求证:PE ⊥PF ;(3)若(2)中的点P 坐标为(6,2),点E 是x 轴上的点,点F 是y 轴上的点,当PE ⊥PF 时,抛物线上是否存在点Q ,使四边形PEQF 是矩形?如果存在,请求出点Q 的坐标,如果不存在,请说明理由.【答案】(1)抛物线的解析式为y=x 2﹣3x ﹣4;(2)证明见解析;(3)点Q 的坐标为(﹣2,6)或(2,﹣6).【解析】(1)当y=0时,13x −43=0,解得x=4,即A (4,0),抛物线过点A ,对称轴是x=32,得{16a −12+c =0−−32a =32, 解得{a =1c =−4,抛物线的解析式为y=x 2﹣3x ﹣4; (2)∵平移直线l 经过原点O ,得到直线m ,∴直线m 的解析式为y=13x . ∵点P 是直线1上任意一点,∴设P (3a ,a ),则PC=3a ,PB=a .又∵PE=3PF ,∴PC PF =PB PE .∴∠FPC=∠EPB .∵∠CPE+∠EPB=90°,∴∠FPC+∠CPE=90°,∴FP⊥PE.(3)如图所示,点E在点B的左侧时,设E(a,0),则BE=6﹣a.∵CF=3BE=18﹣3a,∴OF=20﹣3a.∴F(0,20﹣3a).∵PEQF为矩形,∴Q x+P x2=F x+E x2,Q y+P y2=F y+E y2,∴Q x+6=0+a,Q y+2=20﹣3a+0,∴Q x=a﹣6,Q y=18﹣3a.将点Q的坐标代入抛物线的解析式得:18﹣3a=(a﹣6)2﹣3(a﹣6)﹣4,解得:a=4或a=8(舍去).∴Q(﹣2,6).如下图所示:当点E在点B的右侧时,设E(a,0),则BE=a﹣6.∵CF=3BE=3a﹣18,∴OF=3a﹣20.∴F(0,20﹣3a).∵PEQF为矩形,∴Q x+P x2=F x+E x2,Q y+P y2=F y+E y2,∴Q x+6=0+a,Q y+2=20﹣3a+0,∴Q x=a﹣6,Q y=18﹣3a.将点Q的坐标代入抛物线的解析式得:18﹣3a=(a﹣6)2﹣3(a﹣6)﹣4,解得:a=8或a=4(舍去).∴Q(2,﹣6).综上所述,点Q的坐标为(﹣2,6)或(2,﹣6).3.如图,抛物线y=x2+2x的顶点为A,与x轴交于B、C两点(点B在点C的左侧).(1)请求出A、B、C三点的坐标;(2)平移抛物线,记平移后的抛物线的顶点为D,与y轴交于点E,F为平面内一点,若以A、D、E、F为顶点的四边形是正方形,且平移后的抛物线的对称轴在y轴右侧,请求出满足条件的平移后抛物线的表达式.解:(1)∵抛物线y=x2+2x与x轴交于B、C两点,∴0=x2+2x,∴x1=0,x2=﹣2,∴点B(﹣2,0),点C(0,0),∵y=x2+2x=(x+1)2﹣1,∴点A(﹣1,﹣1);(2)设平移后抛物线的表达式为:y=(x+1﹣m)2﹣1+n(m>1),∴点D(m﹣1,﹣1+n),∵y=(x+1﹣m)2﹣1+n=x2+2×(1﹣m)x+m2﹣2m+n,∴点E(0,m2﹣2m+n),Ⅰ、如图1,当点D在点A的下方时,过点A作AM⊥y轴于N,过点D作DM⊥AM于M,∴∠ANE=∠AMD=90°,∵以A、D、E、F为顶点的四边形是正方形,∴AE=AD,∠EAD=90°,∴∠EAN+∠DAM=90°,∵∠AEN+∠EAN=90°,∴∠AEN=∠DAM,∴△AEN≌△DAM(AAS),∴AN=DM,EN=AM,∴1=﹣1﹣(﹣1+n),m﹣1﹣(﹣1)=m2﹣2m+n﹣(﹣1),∴n=﹣1,m=3,∴平移后抛物线的表达式为:y=(x﹣2)2﹣2;Ⅱ、如图2,点D在点A上方时,过点D作DM⊥y轴于N,过点A作AM⊥DM于M,同理可证△EDN≌△DAM,∴DN=AM,EN=DM,∴m﹣1=﹣1+n+1,m2﹣2m+n﹣(﹣1+n)=m﹣1+1,∴m=,n=,∴平移后抛物线的表达式为:y=(x﹣)2﹣,Ⅲ、当∠AED=90°时,同理可求:y=(x﹣1)2﹣1;综上所述:平移后抛物线的表达式为:y=(x﹣2)2﹣2或y=(x﹣)2﹣或y=(x﹣1)2﹣1.。
2020-2021中考数学平行四边形综合经典题含答案一、平行四边形1.(问题情景)利用三角形的面积相等来求解的方法是一种常见的等积法,此方法是我们解决几何问题的途径之一.例如:张老师给小聪提出这样一个问题:如图1,在△ABC中,AB=3,AD=6,问△ABC的高AD与CE的比是多少?小聪的计算思路是:根据题意得:S△ABC=12BC•AD=12AB•CE.从而得2AD=CE,∴12 AD CE请运用上述材料中所积累的经验和方法解决下列问题:(1)(类比探究)如图2,在▱ABCD中,点E、F分别在AD,CD上,且AF=CE,并相交于点O,连接BE、BF,求证:BO平分角AOC.(2)(探究延伸)如图3,已知直线m∥n,点A、C是直线m上两点,点B、D是直线n上两点,点P是线段CD中点,且∠APB=90°,两平行线m、n间的距离为4.求证:PA•PB=2AB.(3)(迁移应用)如图4,E为AB边上一点,ED⊥AD,CE⊥CB,垂足分别为D,C,∠DAB=∠B,AB=34,BC=2,AC=26,又已知M、N分别为AE、BE的中点,连接DM、CN.求△DEM与△CEN的周长之和.【答案】(1)见解析;(2)见解析;(3)34【解析】分析:(1)、根据平行四边形的性质得出△ABF和△BCE的面积相等,过点B作OG⊥AF于G,OH⊥CE于H,从而得出AF=CE,然后证明△BOG和△BOH全等,从而得出∠BOG=∠BOH,即角平分线;(2)、过点P作PG⊥n于G,交m于F,根据平行线的性质得出△CPF和△DPG全等,延长BP交AC于E,证明△CPE和△DPB全等,根据等积法得出AB=AP×PB,从而得出答案;(3)、,延长AD,BC交于点G,过点A作AF⊥BC于F,设CF=x,根据Rt△ABF和Rt△ACF的勾股定理得出x的值,根据等积法得出AE=2DM=2EM,BE=2CN=2EN, DM+CN=AB,从而得出两个三角形的周长之和.同理:EM+EN=AB详解:证明:(1)如图2,∵四边形ABCD是平行四边形,∴S△ABF=S▱ABCD,S△BCE=S▱ABCD,∴S△ABF=S△BCE,过点B作OG⊥AF于G,OH⊥CE于H,∴S△ABF=AF×BG,S△BCE=CE×BH,∴AF×BG=CE×BH,即:AF×BG=CE×BH,∵AF=CE,∴BG=BH,在Rt△BOG和Rt△BOH中,,∴Rt△BOG≌Rt△BOH,∴∠BOG=∠BOH,∴OB平分∠AOC,(2)如图3,过点P作PG⊥n于G,交m于F,∵m∥n,∴PF⊥AC,∴∠CFP=∠BGP=90°,∵点P是CD中点,在△CPF和△DPG中,,∴△CPF≌△DPG,∴PF=PG=FG=2,延长BP交AC于E,∵m∥n,∴∠ECP=∠BDP,∴CP=DP,在△CPE和△DPB中,,∴△CPE≌△DPB,∴PE=PB,∵∠APB=90°,∴AE=AB,∴S△APE=S△APB,∵S△APE=AE×PF=AE=AB,S△APB=AP×PB,∴AB=AP×PB,即:PA•PB=2AB;(3)如图4,延长AD,BC交于点G,∵∠BAD=∠B,∴AG=BG,过点A作AF⊥BC于F,设CF=x(x>0),∴BF=BC+CF=x+2,在Rt△ABF中,AB=,根据勾股定理得,AF2=AB2﹣BF2=34﹣(x+2)2,在Rt△ACF中,AC=,根据勾股定理得,AF2=AC2﹣CF2=26﹣x2,∴34﹣(x+2)2=26﹣x2,∴x=﹣1(舍)或x=1,∴AF==5,连接EG,∵S△ABG=BG×AF=S△AEG+S△BEG=AG×DE+BG×CE=BG(DE+CE),∴DE+CE=AF=5, 在Rt △ADE 中,点M 是AE 的中点, ∴AE=2DM=2EM ,同理:BE=2CN=2EN , ∵AB=AE+BE , ∴2DM+2CN=AB , ∴DM+CN=AB ,同理:EM+EN=AB ∴△DEM 与△CEN 的周长之和=DE+DM+EM+CE+CN+EN=(DE+CE )+[(DM+CN )+(EM+EN )]=(DE+CN )+AB=5+.点睛:本题主要考查的就是三角形全等的判定与性质以及三角形的等积法,综合性非常强,难度较大.在解决这个问题的关键就是作出辅助线,然后根据勾股定理和三角形全等得出各个线段之间的关系.2.在四边形ABCD 中,180B D ∠+∠=︒,对角线AC 平分BAD ∠.(1)如图1,若120DAB ∠=︒,且90B ∠=︒,试探究边AD 、AB 与对角线AC 的数量关系并说明理由.(2)如图2,若将(1)中的条件“90B ∠=︒”去掉,(1)中的结论是否成立?请说明理由.(3)如图3,若90DAB ∠=︒,探究边AD 、AB 与对角线AC 的数量关系并说明理由.【答案】(1)AC AD AB =+.证明见解析;(2)成立;(3)2AD AB +=.理由见解析.【解析】试题分析:(1)结论:AC=AD+AB ,只要证明AD=12AC ,AB=12AC 即可解决问题; (2)(1)中的结论成立.以C 为顶点,AC 为一边作∠ACE=60°,∠ACE 的另一边交AB 延长线于点E ,只要证明△DAC ≌△BEC 即可解决问题;(3)结论:AD +AB 2AC .过点C 作CE ⊥AC 交AB 的延长线于点E ,只要证明△ACE 是等腰直角三角形,△DAC≌△BEC即可解决问题;试题解析:解:(1)AC=AD+AB.理由如下:如图1中,在四边形ABCD中,∠D+∠B=180°,∠B=90°,∴∠D=90°,∵∠DAB=120°,AC平分∠DAB,∴∠DAC=∠BAC=60°,∵∠B=90°,∴AB=12AC,同理AD=12AC.∴AC=AD+AB.(2)(1)中的结论成立,理由如下:以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB延长线于点E,∵∠BAC=60°,∴△AEC为等边三角形,∴AC=AE=CE,∵∠D+∠ABC=180°,∠DAB=120°,∴∠DCB=60°,∴∠DCA=∠BCE,∵∠D+∠ABC=180°,∠ABC+∠EBC=180°,∴∠D=∠CBE,∵CA=CE,∴△DAC≌△BEC,∴AD=BE,∴AC=AD+AB.(3)结论:AD+AB2AC.理由如下:过点C 作CE ⊥AC 交AB 的延长线于点E ,∵∠D+∠B=180°,∠DAB=90°,∴DCB=90°,∵∠ACE=90°,∴∠DCA=∠BCE ,又∵AC 平分∠DAB ,∴∠CAB=45°,∴∠E=45°.∴AC=CE .又∵∠D+∠ABC=180°,∠D=∠CBE ,∴△CDA ≌△CBE ,∴AD=BE ,∴AD+AB=AE .在Rt △ACE 中,∠CAB=45°,∴AE =245AC AC cos ︒= ∴2AD AB AC +=.3.如图1,正方形ABCD 的一边AB 在直尺一边所在直线MN 上,点O 是对角线AC 、BD 的交点,过点O 作OE ⊥MN 于点E .(1)如图1,线段AB 与OE 之间的数量关系为 .(请直接填结论)(2)保证点A 始终在直线MN 上,正方形ABCD 绕点A 旋转θ(0<θ<90°),过点 B 作BF ⊥MN 于点F .①如图2,当点O 、B 两点均在直线MN 右侧时,试猜想线段AF 、BF 与OE 之间存在怎样的数量关系?请说明理由.②如图3,当点O、B两点分别在直线MN两侧时,此时①中结论是否依然成立呢?若成立,请直接写出结论;若不成立,请写出变化后的结论并证明.③当正方形ABCD绕点A旋转到如图4的位置时,线段AF、BF与OE之间的数量关系为.(请直接填结论)【答案】(1)AB=2OE;(2)①AF+BF=2OE,证明见解析;②AF﹣BF=2OE 证明见解析;③BF ﹣AF=2OE,【解析】试题分析:(1)利用直角三角形斜边的中线等于斜边的一半即可得出结论;(2)①过点B作BH⊥OE于H,可得四边形BHEF是矩形,根据矩形的对边相等可得EF=BH,BF=HE,根据正方形的对角线相等且互相垂直平分可得OA=OB,∠AOB=90°,再根据同角的余角相等求出∠AOE=∠OBH,然后利用“角角边”证明△AOE和△OBH全等,根据全等三角形对应边相等可得OH=AE,OE=BH,再根据AF-EF=AE,整理即可得证;②过点B作BH⊥OE交OE的延长线于H,可得四边形BHEF是矩形,根据矩形的对边相等可得EF=BH,BF=HE,根据正方形的对角线相等且互相垂直平分可得OA=OB,∠AOB=90°,再根据同角的余角相等求出∠AOE=∠OBH,然后利用“角角边”证明△AOE和△OBH全等,根据全等三角形对应边相等可得OH=AE,OE=BH,再根据AF-EF=AE,整理即可得证;③同②的方法可证.