单片机电子钟
- 格式:docx
- 大小:21.58 KB
- 文档页数:3
基于单片机电子时钟设计电子时钟是一种利用单片机技术来实现精确时间显示的装置。
它可以准确地显示时间,并且可以根据需要进行闹铃功能等扩展。
接下来,我将详细介绍基于单片机的电子时钟设计。
首先,我们需要选择合适的单片机来实现电子时钟。
目前,常用的单片机有STC51系列、PIC系列、AVR系列等。
在选择单片机时,我们需要考虑其性能参数、价格以及开发环境等因素。
接下来,我们需要设计电子时钟的电路结构。
电子时钟的核心是单片机,通过连接显示屏、RTC(实时时钟)、按键以及扬声器等设备,来实现时间的显示、调整以及报警功能。
首先,我们需要选择合适的显示屏。
常用的显示屏有数码管、液晶显示屏、LED点阵等。
数码管和液晶显示屏可以直接连接到单片机的IO口,而LED点阵需要借助驱动芯片来完成控制。
其次,我们需要选择合适的RTC模块,以确保时钟的准确性。
RTC模块可以借助于DS1302等实时时钟芯片来实现。
同时,我们还需要连接按键,来实现对时钟进行调整的功能。
通过按键的组合操作,我们可以调整年、月、日、小时、分钟等时间参数。
此外,如果我们希望实现报警功能,我们还需要连接一个扬声器。
通过控制扬声器的开关,我们可以在设定的时间点播放报警铃声。
在硬件设计完成后,我们就可以进行软件开发工作了。
首先,我们需要编写主程序来初始化硬件设备,并进入主循环。
在主循环中,我们需要不断读取RTC模块的时间数据,并在显示屏上进行实时显示。
同时,我们也需要编写按键检测和处理的程序。
按键检测可以通过查询IO口的状态来实现,而按键处理则需要根据按键的值进行相应的功能调整。
如果需要实现报警功能,我们还需要编写报警处理的程序。
在设定的时间点,我们可以通过控制扬声器的开关来实现报警铃声的播放。
最后,我们需要进行整体的调试和测试工作。
通过不断地调整和优化程序,来确保整个电路和软件的正常运行。
总结起来,基于单片机的电子时钟设计包括硬件设计和软件开发两部分。
通过选择合适的单片机、显示屏、RTC模块、按键和扬声器等设备,并编写相应的程序,我们可以实现一个功能完善的电子时钟。
基于单片机电子时钟的设计与实现一、设计目标设计一个基于单片机的电子时钟,能够准确显示时间并能够进行设置和调整。
二、硬件设计1.时钟部分:采用晶振芯片提供准确的时钟信号2.数码管显示部分:使用共阴数码管进行数字显示3.按键部分:设计几个按键用于设置和调整时间4.电源部分:采用直流电源供电三、软件设计1.功能设计a.时间设置功能:通过按键可以设置当前的时间,包括小时、分钟和秒钟。
b.时间调整功能:通过按键可以调整当前的时间,包括小时、分钟和秒钟。
c.时间显示功能:通过数码管可以实时显示当前的时间。
2.代码实现以C语言为例,以下是一个基于单片机的电子时钟的代码实现示例:```c#include <reg51.h>sbit DS18B20=P1^3; // 定义18B20数据线接口sbit beep=P2^3; // 定义蜂鸣器接口unsigned char hour,min,sec; // 定义小时、分钟、秒钟变量//函数声明void Delay_1ms(unsigned int count);bit Ds18b20Init(;unsigned char Ds18b20ReadByte(;void ReadTime(;void WriteTime(;void DisplayTime(;//主函数void mainP2=0x00;WriteTime(; // 写入时间while(1)ReadTime(; // 读取时间DisplayTime(; // 显示时间Delay_1ms(1000); // 延时1秒}//毫秒延时函数void Delay_1ms(unsigned int count) unsigned int i, j;for(i=0; i<count; i++)for(j=0; j<1275; j++);//18B20初始化函数bit