试题解析:(1)∵AC,BD是正方形的对角线,∴OA=OC=OB,∠BAD=∠ABC=90°,∵OE⊥AB,∴OE=12 AB,∴AB=2OE,(2)①AF+BF=2OE证明:如图2,过点B作BH⊥OE于点H∴∠BHE=∠BHO=90°∵OE⊥MN,BF⊥MN∴∠BFE=∠OEF=90°∴四边形EFBH为矩形∴BF=EH,EF=BH∵四边形ABCD为正方形∴OA=OB,∠AOB=90°∴∠AOE+∠HOB=∠OBH+∠HOB=90°∴∠AOE=∠OBH∴△AEO≌△OHB(AAS)∴AE=OH,OE=BH∴AF+BF=AE+EF+BF=OH+BH+EH=OE+OE=2OE.②AF﹣BF=2OE证明:如图3,延长OE,过点B作BH⊥OE于点H∴∠EHB=90°∵OE⊥MN,BF⊥MN∴∠AEO=∠HEF=∠BFE=90°∴四边形HBFE为矩形∴BF=HE,EF=BH∵四边形ABCD是正方形∴OA=OB,∠AOB=90°∴∠AOE+∠BOH=∠OBH+∠BOH∴∠AOE=∠OBH∴△AOE≌△OBH(AAS)∴AE=OH,OE=BH,∴AF﹣BF=AE+EF﹣HE=OH﹣HE+OE=OE+OE=2OE③BF﹣AF=2OE,如图4,作OG⊥BF于G,则四边形EFGO是矩形,∴EF=GO,GF=EO,∠GOE=90°,∴∠AOE+∠AOG=90°.在正方形ABCD中,OA=OB,∠AOB=90°,∴∠AOG+∠BOG=90°,∴∠AOE=∠BOG.∵OG⊥BF,OE⊥AE,∴∠AEO=∠BGO=90°.∴△AOE≌△BOG(AAS),∴OE=OG,AE=BG,∵AE﹣EF=AF,EF=OG=OE,AE=BG=AF+EF=OE+AF,∴BF﹣AF=BG+GF﹣(AE﹣EF)=AE+OE﹣AE+EF=OE+OE=2OE,∴BF﹣AF=2OE.4.如图,平面直角坐标系中,四边形OABC为矩形,点A,B的坐标分别为(4,0),(4,3),动点M,N分别从O,B同时出发.以每秒1个单位的速度运动.其中,点M 沿OA向终点A运动,点N沿BC向终点C运动.过点M作MP⊥OA,交AC于P,连接NP,已知动点运动了x秒.(1)P点的坐标为多少(用含x的代数式表示);(2)试求△NPC面积S的表达式,并求出面积S的最大值及相应的x值;(3)当x为何值时,△NPC是一个等腰三角形?简要说明理由.【答案】(1)P点坐标为(x,3﹣x).(2)S的最大值为,此时x=2.(3)x=,或x=,或x=.【解析】试题分析:(1)求P点的坐标,也就是求OM和PM的长,已知了OM的长为x,关键是求出PM的长,方法不唯一,①可通过PM∥OC得出的对应成比例线段来求;②也可延长MP交BC于Q,先在直角三角形CPQ中根据CQ的长和∠ACB的正切值求出PQ的长,然后根据PM=AB﹣PQ来求出PM的长.得出OM和PM的长,即可求出P点的坐标.(2)可按(1)②中的方法经求出PQ的长,而CN的长可根据CN=BC﹣BN来求得,因此根据三角形的面积计算公式即可得出S,x的函数关系式.(3)本题要分类讨论:①当CP=CN时,可在直角三角形CPQ中,用CQ的长即x和∠ABC的余弦值求出CP的表达式,然后联立CN的表达式即可求出x的值;②当CP=PN时,那么CQ=QN,先在直角三角形CPQ中求出CQ的长,然后根据QN=CN﹣CQ求出QN的表达式,根据题设的等量条件即可得出x的值.③当CN=PN时,先求出QP和QN的长,然后在直角三角形PNQ中,用勾股定理求出PN 的长,联立CN的表达式即可求出x的值.试题解析:(1)过点P作PQ⊥BC于点Q,有题意可得:PQ∥AB,∴△CQP∽△CBA,∴∴解得:QP=x,∴PM=3﹣x,由题意可知,C(0,3),M(x,0),N(4﹣x,3),P点坐标为(x,3﹣x).(2)设△NPC的面积为S,在△NPC中,NC=4﹣x,NC边上的高为,其中,0≤x≤4.∴S=(4﹣x)×x=(﹣x2+4x)=﹣(x﹣2)2+.∴S的最大值为,此时x=2.(3)延长MP交CB于Q,则有PQ⊥BC.①若NP=CP,∵PQ⊥BC,∴NQ=CQ=x.∴3x=4,∴x=.②若CP=CN,则CN=4﹣x,PQ=x,CP=x,4﹣x=x,∴x=;③若CN=NP,则CN=4﹣x.∵PQ=x,NQ=4﹣2x,∵在Rt△PNQ中,PN2=NQ2+PQ2,∴(4﹣x)2=(4﹣2x)2+(x)2,∴x=.综上所述,x=,或x=,或x=.考点:二次函数综合题.5.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)若∠ADF:∠FDC=3:2,DF⊥AC,求∠BDF的度数.【答案】(1)见解析;(2)18°.【解析】【分析】(1)根据平行四边形的判定得出四边形ABCD是平行四边形,求出∠ABC=90°,根据矩形的判定得出即可;(2)求出∠FDC的度数,根据三角形内角和定理求出∠DCO,根据矩形的性质得出OD=OC,求出∠CDO,即可求出答案.【详解】(1)证明:∵AO=CO,BO=DO∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,∴∠FDC=36°,∵DF⊥AC,∴∠DCO=90°﹣36°=54°,∵四边形ABCD是矩形,∴OC=OD,∴∠ODC=54°∴∠BDF=∠ODC﹣∠FDC=18°.【点睛】本题考查了平行四边形的性质和判定,矩形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:矩形的对角线相等,有一个角是直角的平行四边形是矩形.6.如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连接EC.(1)求证:AD=EC;(2)当∠BAC=Rt∠时,求证:四边形ADCE是菱形.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)先证四边形ABDE 是平行四边形,再证四边形ADCE 是平行四边形即可;(2)由∠BAC =90°,AD 是边BC 上的中线,得AD =BD =CD ,即可证明.【详解】(1)证明:∵AE ∥BC ,DE ∥AB ,∴四边形ABDE 是平行四边形,∴AE =BD ,∵AD 是边BC 上的中线,∴BD =DC ,∴AE =DC ,又∵AE ∥BC ,∴四边形ADCE 是平行四边形.(2) 证明:∵∠BAC =90°,AD 是边BC 上的中线.∴AD =CD∵四边形ADCE 是平行四边形,∴四边形ADCE 是菱形.【点睛】本题考查了平行四边形的判定、菱形的判定、直角三角形斜边中线定理.根据图形与已知条件灵活应用平行四边形的判定方法是证明的关键.7.已知90AOB ∠=︒,点C 是AOB ∠的角平分线OP 上的任意一点,现有一个直角MCN ∠绕点C 旋转,两直角边CM ,CN 分别与直线OA ,OB 相交于点D ,点E .(1)如图1,若CD OA ⊥,猜想线段OD ,OE ,OC 之间的数量关系,并说明理由. (2)如图2,若点D 在射线OA 上,且CD 与OA 不垂直,则(1)中的数量关系是否仍成立?如成立,请说明理由;如不成立,请写出线段OD ,OE ,OC 之间的数量关系,并加以证明.(3)如图3,若点D 在射线OA 的反向延长线上,且2OD =,8OE =,请直接写出线段CE 的长度.【答案】(1)详见解析;(2)详见解析;(334【解析】【分析】(1)先证四边形ODCE 为矩形,再证矩形ODCE 为正方形,由正方形性质可得;(2)过点C 作CG OA ⊥于点G ,CH OB ⊥于点H ,证四边形OGCH 为正方形,再证()CGD CHE ASA ∆≅∆,可得;(3)根据()CGD CHE ASA ∆≅∆,可得2OE OD OH OG OC -=+=.【详解】解:(1)∵90AOB ∠=︒,90MCN ∠=︒,CD OA ⊥,∴四边形ODCE 为矩形.∵OP 是AOB ∠的角平分线,∴45DOC EOC ∠=∠=︒,∴OD CD =,∴矩形ODCE 为正方形, ∴2OC OD =,2OC OE =.∴2OD OE OC +=.(2)如图,过点C 作CG OA ⊥于点G ,CH OB ⊥于点H ,∵OP 平分AOB ∠,90AOB ∠=︒,∴四边形OGCH 为正方形, 由(1)得:2OG OH OC +=,在CGD ∆和CHE ∆中, 90CGD CHE CG CHDCG ECH ︒⎧∠=∠=⎪=⎨⎪∠=∠⎩, ∴()CGD CHE ASA ∆≅∆,∴GD HE =,∴2OD OE OC +=.(3)2OG OH OC +=, ()CGD CHE ASA ∆≅∆,∴GD HE =. ∵OD GD OG =-,OE OH EH =+,∴2OE OD OH OG OC -=+=, ∴32OC =,∴34CE =,CE 的长度为34.【点睛】考核知识点:矩形,正方形的判定和性质.熟练运用特殊四边形的性质和判定是关键.8.如图,在正方形ABCD 中,对角线AC 与BD 交于点O ,在Rt △PFE 中,∠EPF=90°,点E 、F 分别在边AD 、AB 上.(1)如图1,若点P 与点O 重合:①求证:AF=DE ;②若正方形的边长为3,当∠DOE=15°时,求线段EF 的长;(2)如图2,若Rt △PFE 的顶点P 在线段OB 上移动(不与点O 、B 重合),当BD=3BP 时,证明:PE=2PF .【答案】(1)①证明见解析,②22;(2)证明见解析.【解析】【分析】(1)①根据正方形的性质和旋转的性质即可证得:△AOF ≌△DOE 根据全等三角形的性质证明;②作OG ⊥AB 于G ,根据余弦的概念求出OF 的长,根据勾股定理求值即可;(2)首先过点P 作HP ⊥BD 交AB 于点H ,根据相似三角形的判定和性质求出PE 与PF 的数量关系.【详解】(1)①证明:∵四边形ABCD 是正方形,∴OA=OD ,∠OAF=∠ODE=45°,∠AOD=90°,∴∠AOE+∠DOE=90°,∵∠EPF=90°,∴∠AOF+∠AOE=90°,∴∠DOE=∠AOF ,在△AOF 和△DOE 中,OAF ODE OA ODAOF DOE ===∠∠⎧⎪⎨⎪∠∠⎩, ∴△AOF ≌△DOE ,∴AF=DE ;②解:过点O 作OG ⊥AB 于G ,∵正方形的边长为3∴OG=12BC=3, ∵∠DOE=15°,△AOF ≌△DOE ,∴∠AOF=15°,∴∠FOG=45°-15°=30°,∴OF=OG cos DOG∠=2, ∴EF=22=22OF OE +;(2)证明:如图2,过点P 作HP ⊥BD 交AB 于点H ,则△HPB 为等腰直角三角形,∠HPD=90°,∴HP=BP ,∵BD=3BP ,∴PD=2BP ,∴PD=2HP ,又∵∠HPF+∠HPE=90°,∠DPE+∠HPE=90°,∴∠HPF=∠DPE ,又∵∠BHP=∠EDP=45°,∴△PHF ∽△PDE ,∴12PF PH PE PD ==, ∴PE=2PF .【点睛】 此题属于四边形的综合题.考查了正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质以及勾股定理.注意准确作出辅助线是解此题的关键.9.在平面直角坐标系中,O 为原点,点A (﹣6,0)、点C (0,6),若正方形OABC 绕点O 顺时针旋转,得正方形OA′B′C′,记旋转角为α:(1)如图①,当α=45°时,求BC 与A′B′的交点D 的坐标;(2)如图②,当α=60°时,求点B′的坐标;(3)若P 为线段BC′的中点,求AP 长的取值范围(直接写出结果即可).