Ds18b20Initbit presence;DS18B20=0;Delay_1ms(100); // 延时450us~1000us DS18B20=1;Delay_1ms(10); // 延时15us~60us presence=DS18B20;Delay_1ms(30); // 延时60us~240us return presence;//18B20读取字节函数unsigned char Ds18b20ReadByte unsigned char i, dat;for(i=0; i<8; i++)DS18B20=0;//主机发起读时序_nop_(; // 延时1us_nop_(; // 延时1us_nop_(; // 延时1usDS18B20=1;//主机释放总线_nop_(; // 延时1us_nop_(; // 延时1us_nop_(; // 延时1usdat,=(DS18B20<<i); // 读取数据位,存放在dat变量中Delay_1ms(3); // 读时序完成后等待48us再接收下一位}return dat;//读取时间函数void ReadTimeunsigned char temp;temp=0x00;while(temp!=0xaa)Ds18b20Init(; // 初始化温度传感器Delay_1ms(1);DS18B20=0xcc;Delay_1ms(1);DS18B20=0xbe;Delay_1ms(1);temp=Ds18b20ReadByte(; // 读取时间数组的标志位}for(temp=0; temp<7; temp++)//写入时间函数void WriteTimeunsigned char i,j;while(1)Ds18b20Init(;Delay_1ms(1);DS18B20=0xcc;Delay_1ms(1);DS18B20=0x4e;Delay_1ms(1);for(i=0; i<7; i++)DS18B20=0x55;Delay_1ms(1);DS18B20=0xaa;Delay_1ms(1);Ds18b20Init(;Delay_1ms(1);DS18B20=0xcc;Delay_1ms(1);DS18B20=0x48;Delay_1ms(1);j=Ds18b20ReadByte(; // 判断是否写入成功if(j==0x0a)break;}//显示时间函数void DisplayTimeP1=seg[hour/10]; // 显示十位小时P2=(P2&0xf0),0x08; // 点亮第一个数码管Delay_1ms(5); // 延时一段时间P2=0x0f;//熄灭数码管P1=seg[hour%10]; // 显示个位小时P2=(P2&0xf0),0x04; // 点亮第二个数码管Delay_1ms(5); // 延时一段时间P2=0x0f;//熄灭数码管P1=seg[min/10]; // 显示十位分钟P2=(P2&0xf0),0x02; // 点亮第三个数码管Delay_1ms(5); // 延时一段时间P2=0x0f;//熄灭数码管P1=seg[min%10]; // 显示个位分钟P2=(P2&0xf0),0x01; // 点亮第四个数码管Delay_1ms(5); // 延时一段时间P2=0x0f;//熄灭数码管P1=0x00;//空显示P2=0x00;//熄灭数码管```四、总结通过以上的硬件设计和软件实现,可以实现一个基于单片机的电子时钟。
基于单片机电子时钟的设计一、设计背景随着科技的不断进步,电子设备在我们的生活中扮演着越来越重要的角色。
时钟作为时间的测量工具,也从传统的机械时钟逐渐发展为电子时钟。
单片机作为一种集成度高、功能强大的微控制器,为电子时钟的设计提供了高效、可靠的解决方案。
基于单片机的电子时钟具有精度高、易于编程、成本低等优点,能够满足人们对时间测量和显示的各种需求。
二、系统设计方案1、硬件设计单片机选择:选择合适的单片机是整个系统设计的关键。
常见的单片机如STM32、AT89C51 等,具有不同的性能和特点。