【答案】(1)(662,6)-;(2)(333,333)-+;(3)323323AP -+剟.【解析】【分析】(1)当α=45°时,延长OA′经过点B ,在Rt △BA′D 中,∠OBC =45°,A′B =626-,可求得BD 的长,进而求得CD 的长,即可得出点D 的坐标;(2)过点C′作x 轴垂线MN ,交x 轴于点M ,过点B′作MN 的垂线,垂足为N ,证明△OMC′≌△C′NB′,可得C′N =OM =33,B′N =C′M =3,即可得出点B′的坐标;(3)连接OB ,AC 相交于点K ,则K 是OB 的中点,因为P 为线段BC′的中点,所以PK =12OC′=3,即点P 在以K 为圆心,3为半径的圆上运动,即可得出AP 长的取值范围. 【详解】解:(1)∵A (﹣6,0)、C (0,6),O (0,0),∴四边形OABC 是边长为6的正方形,当α=45°时,如图①,延长OA′经过点B ,∵OB =62,OA′=OA =6,∠OBC =45°,∴A′B =626-,∴BD =(626-)×21262=-,∴CD =6﹣(1262-)=626-,∴BC 与A′B′的交点D 的坐标为(662-,6);(2)如图②,过点C′作x 轴垂线MN ,交x 轴于点M ,过点B′作MN 的垂线,垂足为N ,∵∠OC′B′=90°,∴∠OC′M =90°﹣∠B′C′N =∠C′B′N ,∵OC′=B′C′,∠OMC′=∠C′NB′=90°,∴△OMC′≌△C′NB′(AAS ),当α=60°时,∵∠A′OC′=90°,OC′=6,∴∠C′OM =30°,∴C′N =OM =33,B′N =C′M =3,∴点B′的坐标为()333,333-+;(3)如图③,连接OB ,AC 相交于点K ,则K 是OB 的中点,∵P 为线段BC′的中点,∴PK =12OC′=3,∴P 在以K 为圆心,3为半径的圆上运动,∵AK =32,∴AP 最大值为323+,AP 的最小值为323-,∴AP 长的取值范围为323323AP -+剟.【点睛】本题考查正方形性质,全等三角形判定与性质,三角形中位线定理.(3)问解题的关键是利用中位线定理得出点P 的轨迹.10.如图1,在正方形ABCD 中,点E ,F 分别是边BC ,AB 上的点,且CE=BF .连接DE ,过点E 作EG ⊥DE ,使EG=DE ,连接FG ,FC .(1)请判断:FG 与CE 的关系是___;(2)如图2,若点E ,F 分别是边CB ,BA 延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;(3)如图3,若点E ,F 分别是边BC ,AB 延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.【答案】(1)FG=CE ,FG ∥CE ;(2)成立;(3)成立.【解析】试题分析:(1)只要证明四边形CDGF 是平行四边形即可得出FG =CE ,FG ∥CE ;(2)构造辅助线后证明△HGE ≌△CED ,利用对应边相等求证四边形GHBF 是矩形后,利用等量代换即可求出FG =C ,FG ∥CE ;(3)证明△CBF ≌△DCE 后,即可证明四边形CEGF 是平行四边形.试题解析:解:(1)FG =CE ,FG ∥CE ;(2)过点G 作GH ⊥CB 的延长线于点H .∵EG ⊥DE ,∴∠GEH +∠DEC =90°.∵∠GEH +∠HGE =90°,∴∠DEC =∠HE .在△HGE 与△CED 中,∵∠GHE =∠DCE ,∠HGE =∠DEC ,EG =DE ,∴△HGE ≌△CED (AAS ),∴GH =CE ,HE =CD .∵CE =BF ,∴GH =BF .∵GH ∥BF ,∴四边形GHBF 是矩形,∴GF =BH ,FG ∥CH ,∴FG ∥CE .∵四边形ABCD 是正方形,∴CD =BC ,∴HE =BC ,∴HE +EB =BC +EB ,∴BH =EC ,∴FG =EC ;(3)∵四边形ABCD 是正方形,∴BC =CD ,∠FBC =∠ECD =90°.在△CBF 与△DCE 中,∵BF =CE ,∠FBC =∠ECD ,BC =DC ,∴△CBF ≌△DCE (SAS ),∴∠BCF =∠CDE ,CF =DE .∵EG =DE ,∴CF =EG .∵DE ⊥EG ,∴∠DEC +∠CEG =90°.∵∠CDE +∠DEC =90°,∴∠CDE =∠CEG ,∴∠BCF =∠CEG ,∴CF ∥EG ,∴四边形CEGF 平行四边形,∴FG ∥CE ,FG =CE .11.在ABC V 中,ABC 90o ∠=,BD 为AC 边上的中线,过点C 作CE BD ⊥于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG BD =,连接BG ,DF .()1求证:BD DF =;()2求证:四边形BDFG 为菱形;()3若AG 5=,CF 7=,求四边形BDFG 的周长.【答案】(1)证明见解析(2)证明见解析(3)8【解析】【分析】()1利用平行线的性质得到90CFA ∠=o ,再利用直角三角形斜边上的中线等于斜边的一半即可得证,()2利用平行四边形的判定定理判定四边形BDFG 为平行四边形,再利用()1得结论即可得证,()3设GF x =,则5AF x =-,利用菱形的性质和勾股定理得到CF 、AF 和AC 之间的关系,解出x 即可.【详解】()1证明:AG //BD Q ,CF BD ⊥,CF AG ∴⊥,又D Q 为AC 的中点,1DF AC 2∴=, 又1BD AC 2=Q , BD DF ∴=,()2证明:BD//GF Q ,BD FG =,∴四边形BDFG 为平行四边形,又BD DF =Q ,∴四边形BDFG 为菱形,()3解:设GF x =,则AF 5x =-,AC 2x =,在Rt AFC V 中,222(2x)7)(5x)=+-,解得:1x 2=,216x (3=-舍去), GF 2∴=, ∴菱形BDFG 的周长为8.【点睛】本题考查了菱形的判定与性质直角三角形斜边上的中线,勾股定理等知识,正确掌握这些定义性质及判定并结合图形作答是解决本题的关键.12.猜想与证明:如图1,摆放矩形纸片ABCD 与矩形纸片ECGF ,使B 、C 、G 三点在一条直线上,CE 在边CD 上,连接AF ,若M 为AF 的中点,连接DM 、ME ,试猜想DM 与ME 的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD 与正方形纸片ECGF ,其他条件不变,则DM 和ME 的关系为 .(2)如图2摆放正方形纸片ABCD 与正方形纸片ECGF ,使点F 在边CD 上,点M 仍为AF 的中点,试证明(1)中的结论仍然成立.【答案】猜想:DM=ME ,证明见解析;(2)成立,证明见解析.【解析】试题分析:延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(1)、延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(2)、连接AE,根据正方形的性质得出∠FCE=45°,∠FCA=45°,根据RT△ADF中AM=MF得出DM=AM=MF,根据RT△AEF中AM=MF得出AM=MF=ME,从而说明DM=ME.试题解析:如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=DE,∴DM=HM=ME,∴DM=ME.(1)、如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=EM∴DM=HM=ME,∴DM=ME,(2)、如图2,连接AE,∵四边形ABCD和ECGF是正方形,∴∠FCE=45°,∠FCA=45°,∴AE和EC在同一条直线上,在RT△ADF中,AM=MF,∴DM=AM=MF,在RT△AEF中,AM=MF,∴AM=MF=ME,∴DM=ME.考点:(1)、三角形全等的性质;(2)、矩形的性质.13.问题情境在四边形ABCD 中,BA =BC ,DC ⊥AC ,过点D 作DE ∥AB 交BC 的延长线于点E ,M 是边AD 的中点,连接MB ,ME.特例探究(1)如图1,当∠ABC =90°时,写出线段MB 与ME 的数量关系,位置关系;(2)如图2,当∠ABC =120°时,试探究线段MB 与ME 的数量关系,并证明你的结论; 拓展延伸(3)如图3,当∠ABC =α时,请直接用含α的式子表示线段MB 与ME 之间的数量关系.【答案】(1)MB =ME ,MB ⊥ME ;(2)ME =3MB .证明见解析;(3)ME =MB·tan 2α. 【解析】【分析】(1)如图1中,连接CM .只要证明△MBE 是等腰直角三角形即可;(2)结论:EM=3MB .只要证明△EBM 是直角三角形,且∠MEB=30°即可; (3)结论:EM=BM•tan2α.证明方法类似;【详解】(1) 如图1中,连接CM .∵∠ACD=90°,AM=MD ,∴MC=MA=MD ,∵BA=BC,∴BM垂直平分AC,∵∠ABC=90°,BA=BC,∠ABC=45°,∠ACB=∠DCE=45°,∴∠MBE=12∵AB∥DE,∴∠ABE+∠DEC=180°,∴∠DEC=90°,∴∠DCE=∠CDE=45°,∴EC=ED,∵MC=MD,∴EM垂直平分线段CD,EM平分∠DEC,∴∠MEC=45°,∴△BME是等腰直角三角形,∴BM=ME,BM⊥EM.故答案为BM=ME,BM⊥EM.(2)ME=3MB.证明如下:连接CM,如解图所示.∵DC⊥AC,M是边AD的中点,∴MC=MA=MD.∵BA=BC,∴BM垂直平分AC.∵∠ABC=120°,BA=BC,∠ABC=60°,∠BAC=∠BCA=30°,∠DCE=60°.∴∠MBE=12∵AB∥DE,∴∠ABE+∠DEC=180°,∴∠DEC=60°,∴∠DCE=∠DEC=60°,∴△CDE是等边三角形,∴EC=ED.∵MC=MD,∴EM垂直平分CD,EM平分∠DEC,∴∠MEC=1∠DEC=30°,2∴∠MBE+∠MEB=90°,即∠BME=90°.在Rt△BME中,∵∠MEB=30°,∴ME =3MB .(3) 如图3中,结论:EM=BM•tan 2α.理由:同法可证:BM ⊥EM ,BM 平分∠ABC ,所以EM=BM•tan2α. 【点睛】本题考查四边形综合题、等腰直角三角形的判定和性质、等边三角形的判定和性质、等腰三角形的性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.14.如图,在正方形ABCD 中,点E 在CD 上,AF ⊥AE 交CB 的延长线于F .求证:AE=AF .【答案】见解析【解析】【分析】根据同角的余角相等证得∠BAF=∠DAE ,再利用正方形的性质可得AB=AD ,∠ABF=∠ADE=90°,根据ASA 判定△ABF ≌△ADE ,根据全等三角形的性质即可证得AF=AE .【详解】∵AF ⊥AE ,∴∠BAF+∠BAE=90°,又∵∠DAE+∠BAE=90°,∴∠BAF=∠DAE ,∵四边形ABCD 是正方形,∴AB=AD ,∠ABF=∠ADE=90°,在△ABF 和△ADE 中,,∴△ABF≌△ADE(ASA),∴AF=AE.【点睛】本题主要考查了正方形的性质、全等三角形的判定和性质等知识点,证明△ABF≌△ADE是解决本题的关键.15.如图1,在长方形纸片ABCD中,AB=mAD,其中m⩾1,将它沿EF折叠(点E. F分别在边AB、CD上),使点B落在AD边上的点M处,点C落在点N处,MN与CD相交于点P,连接EP.设AMnAD=,其中0<n⩽1.(1)如图2,当n=1(即M点与D点重合),求证:四边形BEDF为菱形;(2)如图3,当12n=(M为AD的中点),m的值发生变化时,求证:EP=AE+DP;(3)如图1,当m=2(即AB=2AD),n的值发生变化时,BE CFAM-的值是否发生变化?说明理由.【答案】(1)证明见解析;(2)证明见解析;(3)值不变,理由见解析.【解析】试题分析:(1)由条件可知,当n=1(即M点与D点重合),m=2时,AB=2AD,设AD=a,则AB=2a,由矩形的性质可以得出△ADE≌△NDF,就可以得出AE=NF,DE=DF,在Rt△AED中,由勾股定理就可以表示出AE的值,再求出BE的值就可以得出结论.(2)延长PM交EA延长线于G,由条件可以得出△PDM≌△GAM,△EMP≌△EMG由全等三角形的性质就可以得出结论.(3)如图1,连接BM交EF于点Q,过点F作FK⊥AB于点K,交BM于点O,通过证明△ABM∽△KFE,就可以得出EK KFAM AB=,即BE BK BCAM AB-=,由AB=2AD=2BC,BK=CF就可以得出BE CFAM-的值是12为定值.(1)∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠B=∠C=∠D=90°.∵AB=mAD,且n=2,∴AB=2AD.∵∠ADE+∠EDF=90°,∠EDF+∠NDF=90°,∴∠ADE=∠NDF.在△ADE和△NDF中,∠A=∠N,AD=ND,∠ADE=∠NDF,∴△ADE ≌△NDF (ASA ).∴AE=NF ,DE=DF .∵FN=FC ,∴AE=FC .∵AB=CD ,∴AB-AE="CD-CF." ∴BE="DF." ∴BE=DE .Rt △AED 中,由勾股定理,得222AE DE AD =-,即2222AE AD AE AD ()=--,∴AE=34AD. ∴BE=2AD-34AD=54. ∴554334AD BE AE AD ==. (2)如图3,延长PM 交EA 延长线于G ,∴∠GAM=90°.∵M 为AD 的中点,∴AM=DM .∵四边形ABCD 是矩形,∴AB=CD ,AD=BC ,∠A=∠B=∠C=∠D=90°,AB ∥CD.∴∠GAM=∠PDM .在△GAM 和△PDM 中,∠GAM =∠PDM ,AM =DM ,∠AMG =∠DMP ,∴△GAM ≌△PDM (ASA ).∴MG=MP .在△EMP 和△EMG 中,PM =GM ,∠PME =∠GME ,ME =ME ,∴△EMP ≌△EMG (SAS ).∴EG=EP .∴AG+AE=EP .∴PD+AE=EP ,即EP=AE+DP .(3)12BE CF AM -=,值不变,理由如下: 如图1,连接BM 交EF 于点Q ,过点F 作FK ⊥AB 于点K ,交BM 于点O ,∵EM=EB ,∠MEF=∠BEF ,∴EF ⊥MB ,即∠FQO=90°.∵四边形FKBC 是矩形,∴KF=BC ,FC=KB.∵∠FKB=90°,∴∠KBO+∠KOB=90°.∵∠QOF+∠QFO=90°,∠QOF=∠KOB ,∴∠KBO=∠OFQ.∵∠A=∠EKF=90°,∴△ABM ∽△KFE.∴EK KF AM AB =即BE BK BC AM AB-=. ∵AB=2AD=2BC ,BK=CF ,∴12BE CF AM -=. ∴BE CF AM-的值不变.考点:1.折叠问题;2.矩形的性质;3.全等三角形的判定和性质;4.勾股定理;5.相似三角形的判定和性质.。
专题6二次函数与平行四边形存在性问题解决抛物线中的平行四边形存在性问题,常用的结论和方法有:线段中点坐标公式、平行四边形顶点坐标公式、画平行四边形.1.平面直角坐标系中,点A 的坐标是11(,)x y ,点B 的坐标是22(,)x y ,则线段AB 的中点坐标是1212(,22x x y y ++.2.平行四边形ABCD 的顶点坐标分别为(,)A A x y 、(,)B B x y 、(,)C C x y 、(,)D D x y ,则A C B D x x x x +=+,A C B D y y y y +=+.3.已知不在同一直线上的三点A 、B 、C ,在平面内找到一个点D ,使以A 、B 、C 、D 为顶点的四边形是平行四边形,有三种情况:【例1】(2022•娄底)如图,抛物线y =x 2﹣2x ﹣6与x 轴相交于点A 、点B ,与y 轴相交于点C .(1)请直接写出点A ,B ,C 的坐标;(2)点P (m ,n )(0<m <6)在抛物线上,当m 取何值时,△PBC 的面积最大?并求出△PBC 面积的最大值.(3)点F 是抛物线上的动点,作FE ∥AC 交x 轴于点E ,是否存在点F ,使得以A 、C 、E 、F 为顶点的四边形是平行四边形?若存在,请写出所有符合条件的点F 的坐标;若不存在,请说明理由.【分析】(1)将x=0及y=0代入抛物线y=x2﹣2x﹣6的解析式,进而求得结果;,S△BOP,计算出S△BOC,根据S△PBC=S (2)连接OP,设点P(m,﹣2m﹣6),分别表示出S△POC﹣S△BOC,从而得出△PBC的函数关系式,进一步求得结果;四边形PBOC(3)可分为▱ACFE和▱ACEF的情形.当▱ACFE时,点F和点C关于抛物线对称轴对称,从而得出F点坐标;当▱ACED时,可推出点F的纵坐标为6,进一步求得结果.【解析】(1)当x=0时,y=﹣6,∴C(0,﹣6),当y=0时,x2﹣2x﹣6=0,∴x1=6,x2=﹣2,∴A(﹣2,0),B(6,0);(2)方法一:如图1,连接OP,设点P(m,﹣2m﹣6),=x P==3m,∴S△POCS△BOP=|y P|=+2m+6),==18,∵S△BOC=S四边形PBOC﹣S△BOC∴S△PBC+S△POB)﹣S△BOC=(S△POC=3m+3(﹣+2m+6)﹣18=﹣(m﹣3)2+,=;∴当m=3时,S△PBC最大方法二:如图2,作PQ⊥AB于Q,交BC于点D,∵B(6,0),C(0,﹣6),∴直线BC的解析式为:y=x﹣6,∴D(m,m﹣6),∴PD=(m﹣6)﹣(﹣2m﹣6)=﹣+3m,===﹣(m﹣3)2+,∴S△PBC=;∴当m=3时,S△PBC最大(3)如图3,当▱ACFE时,AE∥CF,∵抛物线对称轴为直线:x==2,∴F1点的坐标:(4,﹣6),如图4,当▱ACEF时,作FG⊥AE于G,∴FG=OC=6,当y=6时,x2﹣2x﹣6=6,∴x1=2+2,x2=2﹣2,∴F2(2+2,6),F3(2﹣2,6),综上所述:F(4,﹣6)或(2+2,6)或(2﹣2,6).【例2】.(2022•毕节市)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y 轴交于点C,顶点为D(2,1),抛物线的对称轴交直线BC于点E.(1)求抛物线y=﹣x2+bx+c的表达式;(2)把上述抛物线沿它的对称轴向下平移,平移的距离为h(h>0),在平移过程中,该抛物线与直线BC始终有交点,求h的最大值;(3)M是(1)中抛物线上一点,N是直线BC上一点.是否存在以点D,E,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.【分析】(1)利用抛物线的顶点式可直接得出抛物线的表达式;(2)先根据(1)中抛物线的表达式求出点A,B,C的坐标,进而可得出直线BC的表达式;设出点平移后的抛物线,联立直线BC和抛物线的表达式,根据根的判别式可得出结论;(3)假设存在以点D,E,M,N为顶点的四边形是平行四边形,分别以DE为边,以DE为对角线,进行讨论即可.【解析】(1)∵抛物线y=﹣x2+bx+c的顶点为D(2,1),∴抛物线的表达式为:y=﹣(x﹣2)2+1=﹣x2+4x﹣3.(2)由(1)知,抛物线的表达式为:y=﹣x2+4x﹣3,令x=0,则y=﹣3,∴C(0,﹣3);令y=0,则x=1或x=3,∴A(1,0),B(3,0).∴直线BC的解析式为:y=x﹣3.设平移后的抛物线的解析式为:y=﹣(x﹣2)2+1﹣h,令﹣(x﹣2)2+1﹣h=x﹣3,整理得x2﹣3x+h=0,∵该抛物线与直线BC始终有交点,∴Δ=9﹣4h≥0,∴h≤.∴h的最大值为.(3)存在,理由如下:由题意可知,抛物线的对称轴为:直线x=2,∴E(2,﹣1),∴DE=2,设点M(m,﹣m2+4m﹣3),若以点D,E,M,N为顶点的四边形是平行四边形,则分以下两种情况:①当DE为边时,DE∥MN,则N(m,m﹣3),∴MN=|﹣m2+4m﹣3﹣(m﹣3)|=|﹣m2+3m|,∴|﹣m2+3m|=2,解得m=1或m=2(舍)或m=或m=.∴N(1,﹣2)或(,)或(,).②当DE为对角线时,设点N的坐标为t,则N(t,t﹣3),∴,解得m或(舍),∴N(3,0).综上,点N的坐标为N(1,﹣2)或(,)或(,)或(3,0).【例3】(2022•聊城)如图,在直角坐标系中,二次函数y=﹣x2+bx+c的图象与x轴交于A,B两点,与y 轴交于点C(0,3),对称轴为直线x=﹣1,顶点为点D.(1)求二次函数的表达式;(2)连接DA,DC,CB,CA,如图①所示,求证:∠DAC=∠BCO;(3)如图②,延长DC交x轴于点M,平移二次函数y=﹣x2+bx+c的图象,使顶点D沿着射线DM方向平移到点D1且CD1=2CD,得到新抛物线y1,y1交y轴于点N.如果在y1的对称轴和y1上分别取点P,Q,使以MN为一边,点M,N,P,Q为顶点的四边形是平行四边形,求此时点Q的坐标.【分析】(1)根据抛物线对称轴和点C坐标分别确定b和c的值,进而求得结果;(2)根据点A,D,C坐标可得出AD,AC,CD的长,从而推出三角形ADC为直角三角形,进而得出∠DAC和∠BCO的正切值相等,从而得出结论;(3)先得出y1的顶点,进而得出先抛物线的表达式,N的坐标,根据三角形相似或一次函数可求得点M 坐标,以MN为边,点M,N,P,Q为顶点的四边形是▱MNQP和▱MNPQ根据M,N和点P的横坐标可以得出Q点的横坐标,进而求得结果.【解答】(1)解:由题意得,,∴,∴二次函数的表达式为:y=﹣x2﹣2x+3;(2)证明:∵当x=﹣1时,y=﹣1﹣2×(﹣1)+3=4,∴D(﹣1,4),由﹣x2﹣2x+3=0得,x1=﹣3,x2=1,∴A(﹣3,0),B(1,0),∴AD2=20,∵C(0,3),∴CD2=2,AC2=18,∴AC2+CD2=AD2,∴∠ACD=90°,∴tan∠DAC===,∵∠BOC=90°,∴tan∠BCO==,∴∠DAC=∠BCO;(3)解:如图,作DE⊥y轴于E,作D1F⊥y轴于F,∴DE∥FD1,∴△DEC∽△D1FC,∴=,∴FD1=2DE=2,CF=2CE=2,∴D1(2,1),∴y1的关系式为:y=﹣(x﹣2)2+1,当x=0时,y=﹣3,∴N(0,﹣3),同理可得:,∴,∴OM=3,∴M(3,0),设P(2,m),当▱MNQP时,∴MN∥PQ,PQ=MN,∴Q点的横坐标为﹣1,当x=﹣1时,y=﹣(﹣1﹣2)2+1=﹣8,∴Q(﹣1,8),当▱MNPQ时,同理可得:点Q横坐标为:5,当x=5时,y=﹣(5﹣2)2+1=﹣8,∴Q′(5,﹣8),综上所述:点Q(﹣1,﹣8)或(5,﹣8).【例4】(2022•郴州)已知抛物线y=x2+bx+c与x轴相交于点A(﹣1,0),B(3,0),与y轴相交于点C.(1)求抛物线的表达式;(2)如图1,将直线BC向上平移,得到过原点O的直线MN.点D是直线MN上任意一点.①当点D在抛物线的对称轴l上时,连接CD,与x轴相交于点E,求线段OE的长;②如图2,在抛物线的对称轴l上是否存在点F,使得以B,C,D,F为顶点的四边形是平行四边形?若存在,求出点F与点D【分析】(1)根据点A、B的坐标利用待定系数法即可求出抛物线的解析式;(2)①方法一:求出直线CD的解析式为y=4x﹣3,当y=0时,求出x的值,则可得出答案;方法二:求出OD=3,证明△DEO∽△CEB,由相似三角形的性质得出,设OE=x,则BE=3﹣x,列出方程求出x的值,则可得出答案;②分别以已知线段BC为边、BC为对角线,画出图形,利用平行四边形的性质及全等三角形的性质求点F的坐标和点D的坐标即可.【解析】(1)将A(﹣1,0)、B(3,0)代入y=x2+bx+c得,,解得,∴抛物线的解析式为y=x2﹣2x﹣3;(2)①由(1)可知,C(0,﹣3),设直线BC的解析式为y=kx+m,将C(0,﹣3),B(3,0)代入得,,∴,∴直线BC的解析式为y=x﹣3,∴直线MN的解析式为y=x,∵抛物线的对称轴为x=﹣=﹣=1,把x=1代入y=x,得y=1,∴D(1,1),方法一:设直线CD的解析式为y=k1x+b1,将C(0,﹣3),D(1,1)代入得,,解得,∴直线CD的解析式为y=4x﹣3,当y=0时,4x﹣3=0,∴x=,∴E(,0),∴OE=.