根据系统需求,我们选择了 AT89C51 单片机,其具有成本低、性能稳定等优点。
时钟芯片:为了保证时间的准确性,需要选择高精度的时钟芯片。
DS1302 是一款常用的实时时钟芯片,具有低功耗、高精度等特点,能够为系统提供准确的时间信息。
显示模块:显示模块用于显示时间。
常见的显示模块有液晶显示屏(LCD)和数码管。
考虑到显示效果和成本,我们选择了 1602 液晶显示屏,能够清晰地显示时间、日期等信息。
按键模块:按键模块用于设置时间和调整功能。
通过按键可以实现时间的校准、闹钟的设置等功能。
电源模块:为整个系统提供稳定的电源。
可以选择电池供电或外部电源供电,根据实际使用场景进行选择。
2、软件设计编程语言:选择合适的编程语言进行软件编程。
C 语言是单片机编程中常用的语言,具有语法简单、可读性强等优点。
主程序流程:主程序首先进行系统初始化,包括单片机端口初始化、时钟芯片初始化、显示模块初始化等。
然后读取时钟芯片中的时间信息,并将其显示在液晶显示屏上。
通过按键检测模块,判断是否有按键操作,如果有,则进行相应的处理,如时间校准、闹钟设置等。
中断服务程序:为了保证时间的准确性,需要使用定时器中断来实现时钟的计时功能。
在中断服务程序中,对时钟芯片进行时间更新,确保时间的准确性。
三、硬件电路设计1、单片机最小系统单片机:AT89C51 单片机是整个系统的核心,负责控制和协调各个模块的工作。
基于单片机的电子时钟设计电子时钟是一种显示时间的设备,通常基于单片机设计。
它不仅可以准确显示时间,还可以具备闹钟、日历等功能。
本文将介绍基于单片机的电子时钟的设计。
首先,我们来看单片机的选择。
在设计电子时钟时,常用的单片机有PIC、AVR和STM32等。
这些单片机都有较强的计算能力和丰富的外设接口,非常适合用于电子时钟的设计。
具体的选择可以根据需求和个人熟悉程度做出决定。
接下来,我们需要设计时钟的显示部分。
一般来说,电子时钟的显示可以采用液晶显示屏或LED数码管。
液晶显示屏具有占用空间小、显示效果清晰等优点,适合用于大号时钟;而数码管则适合用于小型时钟。
根据具体需求选择合适的显示器件。
在电子时钟设计中,如何准确获取时间是关键。
可以利用主频计数的方法,通过单片机的定时器来获取时间。
比如用32.768kHz的振荡源作为单片机的时钟源,然后每秒进行一次中断计数,通过累加中断计数值,即可得到秒数、分钟数、小时数等。
在此基础上,可以进一步添加日历计算功能,如年、月、日的计算。
闹钟功能是电子时钟的重要组成部分之一、我们可以通过按键输入设置闹钟的时间和开关状态。
当闹钟时间到达时,可以通过蜂鸣器或液晶显示器等方式提醒用户。
闹钟的开关状态可以通过EEPROM等非易失性存储器来保存,以实现断电重启后不丢失设置的功能。
除了基本的显示和计时功能,电子时钟还可以增加其他实用的功能。
比如温湿度显示功能,可以通过外部传感器获取环境的温度和湿度,并显示在屏幕上。
还可以添加定时开关机功能,通过按键设置时间和开关状态,控制电源的开关。
这些功能的实现都需要通过合理的硬件设计和软件编程来完成。
总的来说,基于单片机的电子时钟设计需要首先选择合适的单片机,并根据具体需求设计显示部分、时间获取部分、闹钟部分以及其他扩展功能。
其中涉及到硬件设计和软件编程的内容,需要有一定的电子和计算机基础知识。
通过合理的设计和编程,我们可以实现一个功能齐全、准确可靠的电子时钟。
基于单片机的电子时钟设计与实现电子时钟是现代人生活中不可或缺的一部分。
随着现代科技的发展,基于单片机的电子时钟已经成为人们常见的选择。
本文将详细介绍基于单片机的电子时钟设计与实现。
一、基于单片机的电子时钟的原理基于单片机的电子时钟是通过控制晶体振荡器的频率来实现时钟的精度。
当晶体振荡器振荡周期稳定时,控制晶体振荡器的频率就可以实现时钟的精确。
二、基于单片机的电子时钟的设计1、硬件设计(1)时钟芯片:MCU常用的计时器是AT89S52,这是一个高性能的、低功耗的8位CMOS微控制器,使用半导体工艺方案,集成了66个I/O口和4个定时/计数器。