方法二:由勾股定理得OD==,BC==3,∵BC∥MN,∴△DEO∽△CEB,∴,设OE=x,则BE=3﹣x,∴,解得x=,∴OE=.②存在点F,使得以B,C,D,F为顶点的四边形是平行四边形.理由如下:(Ⅰ)若平行四边形以BC为边时,由BC∥FD可知,FD在直线上,∴点F是直线MN与对称轴l的交点,即F(1,1),由点D在直线MN上,设D(t,t),如图,若四边形BCFD是平行四边形,则DF=BC,过点D作y轴的垂线交对称轴l于点G,则G(1,t),∵BC∥MN,∴∠OBC=∠DOB,∵GD∥x轴,∴∠GDF=∠DOB,∴∠OBC=∠GDF,又∵∠BOC=∠DGF=90°,∴△DGF≌△BOC(AAS),∴GD=OB,GF=OC,∵GD=t﹣1,OB=3,∴t﹣1=3,∴t=4,∴D(4,4),如图,若四边形BCDF是平行四边形,则DF=CB,同理可证△DKF≌△COB(AAS),∴KD=OC,∵KD=1﹣t,OC=3,∴1﹣t=3,∴t=﹣2,∴D(﹣2,﹣2);(Ⅱ)若平行四边形以BC为对角线时,由于D在BC的上方,则点F一定在BC的下方,如图,四边形BFCD为平行四边形,设D(t,t),F(1,n),同理可证△DHC≌△BPF(AAS),∴DH=BP,HC=PF,∵DH=t,BP=3﹣1=2,HC=t﹣(﹣3)=t+3,PF=0﹣n=﹣n,∴,∴,∴D(2,2),F(1,﹣5),综上所述,存在点F,使得以B,C,D,F为顶点的四边形是平行四边形.当点F的坐标为(1,1)时,点D的坐标为(4,4)或(﹣2,﹣2);当点F的坐标为(1,﹣5)时,点D的坐标为(2,2).1.(2021•滨城区一模)如图,抛物线y=ax2+bx﹣5(a≠0)经过x轴上的点A(1,0)和点B(5,0)及y 轴上的点C,经过B、C两点的直线为y=kx+b(k≠0).(1)求抛物线的解析式.(2)点P从A出发,在线段AB上以每秒1个单位的速度向B运动,同时点E从B出发,在线段BC上以每秒2个单位的速度向C运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t秒,求t为何值时,△PBE的面积最大并求出最大值.(3)过点A作AM⊥BC于点M,过抛物线上一动点N(不与点B、C重合)作直线AM的平行线交直线BC于点Q.若点A、M、N、Q为顶点的四边形是平行四边形,求点N的横坐标.【分析】(1)将A(1,0)和点B(5,0)代入y=ax2+bx﹣5计算出a,b的值即可;,利用二次函数求最值;(2)作ED⊥x轴于D,表示出ED,从而表示出S△BEP(3)过A作AE∥y轴交直线BC于E点,过N作NF∥y轴交直线BC于点F,则NF=AE=4,设N(m,﹣m2+6m﹣5),则F(m,m﹣5),从而有NF=|﹣m2+5m|=4,解方程即可求出N的横坐标.【解析】(1)将A(1,0)和点B(5,0)代入y=ax2+bx﹣5得:,解得,∴抛物线y=﹣x2+6x﹣5,(2)作ED⊥x轴于D,由题意知:BP=4﹣t,BE=2t,∵B(5,0),C(0,﹣5),∴OB=OC=5,∴∠OBC=45°,∴ED=sin45°×2t=,==﹣,∴S△BEP最大为2.当t=﹣时,S△BEP最大为2.∴当t=2时,S△BEP(3)过A作AE∥y轴交直线BC于E点,过N作NF∥y轴交直线BC于点F,则NF=AE=4,设N(m,﹣m2+6m﹣5),则F(m,m﹣5),∴NF=|﹣m2+5m|=4,∴m2﹣5m+4=0或m2﹣5m﹣4=0,∴m1=1(舍),m2=4,或m3=,m4=,∴点N的横坐标为:4或或.2.(2021•九龙坡区模拟)如图1,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,设点P的横坐标为m,过点P作PM ⊥x轴,垂足为点M,PM交BC于点Q,过点P作PN⊥BC,交BC于点N.(1)求此抛物线的解析式;(2)请用含m的代数式表示PN,并求出PN的最大值以及此时点P的坐标;(3)如图2,将抛物线y=ax2+bx+4沿着射线CB的方向平移,使得新抛物线y'过原点,点D为原抛物线y与新抛物线y'的交点,若点E为原抛物线的对称轴上一动点,点F为新抛物线y'上一动点,求点F使得以A,D,E,F为顶点的四边形为平行四边形,请直接写出点F的坐标,并写出一个F点的求解过程.【分析】(1)将点A(﹣3,0),B(4,0)代入y=ax2+bx+4,即可求函数解析式;(2)先求出BC的解析式为y=﹣x+4,设P(m,﹣m2+m+4),Q(m,﹣m+4),=×BC×PN=×PQ×OB,可得PN=﹣(m﹣2)2+,所以当m=2时,PN 由面积S△BCP有最大值,P(2,);(3)由抛物线沿着射线CB的方向平移,可设抛物线沿x轴正方向平移t(t>0)个单位,则沿y轴负半轴平移t个单位,则平移后的函数解析式为y'=﹣+﹣t,再由新抛物线y'过原点,可求t=2,则可求新的抛物线解析式为y'=﹣x2+x,联立﹣x2+x=﹣x2+x+4,求出D(3,2),由点E在y'上,则E点的横坐标为,由点F为新抛物线y'上,设F点横坐标为n,当以A,D,E,F为顶点的四边形为平行四边形时,有三种情况:①当AE与DF为平行四边形的对角线时,﹣3+=n+3,得F(﹣,﹣);②当AF与ED为平行四边形对角线时,﹣3+n=3+,得F(,﹣);③当AD与EF为平行四边形对角线时,﹣3+3=n+,得F(﹣,﹣).【解析】(1)将点A(﹣3,0),B(4,0)代入y=ax2+bx+4,得:,解得:,∴y=﹣x2+x+4;(2)∵抛物线与y轴交于点C,∴C(0,4),设直线BC的解析式为y=kx+d,将点B与点C代入可得,,解得,∴y=﹣x+4,∵点P的横坐标为m,PM⊥x轴,∴P(m,﹣m2+m+4),Q(m,﹣m+4),=×BC×PN=×PQ×OB,∴S△BCP∵B(4,0),C(0,4),∴BC=8,∴8PN=(﹣m2+m+4+m﹣4)×4,∴PN=﹣(m﹣2)2+,∴当m=2时,PN有最大值,∴P(2,);(3)y=﹣x2+x+4=﹣+,∵抛物线沿着射线CB设抛物线沿x轴正方向平移t(t>0)个单位,则沿y轴负半轴平移t个单位,平移后的函数解析式为y'=﹣+﹣t,∵新抛物线y'过原点,∴0=﹣+﹣t,解得t=2或t=﹣6(舍),∴y'=﹣+=﹣x2+x,∵点D为原抛物线y与新抛物线y'的交点,联立﹣x2+x=﹣x2+x+4,∴x=3,∴D(3,2),∵y=﹣x2+x+4的对称轴为直线x=,∴E点的横坐标为,∵点F为新抛物线y'上一动点,设F点横坐标为n,①当AE与DF为平行四边形的对角线时,∴﹣3+=n+3,∴n=﹣,∴F(﹣,﹣);②当AF与ED为平行四边形对角线时,∴﹣3+n=3+,∴n=,∴F(,﹣);③当AD与EF为平行四边形对角线时,∴﹣3+3=n+,∴n=﹣,∴F(﹣,﹣);综上所述:以A,D,E,F为顶点的四边形为平行四边形时,F的坐标为(﹣,﹣)或(,﹣)或(﹣,﹣).3.(2021•碑林区校级模拟)如图,抛物线M:y=ax2+bx+b﹣a经过点(1,﹣3)和(﹣4,12),与两坐标轴的交点分别为A,B,C,顶点为D.(1)求抛物线M的表达式和顶点D的坐标;(2)若抛物线N:y=﹣(x﹣h)2+与抛物线M有一个公共点为E,则在抛物线N上是否存在一点F,使得以B、C、E、F为顶点的四边形是以BC为边的平行四边形?若存在,请求出h的值;若不存在,请说明理由.【分析】(1)将点代入抛物线解析式求出a,b的值,即可求出抛物线解析式,再将抛物线解析式转化为顶点式,求出顶点D的坐标;(2)先求出B,C的坐标,再设E,F的坐标,根据平移的特点列出关系式,求出h的值.【解析】(1)将(1,﹣3),(﹣4,12)代入y=ax2+bx+b﹣a,得,解得,∴,∴抛物线M的表达式为,顶点D的坐标为.(2)存在.∵,当x=0时,y=﹣2,当y=0时,,解得x1=﹣1,x2=4,∴C(0,﹣2),B(4,0),设,,当四边形BCFE是平行四边形时,可看出是E,F可看成分别是B,C平移相同的单位得到,则②﹣③得m+n=2h﹣1④,(①+④)÷2得⑤,(④﹣①)÷2得⑥,将⑤,⑥代入③得h=±,当四边形BCEF是平行四边形时,可看出是E,F可看成分别是C,B平移相同的单位得到,则②﹣③得m+n=2h﹣1④,(①+④)÷2得⑤,(④﹣①)÷2得⑥,将⑤,⑥代入③得h=或,当h=时,m=h+=+=8,n=h﹣=﹣=4,∴E(4,0),F(8,2),此时点E与点B重合,不符合题意,舍去;综上,h的值为或±.4.(2021•本溪模拟)如图,平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于A(﹣,0),B(3,0)两点,与y轴交于点C,抛物线的顶点为点E.(1)填空:△ABC的形状是直角三角形.(2)求抛物线的解析式;(3)经过B,C两点的直线交抛物线的对称轴于点D,点P为直线BC上方抛物线上的一动点,当△PCD 的面积最大时,求P点坐标;(4)M在直线BC上,N在抛物线上,以M、N、E、D为顶点的四边形为平行四边形,直接写出符合条件的点M的坐标.【分析】(1)由tan∠ACO==,故∠ACO=30°,同理可得,∠BCO=60°,即可求解;(2)用待定系数法即可求解;(3)当△PCD的面积最大时,若直线l和抛物线只要一个交点P,则点P为所求点,进而求解;(4)当ED是边时,点D向上平移2个单位得到点E,同样,点M(N)向上平移2个单位得到点N(M),进而求解;②当ED为对角线时,由中点坐标公式得:=m+n且4+2=﹣n2+n+3+3,即可求解.【解析】(1)由抛物线的表达式知,c=3,OC=3,则tan∠ACO==,故∠ACO=30°,同理可得,∠BCO=60°,故△ABC为直角三角形,故答案为:直角三角形;(2)由题意得:,解得,故抛物线的表达式为y=﹣x2+x+3①;(3)由点B、C的坐标得,直线BC的表达式为y=﹣x+3,则设直线l∥BC,则设直线l的表达式为:y=﹣x+c②,当△PCD的面积最大时,直线l和抛物线只要一个交点P,则点P为所求点,联立①②并整理得:﹣x2+x+3﹣c=0③,则△=()2﹣4×(﹣)(3﹣c)=0,解得:c=,将c的值代入③式并解得x=,故点P的坐标为(,);(4)由抛物线的表达式知,点E的坐标为(,4),∵直线BC的表达式为y=﹣x+3,故点D(,2),设点M的坐标为(m,﹣m+3),点N的坐标为(n,﹣n2+n+3),①当ED是边时,点D向上平移2个单位得到点E,同样,点M(N)向上平移2个单位得到点N(M),则m=n且﹣m+3±2=﹣n2+n+3,解得:m=(舍去)或2或;②当ED为对角线时,由中点坐标公式得:=m+n且4+2=﹣n2+n+3﹣m+3,解得m=(舍去)或0,综上,m=0或2或或,故点M的坐标为(0,3)或(2,1)或(,)或(,).5.(2021•深圳模拟)如图,抛物线y=ax2+bx﹣3与x轴交于A,B两点,与y轴交于C点,且经过点(2,﹣3a),对称轴是直线x=1,顶点是M.(1)求抛物线对应的函数表达式;(2)经过C,M两点作直线与x轴交于点N,在抛物线上是否存在这样的点P,满足以点P,A,C,N 为顶点的四边形为平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)设直线y=﹣x+3与y轴的交点是D,在线段BD上任取一点E(不与B,D重合),经过A,B,E 三点的圆交直线BC于点F,试判断△AEF的形状,并说明理由.