MCU的定时器的时钟源要保证准确,采用低失真、低相位噪声的晶振可以保证这一点。
(2)显示器件:本设计采用单片机驱动数码管来显示时间,以节省成本。
数码管是由点阵组成的,共有八段,其中七段是用来表示数字的,而第八段是用来显示小数点、时间标志等字符。
(3)按键及配套链路:按键和链路的作用是用来调整电子时钟的计时和校准。
采用常开或常闭接触式按钮即可实现这一功能。
2、软件设计(1)时钟芯片:AT89S52时钟芯片采用C语言编程,最终生成.HEX文件,充当芯片程序的载体,烧录进芯片后即可实现自动扫描、计时、纠偏、时间显示、闹铃、定时关闭等多项功能。
(2)扫描及计时:8个数码管需要进行扫描的操作,程序运行时根据八个位选信号,依次驱动八个共阳数码管的位选脚。
在每次扫描完成后即进行时钟计时的工作,判断闹钟时间是否到达,若到达则执行闹铃程序。
(3)时间设置:根据按键的输入状态,进行时间值的修改,来实现时钟时间的设置。
(4)闹铃:当当前时间与闹钟设置时间相等时,启动闹铃程序,进行可选的led闪烁、蜂鸣器响声等提醒操作。
三、基于单片机的电子时钟的实现将设计好的电路板焊接好,控制程序烧录进入AT89S52芯片,并将电子时钟放置在合适的位置或固定于墙壁上即可使用。
四、基于单片机的电子时钟的优缺点优点:精度高、误差小、易于校对和设置、功能多样化、体积小、寿命长。
基于单片机电子时钟设计与制作一、设计需求与原理我们的目标是设计一款能够准确显示时间(包括小时、分钟和秒),具备设置时间功能,并且可以在不同的显示模式(如 12 小时制和 24小时制)之间切换的电子时钟。
其工作原理主要基于单片机的控制。
单片机作为核心控制器,接收来自时钟芯片的时间数据,并将其处理后输出到显示模块进行显示。
同时,通过按键模块,用户可以向单片机输入指令,实现时间的设置和显示模式的切换等操作。
二、硬件设计1、单片机选择我们选用常见的 STC89C52 单片机,它具有性能稳定、价格低廉、易于编程等优点。
2、时钟芯片DS1302 时钟芯片被用于提供准确的时间信息。
它能够在掉电情况下保持时间数据不丢失,保证了时钟的可靠性。
3、显示模块为了清晰直观地显示时间,采用了液晶显示屏(LCD1602)。
它能够显示多行字符,满足我们显示小时、分钟、秒以及其他相关信息的需求。
4、按键模块设置四个独立按键,分别用于时间的调整(增加、减少)、显示模式的切换以及时间设置的确认。
5、电源模块为整个系统提供稳定的 5V 直流电源,可以通过 USB 接口或者电池进行供电。
三、软件设计1、编程语言使用 C 语言进行编程,它具有语法简单、可读性强、可移植性好等特点。
2、程序流程初始化系统后,单片机不断从时钟芯片读取时间数据,并将其显示在液晶显示屏上。
当检测到按键操作时,进入相应的处理函数,实现时间设置和显示模式切换等功能。
四、制作过程1、硬件焊接首先,将各个元器件按照原理图焊接在电路板上。
注意焊接的质量,避免虚焊和短路。
2、软件烧录使用编程器将编写好的程序烧录到单片机中。
3、系统调试接通电源,检查液晶显示屏是否正常显示,按键是否能够准确响应操作。
如果出现问题,通过调试工具(如示波器、逻辑分析仪等)进行故障排查和修复。
五、系统测试1、时间准确性测试将制作好的电子时钟与标准时间进行对比,观察其在长时间运行中的时间准确性。
2、功能测试测试时间设置功能、显示模式切换功能是否正常,按键操作是否灵敏可靠。
基于单片机的电子时钟设计电子时钟是人们日常生活中常见的设备之一,它不仅能够准确显示时间,还可以搭配其他功能,如闹钟、温度显示等。
本文将介绍基于单片机的电子时钟的设计原理和步骤,并探讨其在现代生活中的应用。
一、设计原理基于单片机的电子时钟主要由以下几个模块组成:时钟模块、显示模块、控制模块和电源模块。
时钟模块负责获取当前时间并进行计时,显示模块用于将时间信息显示出来,控制模块用于处理用户的输入操作,电源模块为电子时钟提供稳定的电源。
1. 时钟模块时钟模块的核心是一个定时器,它可以定时触发中断,通过中断服务程序来更新时间。