【分析】(1)因为抛物线经过点(2,﹣3a),代入到解析式中,得到关于a和b的方程,由于抛物线对称轴为直线x=1,所以,联立两个方程,解方程组,即可求出a和b;(2)先将解析式配成顶点式,求出M坐标,然后求出C点坐标,利用待定系数法,求出直线MC的解析式,再求出MC和x轴交点N的坐标,利用抛物线解析式分别求出A和C坐标,以A,C,N,P为顶点构造平行四边形,并且P点必须在抛物线上,通过构图可以发现,只有当AC为对角线时,才有可能构造出符合条件的P点,所以过C作CP∥AN,使CP=AN,由于AN=2,所以可以得到P(2,﹣3),将P代入到抛物线解析式中,满足解析式,P即为所求;(3)利用y=﹣x+3,可以求出直线与y轴交点D的坐标,可以证得△DOB是等腰直角三角形,同理可以证得△BOC也是等腰直角三角形,根据题意画出图形,利用同弧所对的圆周角相等,可以证得∠AEF =∠AFE=45°,所以△AEF是等腰直角三角形.【解析】(1)∵抛物线经过点(2,﹣3a),∴4a+2b﹣3=﹣3a①,又因为抛物线对称为x=1,∴②,联立①②,解得,∴抛物线对应的函数表达式为y=x2﹣2x﹣3;(2)如图1,∵y=(x﹣1)2﹣4,∴M(1,﹣4),令x=0,则y=x2﹣2x﹣3=﹣3,∴C(0,﹣3),设直线MC为y=kx﹣3,代入点M得k=﹣1,∴直线MC为y=﹣x﹣3,令y=0,则x=﹣3,∴N(﹣3,0),令y=0,则x2﹣2x﹣3=0,∴x=﹣1或3,∴A(﹣1,0),B(3,0),过C作CP∥AN,使CP=AN,则四边形ANCP为平行四边形,∴CP=AN=﹣1﹣(﹣3)=2,∴P(2,﹣3),∵P的坐标满足抛物线解析式,∴P(2,﹣3)在抛物线上,即P(2,﹣3);(3)如图2,令x=0,则y=﹣x+3=3,∴D(0,3),∴OB=OD=3,又∠DOB=90°,∴∠DBO=45°,同理,∠ABC=45°,∵同弧所对的圆周角相等,∴∠AEF=∠ABC=45°,∠AFE=∠DBO=45°,∴∠AEF=∠AFE=45°,∴△AEF为等腰直角三角形.6.(2021•铜梁区校级一模)已知抛物线y=ax2+bx+3与x轴交于A、B两点(点A在点B的左侧).与y轴交于点C.其中OC=OB,tan∠CAO=3.(1)求抛物线的解析式;(2)P是第一象限内的抛物线上一动点,Q为线段PB的中点,求△CPQ面积的最大值时P点坐标:(3)将抛物线沿射线CB方向平移2个单位得新抛物线y'.M为新抛物线y′的顶点.D为新抛物线y'上任意一点,N为x轴上一点.当以M、N、C、D为顶点的四边形是平行四边形时,直接写出所有符合条件的点N的坐标.并选择一个你喜欢的N点.写出求解过程.【分析】(1)第一题将ABC三个点坐标表示后,代入求值即可.(2)第二题求面积最大值,可用铅锤法将面积转化为求铅垂高的最大值.(3)第三题平行四边形存在性问题,利用平行四边形对角线互相平分,套用中点坐标公式即可求出相应的点.【解析】(1)∵抛物线解析式为y=ax2+bx+3,令x=0得y=3,∴点C坐标为(0,3),∵OG﹣OB=3,∴B坐标为(3,0),∵tan∠CAO=3,∴=3,∴OA=1,∴点A坐标为(﹣1,0),∴设解析式为y=a(x+1)(x﹣3),代入(0,3)得a=﹣1,∴y=﹣(x+1)(x﹣3),=﹣(x2﹣2x﹣3)=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线解析式为:y=﹣(x﹣1)2+4;(2)∵Q为线段PB中点,=S△CPB,∴S△CPQ面积最大时,△CPQ面积最大.当S△CPB设P坐标(a,﹣a2+2a+3),过点P作PH∥y轴交BC于点H,H坐标为(a,﹣a+3),∴PH=(﹣a2+2a+3)﹣(﹣a+3)=﹣a2+2a+3+a﹣3=﹣a2+3a,S△CPB=•PH•(x B﹣x C)=•PH•3=PH=(﹣a2+3a)=﹣(a2﹣3a+﹣)=﹣(a﹣)2+,当a=时,即P坐标为(,)时,=S△CPB=,最大S△CPQ∴P坐标为(,);(3)沿CB方向平移2个单位,即向右2个单位,向下2个单位,∴新抛物线解析式为y=﹣(x﹣3)2+2,M坐标为(3,2)C坐标为(0,3),点N坐标设为(n,0),∵=,∴=,∴y D=1,则1=﹣(x﹣3)2+2﹣1=﹣(x﹣3)2,(x﹣3)2=1,x﹣3=±1,∴x=4或2,∴x D=4或x D=2,=⇒=,∴x N=7,或=,∴x N=5,∴N坐标为(7,0)或(5,0),或=⇒=,得y D=﹣1,则﹣1=﹣(x﹣3)2+2,(x﹣3)2=3,x=±+3,∴x D=3﹣或x D=3+,即x N=﹣或,N坐标为(﹣,0)或(,0).7.(2021•盘龙区二模)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点A(﹣4,0),点M为抛物线的顶点,点B在y轴上,且OA=OB,直线AB与抛物线在第一象限交于点C(2,6).(1)求抛物线的解析式及顶点M的坐标;(2)求直线AB的函数解析式及sin∠ABO的值;连接OC.若过点O的直线交线段AC于点P,将三角形AOC的面积分成1:2的两部分,请求出点P的坐标;(3)在坐标平面内是否存在点N,使以点A、O、C、N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.【分析】(1)将A(﹣4,0),C(2,6)代入y=x2+bx+c,用待定系数法可得解析式,从而可得顶点M的坐标;(2)由OA=OB可得B(0,4),设直线AB的函数解析式解析式为y=kx+b,将A(﹣4,0)、B(0,4)代入可求得AB为y=x+4,Rt△AOB中,可得sin∠ABO==,过点O的直线交线段AC于点P,将三角形AOC的面积分成1:2的两部分,过P作PQ⊥x轴于Q,过C作CH⊥x轴于H,分两种情况:①当S△AOP:S△COP=1:2时,PQ:CH=1:3,可求PQ=2,从而:S△AOP=1:2时,S△AOP:S△AOC=2:3,同理可求P坐标;求得P坐标,②当S△COP(3)设N(m,n),利用平行四边形对角线互相平分,即对角线的中点重合,分三种情况分别列方程组求解即可.【解析】(1)将A(﹣4,0),C(2,6)代入y=x2+bx+c得:,解得,∴抛物线的解析式为y=x2+2x,对称轴x==﹣2,当x=﹣2时,y=×4+2×(﹣2)=﹣2,∴顶点M的坐标为(﹣2,﹣2);(2)∵A(﹣4,0),∴OA=4,∵OA=OB,∴OB=4,B(0,4),设直线AB的函数解析式解析式为y=kx+b,将A(﹣4,0)、B(0,4)代入得:,解得,∴直线AB的函数解析式解析式为y=x+4,Rt△AOB中,AB==4,∴sin∠ABO===,过点O的直线交线段AC于点P,将三角形AOC的面积分成1:2的两部分,过P作PQ⊥x轴于Q,过C作CH⊥x轴于H,分两种情况:①当S△AOP:S△COP=1:2时,如图::S△COP=1:2,∵S△AOP:S△AOC=1:3,∴S△AOP∴PQ:CH=1:3,而C(2,6),即CH=6,∴PQ=2,即y P=2,在y=x+4中,令y=2得2=x+4,∴x=﹣2,∴P(﹣2,2);②当S△COP:S△AOP=1:2时,如图::S△AOP=1:2,∵S△COP:S△AOC=2:3,∴S△AOP∴PQ:CH=2:3,∵CH=6,∴PQ=4,即y P=4,在y=x+4中,令y=4得4=x+4,∴x=0,∴P(0,4);综上所述,过点O的直线交线段AC于点P,将三角形AOC的面积分成1:2的两部分,则P坐标为(﹣2,2)或(0,4);(3)点A、O、C、N为顶点的四边形是平行四边形时,设N(m,n),分三种情况:①以AN、CO为对角线,此时AN中点与CO中点重合,∵A(﹣4,0)、O(0,0),C(2,6),∴AN的中点为(,),OC中点为(,),∴,解得,∴N(6,6),②以AC、NO为对角线,此时AC中点与NO中点重合,同理可得:解得,∴N(﹣2,6),③以AO、CN为对角线,此时AO中点与CN中点重合,同理可得:,解得,∴N(﹣6,﹣6),综上所述,点A、O、C、N为顶点的四边形是平行四边形,N的坐标为:(6,6)或(﹣2,6)或(﹣6,﹣6).8.(2021•海州区一模)如图,抛物线y=ax2+bx﹣3的图象与x轴交于A(﹣1,0),B(3,0)两点,与y 轴交于点C,直线l与抛物线交于点B,交y轴于点D(0,3).(1)求该抛物线的函数表达式;(2)点P(m,0)为线段OB上一动点,过点P作x轴的垂线EF,分别交抛物线于直线l于点E,F,连接CE,CF,BE,求四边形CEBF面积的最大值及此时m的值;(3)点M为y轴右侧抛物线上一动点,过点M作直线MN∥AC交直线l于点N,是否存在点M,使以A,C,M,N四点为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标;若不存在,请说明理由.【分析】(1)将A,B坐标代入y=ax2+bx﹣3中,利用待定系数法可求;=S△CEF+S△BEF (2)求出直线l的解析式,用m表示点E,F的坐标,进而表示线段EF,根据S四边形CEBF=EF•OP+•BP=FE•OB,用含m的代数式表示四边形CEBF的面积,利用二次函数的性质,通过配方法得出结论;(3)分点M在直线BD的下方和点M在直线BD的上方时两种情形讨论解答;依据题意画出图形,①过M作ME⊥y轴于E,过N作NF⊥ME于F,通过说明△AOC≌△MFN,得出NF=3,设出点M的坐标,用坐标表示相应线段,利用线段与坐标的关系,用相同的字母表示点N的坐标后,用坐标表示出线段NG,GF,利用NG+GF=NF=3,列出方程,解方程,点M坐标可求;②利用①中相同的方法求得点M在直线BD的上方时点M的坐标.【解析】(1)将A(﹣1,0),B(3,0)代入y=ax2+bx﹣3中得:.解得:.∴该抛物线的函数表达式为:y=x2﹣2x﹣3.(2)设直线l的解析式为y=kx+n,将B(3,0),D(0,3)代入上式得:.解得:.∴直线l的解析式为:y=﹣x+3.∵点P(m,0),EF⊥x轴,∴E点坐标为(m,m2﹣2m﹣3),点F的坐标为(m,﹣m+3).∴EF=﹣m+3﹣m2+2m+3=﹣m2+m+6.∵B(3,0),∴OB=3.=S△CEF+S△BEF=EF•OP+•BP×EF=FE•OB,∵S四边形CEBF∴=﹣.∵<0,有最大值=.∴当m=时,S四边形CEBF即:当m=时,四边形CEBF面积的最大值为.(3)存在.①当点M在直线BD的下方时,如图,令x=0,则y=﹣3.∴C(0,﹣3).∴OC=3.∵A(﹣1,0),∴OA=1.过M作ME⊥y轴于E,过N作NF⊥ME于F,交x轴于点G,∵四边形ACMN为平行四边形,∴AC∥MN,AC=MN.∵NF⊥ME,ME⊥OE,∴NF∥OE.∴∠ACO=∠MNF.在△AOC和△MFN中,.∴△AOC≌△MFN(AAS).∴NF=OC=3,MF=OA=1.设M(h,h2﹣2h﹣3),则ME=h,GF=OE=﹣h2+2h+3.∴OG=EF=ME﹣MF=h﹣1.∴N(h﹣1,﹣h+4).∴NG=﹣h+4,∵NG+GF=NF=3,∴﹣h+4﹣h2+2h+3=3.解得:h=(负数不合题意,舍去).∴h=.∴M().②当点M在直线BD的上方时,如图,过N作NE⊥y轴于E,过M作MF⊥NE于F,交x轴于点G,由①知:△MNF≌△CAO(AAS),可得NF=OA=1,MF=OC=3.设M(h,h2﹣2h﹣3),则OG=FE=h,GM=h2﹣2h﹣3.∴NE=EF+NF=h+1.∴N(h+1,﹣h+2).∴GF=OE=h﹣2.∵MG+GF=MF=3,∴h﹣2+h2﹣2h﹣3=3.解得:h=(负数不合题意,舍去).∴h=.∴M().综上所述,存在点M,使以A,C,M,N四点为顶点的四边形是平行四边形,此时点M的坐标为()或().9.(2021•南昌县一模)如图,已知二次函数L1:y=mx2+2mx﹣3m+1(m≥1)和二次函数L2:y=﹣m(x ﹣3)2+4m﹣1(m≥1)图象的顶点分别为M,N,与x轴分别相交于A、B两点(点A在点B的左边)和C、D两点(点C在点D的左边).(1)函数y=mx2+2mx﹣3m+1(m≥1)的顶点坐标为(﹣1,﹣4m+1);当二次函数L1,L2的y 值同时随着x的增大而增大时,则x的取值范围是﹣1<x<3;(2)当AD=MN时,判断四边形AMDN的形状(直接写出,不必证明);(3)抛物线L1,L2均会分别经过某些定点:①求所有定点的坐标;②若抛物线L1位置固定不变,通过左右平移抛物线L2的位置使这些定点组成的图形为菱形,则抛物线L2应平移的距离是多少?【分析】(1)将已知抛物线解析式转化为顶点式,直接得到点M的坐标;结合函数图象填空;(2)利用抛物线解析式与一元二次方程的关系求得点A、B、C、D的横坐标,可得AD的中点为(1,0),MN的中点为(1,0),则AD与MN互相平分,可证四边形AMDN是矩形;(3)根据菱形的性质可得EH1=EF=4即可,设平移的距离为x,根据平移后图形为菱形,由勾股定理可得方程即可求解.【解析】(1)x=﹣=﹣1,顶点坐标M为(﹣1,﹣4m+1),由图象得:当﹣1<x<3时,二次函数L1,L2的y值同时随着x的增大而增大.故答案为:(﹣1,﹣4m+1);﹣1<x<3(2)结论:四边形AMDN由二次函数L1:y=mx2+2mx﹣3m+1(m≥1)和二次函数L2:y=﹣m(x﹣3)2+4m﹣1(m≥1)解析式可得:A点坐标为(,0),D点坐标为(,0),顶点M坐标为(﹣1,﹣4m+1),顶点N 坐标为(3,4m﹣1),∴AD的中点为(1,0),MN的中点为(1,0),∴AD与MN互相平分,∴四边形AMDN是平行四边形,又∵AD=MN,∴▱AMDN是矩形.(3)①∵二次函数L1:y=mx2+2mx﹣3m+1=m(x+3)(x﹣1)+1,故当x=﹣3或x=1时y=1,即二次函数L1:y=mx2+2mx﹣3m+1经过(﹣3,1)、(1,1)两点,∵二次函数L2:y=﹣m(x﹣3)2+4m﹣1=﹣m(x﹣1)(x﹣5)﹣1,故当x=1或x=5时y=﹣1,即二次函数L2:y=﹣m(x﹣3)2+4m﹣1经过(1,﹣1)、(5,﹣1)两点,②∵二次函数L1:y=mx2+2mx﹣3m+1经过(﹣3,1)、(1,1)两点,二次函数L2:y=﹣m(x﹣3)2+4m﹣1经过(1,﹣1)、(5,﹣1)两点,如图:四个定点分别为E(﹣3,1)、F(1,1),H(1,﹣1)、G(5,﹣1),则组成四边形EFGH为平行四边形,设平移的距离为x,根据平移后图形为菱形,由勾股定理可得:42=22+(4﹣x)2.解得:x=,抛物线L1位置固定不变,通过左右平移抛物线L2的位置使这些定点组成的图形为菱形,则抛物线L2向左平移或.10.(2022•渝中区校级模拟)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a≠0)与y轴交于点C,与x轴交于A、B两点,且点A的坐标为(﹣1,0),连接BC,OB=2OC.(1)求抛物线的表达式;(2)如图1,点P是直线BC下方抛物线上一点,过点P作直线BC的垂线,垂足为H,过点P作PQ ∥y轴交BC于点Q,求△PHQ周长的最大值及此时点P坐标;(3)如图2,将抛物线水平向左平移4个单位得到新抛物线y';点D是新抛物线y'上的点且横坐标为﹣3,点M为新抛物线y'上一点,点E、F为直线AC上的两个动点,请直接写出使得以点D、M、E、F为顶点的四边形是平行四边形的点M的横坐标,并把求其中一个点M的横坐标的过程写出来.【分析】(1)求出B、C点坐标,将B、C点代入y=ax2+bx﹣3,即可求解;(2)先求出BC的解析式,设P(t,t2﹣t﹣3),则Q(t,t﹣3),PQ=﹣t2+3t,由PQ∥CO,可得∠HQP=∠OCB,利用直角三角形三角函数求出HP==PQ,HQ=PQ,则△PHQ周长=HP+PQ+HQ=(1+)PQ=(1+)[﹣(t﹣3)2+],当t=3时,△PHQ周长有最大值+,此时P(3,﹣6);(3)求出平移后的函数解析式为y'=x2+x﹣5,则D(﹣3,﹣5),设M(m,=m2+m﹣5),E (x1,﹣3x1﹣3),F(x2,﹣3x2﹣3),分三种情况讨论:①以EF为平行四边形的对角线时,M(,)或(,);②以EM为平行四边形的对角线时,M(﹣6,4);③以ED为平行四边形的对角线时,求得M(﹣6,4).【解析】(1)令x=0,则y=﹣3,∴C(0,﹣3),∴OC=3,∵OB=2OC,∴OB=6,∴B(6,0),将B、C点代入y=ax2+bx﹣3,∴,解得,∴y=x2﹣x﹣3;(2)设直线BC的解析式为y=kx+b,,解得,∴y=x﹣3,∴设P(t,t2﹣t﹣3),则Q(t,t﹣3),∴PQ=﹣t2+3t,∵CO=3,BO=6,∴BC=3,在Rt△ABC中,sin∠BCO=,cos∠BCO=,∵PQ∥CO,∴∠HQP=∠OCB,∴sin∠HQP==,cos∠HQP==,∴HP=PQ,HQ=PQ,∴△PHQ周长=HP+PQ+HQ=(1+)PQ=(1+)(﹣t2+3t)=(1+)[﹣(t﹣3)2+],∵点P是直线BC下方,∴0<t<6,∴当t=3时,△PHQ周长有最大值+,此时P(3,﹣6);(3)∵y=x2﹣x﹣3=(x﹣)2﹣,∴平移后的函数解析式为y'=(x+)2﹣=x2+x﹣5,∴D(﹣3,﹣5),设M(m,﹣m2+m﹣5),设直线AC的解析式为y=kx+b,,解得,∴y=﹣3x﹣3,设E(x1,﹣3x1﹣3),F(x2,﹣3x2﹣3),①以EF为平行四边形的对角线时,.解得m=或m=,∴M(,)或(,);②以EM为平行四边形的对角线时,,解得m=﹣3(舍)或m=﹣6,∴M(﹣6,4);③以ED为平行四边形的对角线时,,解得m=﹣3(舍)或m=﹣6,∴M(﹣6,4);综上所述:M点坐标为(,)或(,)或(﹣6,4).11.(2022•平桂区二模)如图,抛物线y=ax2+bx+c与x轴交于A(﹣1,0)、B(3,0)两点,与直线y =﹣x+3交于点B、C(0,n).(1)求点C的坐标及抛物线的对称轴;(2)求该抛物线的表达式;(3)点P在抛物线的对称轴上,纵坐标为t.若平移BC使点B与P重合,求点C的对应点C′的坐标(用含t的代数式表示);若点Q在抛物线上,以B、C、P、Q为顶点的四边形是平行四边形,且PQ∥BC,求点P的坐标.【分析】(1)把C(0,n)代入y=﹣x+3得n=3,即知C(0,3),根据抛物线y=ax2+bx+c与x轴交于A(﹣1,0)、B(3,0)两点,得抛物线y=ax2+bx+c的对称轴为直线x=1;(2)用待定系数法可得抛物线的表达式为y=﹣x2+2x+3;(3)由P(1,t),B(3,0)可知C(0,3)的对应点C'坐标为(﹣2,3+t),设Q(m,﹣m2+2m+3),分两种情况:①当PQ∥BC,BQ∥CP时,BP的中点即为CQ的中点,可得,P(1,﹣2);②当PQ∥BC,BP∥CQ时,BQ中点即为CP中点,,得P(1,﹣8).【解析】(1)把C(0,n)代入y=﹣x+3得:n=3,∴C(0,3),∵抛物线y=ax2+bx+c与x轴交于A(﹣1,0)、B(3,0)两点,∴抛物线y=ax2+bx+c的对称轴为直线x==1,答:C(0,3),抛物线y=ax2+bx+c的对称轴为直线x=1;(2)把A(﹣1,0)、B(3,0),C(0,3)代入y=ax2+bx+c得:,解得,∴抛物线的表达式为y=﹣x2+2x+3;(3)∵点P在抛物线的对称轴上,纵坐标为t,∴P(1,t),∵平移BC使点B与P重合,B(3,0),∴C(0,3)的对应点C'坐标为(﹣2,3+t),设Q(m,﹣m2+2m+3),①当PQ∥BC,BQ∥CP时,BP的中点即为CQ的中点,如图:。
第十二关以二次函数与特殊四边形问题为背景的解答题【总体点评】二次函数在全国中考数学中常常作为压轴题,同时在省级,国家级数学竞赛中也有二次函数大题,很多学生在有限的时间内都不能很好完成。
由于在高中和大学中很多数学知识都与函数知识或函数的思想有关,学生在初中阶段函数知识和函数思维方法学得好否,直接关系到未来数学的学习。
二次函数与特殊平行四边形的综合问题属于初中阶段的主要内容,其主要涉及:二次函数的表达式、二次函数动点问题的讨论、特殊平行四边形的性质(主要包括线段之间的关系、角度的大小等等)。
在中考中,往往作为压轴题的形式出现,也给很多中学生造成了很大的压力。
【解题思路】以二次函数为载体的平行四边形存在性问题是近年来中考的热点,其图形复杂,知识覆盖面广,综合性较强,对学生分析问题和解决问题的能力要求高.对这类题,常规解法是先画出平行四边形,再依据“平行四边形的一组对边平行且相等”或“平行四边形的对角线互相平分”来解决.【典型例题】【例1】(2019·山东中考真题)如图,抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D (2,4),与y轴交于点C,作直线BC,连接AC,CD.(1)求抛物线的函数表达式;(2)E是抛物线上的点,求满足∠ECD=∠ACO的点E的坐标;(3)点M在y轴上且位于点C上方,点N在直线BC上,点P为第一象限内抛物线上一点,若以点C,M,N,P为顶点的四边形是菱形,求菱形的边长.【答案】(1)y=﹣x2+x+4;(2)点E的坐标为(1,),(3,);(3)菱形的边长为4﹣4.【解析】试题分析:(1)把点A(﹣2,0),点B(4,0),点D(2,4)代入y=ax2+bx+c,用待定系数法求出抛物线解析式即可.(2)分点E在直线CD上方的抛物线上和点E在直线CD下方的抛物线上两种情况,用三角函数求解即可;(3)分CM为菱形的边和CM为菱形的对角线两种情况,用菱形的性质进行计算即可.试题解析:(1)∵抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4),∴设抛物线解析式为y=a(x+2)(x﹣4),∴﹣8a=4,∴a=﹣,∴抛物线解析式为y=﹣(x+2)(x﹣4)=﹣x2+x+4;(2)如图1,①点E在直线CD上方的抛物线上,记E′,连接CE′,过E′作E′F′⊥CD,垂足为F′,由(1)知,OC=4,∵∠ACO=∠E′CF′,∴tan∠ACO=tan∠E′CF′,∴=,设线段E′F′=h,则CF′=2h,∴点E′(2h,h+4)∵点E′在抛物线上,∴﹣(2h)2+2h+4=h+4,∴h=0(舍)h=∴E′(1,),②点E在直线CD下方的抛物线上,记E,同①的方法得,E(3,),点E的坐标为(1,),(3,)(3)①CM为菱形的边,如图2,在第一象限内取点P′,过点P′作P′N′∥y轴,交BC于N′,过点P′作P′M′∥BC,交y轴于M′,∴四边形CM′P′N′是平行四边形,∵四边形CM′P′N′是菱形,∴P′M′=P′N′,过点P′作P′Q′⊥y轴,垂足为Q′,∵OC=OB,∠BOC=90°,∴∠OCB=45°,∴∠P′M′C=45°,设点P′(m,﹣m2+m+4),在Rt△P′M′Q′中,P′Q′=m,P′M′=m,∵B(4,0),C(0,4),∴直线BC的解析式为y=﹣x+4,∵P′N′∥y轴,∴N′(m,﹣m+4),∴P′N′=﹣m2+m+4﹣(﹣m+4)=﹣m2+2m,∴m=﹣m2+2m,∴m=0(舍)或m=4﹣2,菱形CM′P′N′的边长为(4﹣2)=4﹣4.②CM为菱形的对角线,如图3,在第一象限内抛物线上取点P,过点P作PM∥BC,交y轴于点M,连接CP,过点M作MN∥CP,交BC于N,∴四边形CPMN是平行四边形,连接PN交CM于点Q,∵四边形CPMN是菱形,∴PQ⊥CM,∠PCQ=∠NCQ,∵∠OCB=45°,∴∠NCQ=45°,∴∠PCQ=45°,∴∠CPQ=∠PCQ=45°,∴PQ=CQ,设点P(n,﹣n2+n+4),∴CQ=n,OQ=n+2,∴n+4=﹣n2+n+4,∴n=0(舍),∴此种情况不存在.∴菱形的边长为4﹣4.【例2】(2018·辽宁中考真题)如图,抛物线y=﹣x2+bx+c和直线y=x+1交于A,B两点,点A在x轴上,点B在直线x=3上,直线x=3与x轴交于点C(1)求抛物线的解析式;(2)点P 从点A 个单位长度的速度沿线段AB 向点B 运动,点Q 从点C 出发,以每秒2个单位长度的速度沿线段CA 向点A 运动,点P ,Q 同时出发,当其中一点到达终点时,另一个点也随之停止运动,设运动时间为t 秒(t >0).以PQ 为边作矩形PQNM ,使点N 在直线x=3上. ①当t 为何值时,矩形PQNM 的面积最小?并求出最小面积; ②直接写出当t 为何值时,恰好有矩形PQNM 的顶点落在抛物线上.【答案】(1)抛物线解析式为y=﹣x 2+3x+4;(2)①当t=65时,面积最小是165;②t=23 2. 