在单片机中,我们可以使用定时器模块来实现这个功能,通过设定合适的定时器参数,可以实现从毫秒级到秒级的计时精度。
2. 显示模块显示模块通常采用数码管或者液晶显示屏来显示时间信息。
数码管可以直接显示数字,在低功耗和成本方面具有优势;液晶显示屏可以显示更多的信息,具有更好的可视角度和美观性。
在电子时钟中,我们可以通过控制显示模块的引脚,以适当的方式显示小时、分钟和秒数。
3. 控制模块控制模块主要用于处理用户的输入操作,如设置闹钟时间、调整时间等。
可以通过按键开关、旋转编码器或者触摸屏等方式来实现用户交互。
当用户按下按键或者滑动触摸屏时,控制模块会相应地改变时钟模块中的时间数据或者触发其他操作。
4. 电源模块电子时钟需要一个稳定的电源来工作,通常使用交流电转直流电的方式进行供电。
电源模块可以通过整流、滤波和稳压等电路来提供稳定的直流电源。
二、设计步骤基于单片机的电子时钟的设计步骤如下:1. 确定需求和功能:首先需要明确设计的需求和功能,包括显示方式、时间格式、附加功能等。
2. 选择单片机:根据需求选择适合的单片机型号,考虑处理性能、存储空间、外设接口等因素。
3. 设计电路图:根据选择的单片机和其他模块,设计电子时钟的电路图。
包括时钟模块、显示模块、控制模块和电源模块的连接方式。
4. 编写源代码:根据电路图和功能需求,编写单片机的源代码。
单片机课程设计 电子钟一、课程目标知识目标:1. 学生能理解单片机的基本原理,掌握单片机编程的基础知识。
2. 学生能掌握电子时钟的工作原理,理解时、分、秒的显示方式及其换算关系。
3. 学生能描述单片机在电子时钟中的应用,了解中断、定时器等概念。
技能目标:1. 学生能运用所学知识,设计并实现一个简单的电子时钟程序,具备初步的编程能力。
2. 学生能够通过实验操作,学会使用编程软件和烧录工具,完成程序的编写和下载。
3. 学生能够分析并解决电子时钟程序运行过程中出现的问题,提高问题解决能力。
情感态度价值观目标:1. 学生通过单片机课程的学习,培养对电子工程的兴趣,激发创新意识。
2. 学生在团队协作中学会沟通、分享和合作,培养良好的团队精神。
3. 学生在学习过程中,培养耐心、细致、严谨的科学态度,树立正确的价值观。
课程性质:本课程为实践性较强的课程,旨在让学生通过动手实践,掌握单片机编程和电子时钟的设计。
学生特点:学生为初中生,具备一定的物理知识和数学基础,对电子技术和编程有浓厚兴趣。
教学要求:教师需注重理论与实践相结合,引导学生通过动手实践,提高编程能力和问题解决能力。
在教学过程中,关注学生的个体差异,给予个性化指导。
同时,强调团队合作,培养学生的沟通与协作能力。
通过课程学习,使学生在知识、技能和情感态度价值观方面均取得具体的学习成果。
二、教学内容1. 单片机基本原理:介绍51单片机的内部结构、工作原理,重点讲解CPU、内存、I/O口等基础知识。
相关教材章节:第一章 单片机概述2. 单片机编程基础:讲解单片机编程语言(C语言),包括数据类型、运算符、控制语句等。
相关教材章节:第二章 单片机编程语言3. 电子时钟原理:介绍电子时钟的组成、工作原理,重点讲解时、分、秒的显示方式及换算关系。
相关教材章节:第三章 电子时钟原理4. 中断和定时器:讲解中断的概念、原理和应用,以及定时器的工作原理和编程方法。
相关教材章节:第四章 中断与定时器5. 电子时钟程序设计:结合以上知识,设计并实现一个简单的电子时钟程序,包括显示、计时等功能。
一、引言随着电子技术的不断发展,单片机在各个领域得到了广泛的应用。
电子钟作为单片机应用的一个重要实例,具有很高的实用价值。
本实训报告主要介绍了单片机电子钟的设计与实现过程,包括硬件电路设计、软件编程以及调试过程。
二、硬件电路设计1. 单片机选择本实训选用AT89C51单片机作为核心控制器,该单片机具有丰富的I/O端口、较强的计算能力和较大的存储空间,能够满足电子钟的设计需求。