【解析】 【分析】(1)利用待定系数法进行求解即可;(2)①分别用t 表示PE 、PQ 、EQ ,用△PQE ∽△QNC 表示NC 及QN ,列出矩形PQNM 面积与t 的函数关系式问题可解;②由①利用线段中点坐标分别等于两个端点横纵坐标平均分的数量关系,表示点M 坐标,分别讨论M 、N 、Q 在抛物线上时的情况,并分别求出t 值. 【详解】(1)由已知,B 点横坐标为3, ∵A 、B 在y=x+1上, ∴A (﹣1,0),B (3,4),把A (﹣1,0),B (3,4)代入y=﹣x 2+bx+c 得,10934b c b c --+=⎧⎨-++=⎩,解得:34b c =⎧⎨=⎩, ∴抛物线解析式为y=﹣x 2+3x+4; (2)①如图,过点P 作PE ⊥x 轴于点E ,∵直线y=x+1与x 轴夹角为45°,P 个单位长度, ∴t 秒时点E 坐标为(﹣1+t ,0),Q 点坐标为(3﹣2t ,0), ∴EQ=4﹣3t ,PE=t , ∵∠PQE+∠NQC=90°, ∠PQE+∠EPQ=90°, ∴∠EPQ=∠NQC , ∴△PQE ∽△QNC , ∴12PQ PE NQ QC ==, ∴矩形PQNM 的面积S=PQ•NQ=2PQ 2, ∵PQ 2=PE 2+EQ 2,∴S=22=20t 2﹣48t+32,当t=625b a -=时, S 最小=20×(65)2﹣48×65+32=165;②由①点Q 坐标为(3﹣2t ,0),P (﹣1+t ,t ),C (3,0), ∴△PQE ∽△QNC ,可得NC=2QE=8﹣6t , ∴N 点坐标为(3,8﹣6t ),由矩形对边平行且相等,P (﹣1+t ,t ),Q (3﹣2t ,0),∴点M 坐标为(3t ﹣1,8﹣5t ) 当M 在抛物线上时,则有8﹣5t=﹣(3t ﹣1)2+3(3t ﹣1)+4,解得t=109±, 当点Q 到A 时,Q 在抛物线上,此时t=2, 当N 在抛物线上时,8﹣6t=4, ∴t=23,综上所述当t=23、109±或2时,矩形PQNM 的顶点落在抛物线上. 【名师点睛】本题是代数几何综合题,考查了二次函数、一次函数、三角形相似和矩形的有关性质,熟练掌握相关知识以及应用数形结合和分类讨论的数学思想是解题的关键. 【例3】(2019·山西中考真题)综合与探究如图,抛物线26y ax bx =++经过点A(-2,0),B(4,0)两点,与y 轴交于点C ,点D 是抛物线上一个动点,设点D 的横坐标为(14)m m <<.连接AC ,BC ,DB ,DC , (1)求抛物线的函数表达式; (2)△BCD 的面积等于△AOC 的面积的34时,求m 的值; (3)在(2)的条件下,若点M 是x 轴上的一个动点,点N 是抛物线上一动点,试判断是否存在这样的点M,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,若存在,请直接写出点M 的坐标;若不存在,请说明理由.【答案】(1)233642y x x =-++;(2)3;(3)1234(8,0),(0,0),(M M M M .【解析】 【分析】(1)利用待定系数法进行求解即可;(2)作直线DE ⊥x 轴于点E ,交BC 于点G ,作CF ⊥DE ,垂足为F ,先求出S △OAC =6,再根据S △BCD =34S △AOC ,得到S △BCD =92,然后求出BC 的解析式为362y x =-+,则可得点G 的坐标为3(,6)2m m -+,由此可得2334DG m m =-+,再根据S △BCD =S △CDG +S △BDG =12DG BO ⋅⋅,可得关于m 的方程,解方程即可求得答案;(3)存在,如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图,以BD 为边时,有3种情况,由点D 的坐标可得点N 点纵坐标为±154,然后分点N 的纵坐标为154和点N 的纵坐标为154-两种情况分别求解;以BD 为对角线时,有1种情况,此时N 1点与N 2点重合,根据平行四边形的对边平行且相等可求得BM 1=N 1D=4,继而求得OM 1= 8,由此即可求得答案. 【详解】(1)抛物线2y ax bx c =++经过点A(-2,0),B(4,0),∴426016460a b a b -+=⎧⎨++=⎩,解得3432a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的函数表达式为233642y x x =-++; (2)作直线DE ⊥x 轴于点E ,交BC 于点G ,作CF ⊥DE ,垂足为F , ∵点A 的坐标为(-2,0),∴OA=2,由0x =,得6y =,∴点C 的坐标为(0,6),∴OC=6,∴S △OAC =1126622OA OC ⋅⋅=⨯⨯=, ∵S △BCD =34S △AOC ,∴S △BCD =39642⨯=,设直线BC 的函数表达式为y kx n =+,由B ,C 两点的坐标得406k n n +=⎧⎨=⎩,解得326k n ⎧=-⎪⎨⎪=⎩,∴直线BC 的函数表达式为362y x =-+, ∴点G 的坐标为3(,6)2m m -+, ∴2233336(6)34224DG m m m m m =-++--+=-+,∵点B 的坐标为(4,0),∴OB=4,∵S △BCD =S △CDG +S △BDG =1111()2222DG CF DG BE DG CF BE DG BO ⋅⋅+⋅⋅=⋅+=⋅⋅, ∴S △BCD =22133346242m m m m -+⨯=-+(), ∴239622m m -+=,解得11m =(舍),23m =, ∴m 的值为3;(3)存在,如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图, 以BD 为边时,有3种情况, ∵D 点坐标为15(3,)4,∴点N 点纵坐标为±154,当点N 的纵坐标为154时,如点N 2, 此时233156424x x -++=,解得:121,3x x =-=(舍), ∴215(1,)4N -,∴2(0,0)M ;当点N 的纵坐标为154-时,如点N 3,N 4,此时233156424x x -++=-,解得:1211x x ==∴315(1)4N +-,415(1)4N -,∴3M ,4(M ;以BD 为对角线时,有1种情况,此时N 1点与N 2点重合, ∵115(1,)4N -,D(3,154),∴N 1D=4, ∴BM 1=N 1D=4, ∴OM 1=OB+BM 1=8, ∴M 1(8,0),综上,点M 的坐标为:1234(80)(00)(M M M M ,,,,.【名师点睛】本题考查的是二次函数的综合题,涉及了待定系数法、三角形的面积、解一元二次方程、平行四边形的性质等知识,运用了数形结合思想、分类讨论思想等数学思想,熟练掌握和灵活运用相关知识是解题的关键.【方法归纳】这类问题,在题中的四个点中,至少有两个定点,用动点坐标“用字母表示”分别设出余下所有动点的坐标(若有两个动点,显然每个动点应各选用一个参数字母来“用字母表示”出动点坐标),任选一个已知点作为对角线的起点,列出所有可能的对角线(显然最多有3条),此时与之对应的另一条对角线也就确定了,然后运用中点坐标公式,求出每一种情况两条对角线的中点坐标,由平行四边形的判定定理可知,两中点重合,其坐标对应相等,列出两个方程,求解即可。
二次函数(平行四边形)
1.如图,在平面直角坐标系xOy中,抛物线y=(x﹣m)2﹣m2+m的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.(1)当m=2时,求点B的坐标;
(2)求DE的长?
(3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以,A,B,D,P为顶点的四边形是平行四边形?
=,即:=
x
×
﹣m
【例二】已知抛物线的顶点为A(2,1),且经过原点O,与x轴的另一交点为B。
(1)求抛物线的解析式;
(2)若点C在抛物线的对称轴上,点D在抛物线上,且以O、C、D、B四点为顶点的四边形为平行四
边形,求D点的坐标;
(3)连接OA、AB,如图②,在x轴下方的抛物线上是否存在点P,使得△OBP与△OAB相似?若存在,
求出P点的坐标;若不存在,说明理由。
【例三】(2013•湘潭)如图,在坐标系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),
B(0,2),抛物线y=x2+bx﹣2的图象过C点.
(1)求抛物线的解析式;
(2)平移该抛物线的对称轴所在直线l.当l移动到何处时,恰好将△ABC的面积分为相等的两部分?(3)点P是抛物线上一动点,是否存在点P,使四边形PACB为平行四边形?若存在,求出P点坐标;若不存在,说明理由.
x
×.
y=﹣
AB=
=
﹣
﹣
x.
(﹣x+2)﹣(﹣﹣S
EF S
(﹣×,
(不合题意,舍去)
时,恰好将
x x
【例四】(2013•盘锦)如图,抛物线y=ax2+bx+3与x轴相交于点A(﹣1,0)、B(3,0),与y轴相
交于点C,点P为线段OB上的动点(不与O、B重合),过点P垂直于x轴的直线与抛物线及线段BC分别交于点E、F,点D在y轴正半轴上,OD=2,连接DE、OF.
(1)求抛物线的解析式;
(2)当四边形ODEF是平行四边形时,求点P的坐标;
(3)过点A的直线将(2)中的平行四边形ODEF分成面积相等的两部分,求这条直线的解析式.(不必说明平分平行四边形面积的理由)
(
,
k=b=
y=x+
)
(第26题图)
(第26题图)
,k=b=y=x+y=x+y=x+
【例六】如图,抛物线经过5(1,0),(5,0),(0,2
A B C --三点.
(1)求抛物线的解析式;
(2)在抛物线的对称轴上有一点P ,使PA+PC 的值最小,求点P 的坐标;
(3)点M 为x 轴上一动点,在抛物线上是否存在一点N ,使以A,C,M,N 四点构成的四边形为平行四边形?若存在,求点N 的坐标;若不存在,请说明理由.
解析:解:(1)设抛物线的解析式为 2
y ax bx c =++,
根据题意,得0,2550,5.2a b c a b c c ⎧
⎪-+=⎪
++=⎨⎪⎪=-⎩,
解得1,22,5.
2a b c ⎧
=⎪⎪
=-⎨⎪⎪=-⎩
∴抛物线的解析式为:215
2.22
y x x =
-- ………(3分) (2)由题意知,点A 关于抛物线对称轴的对称点为点B,连接BC 交抛物线的对称轴于点P ,则P 点 即
为所求.
设直线BC 的解析式为y kx b =+,
由题意,得50,5
.2k b b +=⎧⎪⎨=-⎪⎩解得 1,2
5.2
k b ⎧=⎪⎪⎨⎪=-⎪⎩ ∴直线BC 的解析式为15
.22
y x =- …………(6分) ∵抛物线215
222
y x x =
--的对称轴是2x =, ∴当2x =时,153
.222y x =-=-
∴点P 的坐标是3
(2,)2
-. …………(7分)
(3)存在 …………………………(8分)
(i)当存在的点N 在x 轴的下方时,如图所示,∵四边形ACNM 是平行四边形,∴C N ∥x 轴,∴点C 与点N 关于对称轴x=2对称,∵C 点的坐标为5(0,)2-,∴点N 的坐标为5(4,).2
- ………………………(11分)
(II )当存在的点'N 在x 轴上方时,如图所示,作'N H x ⊥轴于点H ,∵四边形''
ACM N 是平行四边形,∴'
'
'
'
,AC M N N M H CAO =∠=∠, ∴R t △CAO ≌R t △'
'
N M H ,∴'
N H OC =. ∵点C 的坐标为'
55(0,),2
2N H -∴=,即N 点的纵坐标为52
, ∴
2155
2,222
x x --=即24100x x --=
解得1222x x ==
∴点'
N
的坐标为5
(2)2
和5(2)2
. 综上所述,满足题目条件的点N 共有三个,
分别为5(4,).2-
,5(2)2+
,5(2)2
………………………(13分)。