2. 时钟芯片本实训采用DS1302时钟芯片作为时间源,该芯片具有年、月、日、周、时、分、秒的精确计时功能,并具备闰年补偿等功能。
3. 液晶显示屏本实训选用1602液晶显示屏用于显示时间、日期等信息。
1602液晶显示屏具有清晰显示多个字符和符号的特点,方便用户查看时间和其他信息。
4. 按键模块本实训设计按键模块用于用户输入和设置。
按键包括时间设置键、日期设置键、闹钟设置键等,方便用户进行各项操作。
5. 电源模块本实训采用DC5V电源模块,为整个电子钟提供稳定的电源供应。
三、软件编程1. 主程序主程序负责初始化单片机、时钟芯片、液晶显示屏等硬件设备,并进入主循环。
主循环中,程序会不断检测按键状态,根据按键输入调整时间、日期和闹钟设置。
2. 时钟控制程序时钟控制程序负责实现时钟的基本功能,包括计时、闰年补偿等。
程序通过定时器中断,每秒更新一次时间。
3. 显示程序显示程序负责将时间、日期等信息显示在液晶显示屏上。
程序使用1602液晶显示屏的指令集,动态显示时、分、秒和日期。
4. 按键扫描程序按键扫描程序负责检测按键状态,并根据按键输入调整时间、日期和闹钟设置。
程序采用轮询方式检测按键状态,以提高按键响应速度。
5. 闹钟程序闹钟程序负责实现闹钟功能,当时间达到设定的闹钟时间时,电子钟会发出蜂鸣声提示用户。
四、调试过程1. 硬件调试首先,对硬件电路进行调试,检查各元器件是否安装正确,连接是否牢固。
然后,使用万用表检测电源电压、单片机各引脚电压是否正常。
单片机电子时钟实验报告一、实验目的:1.了解单片机的基本知识和工作原理;2.掌握单片机的时钟生成方法;3.实现一个基本的电子时钟。
二、实验器材:1.STC89C52单片机开发板;2.LCD1602液晶显示屏;3.外部晶体振荡器;4.面包板、杜邦线等。
三、实验原理:单片机是由一个集成电路芯片组成的微型计算机系统。
它具有高度集成和灵活应用的特点,被广泛应用于各种电子设备中。
STC89C52是一种常见的单片机,具有可编程的特点,可以通过编写程序实现各种功能。
为了实现电子时钟功能,我们需要了解单片机的时钟生成方法。
单片机一般内部包含一个振荡器电路,通过外部晶体振荡器提供的时钟信号来控制单片机的工作速度。
具体实现时钟功能需要通过编写程序生成一个固定频率的脉冲信号,并通过控制液晶显示屏显示当前的时间。
四、实验步骤:1.将STC89C52单片机开发板、液晶显示屏、外部晶体振荡器等连接起来,按照电路图进行布线。
2.编写程序,通过设置定时器,生成1毫秒的定时中断信号。
在中断程序中,获取当前的系统时间,并进行相应的显示。
4.观察液晶显示屏,检查是否显示当前的时间,如正常显示,则实验成功。
五、实验结果与分析:经过实验,我们成功实现了一个简单的电子时钟。
液晶显示屏能够正常显示当前的时间,而且精度较高。
实验过程中,我们对单片机的工作原理和编程方法有了更深入的了解。
六、实验心得与体会:通过这次实验,我掌握了单片机的基本知识和工作原理,并实际编写了一个电子时钟程序。
通过实际操作,我对单片机的应用有了更深入的理解,也提高了动手能力和解决问题的能力。
在今后的学习和工作中,我将继续深入学习单片机的原理和应用,不断提高自己的技术水平。
《单片机原理及应用》课程设计任务书14系(部):电信系专业:指导教师:
目录
摘要 (2)
1、设计任务与要求 (2)
基本设计任务 (2)
功能要求说明 (2)
2、方案论证与选择 (2)
单片机的型号选择 (2)
控制选择方案 (2)
3、总体设计 (3)
主程序 (3)
显示子程序 (3)
定时闹钟与整点报时程序 (3)
定时器T0中断服务程序 (3)
按键功能设置 (3)
4、系统主要元件介绍 (3)
AT89C51单片机的介绍 (3)
LED数码管介绍 (3)
5、仿真及测试 (3)
程序调试及仿真 (3)
程序测试及结果分析 (3)
6、程序设计体会 (3)
参考文献 (3)
摘要
该电子时钟由AT89C51,BUTTON,七段数码管等构成,采用晶振电路作为驱动电路,由延时程序和循环程序产生的一秒定时,达到时分秒的计时,六十秒为一分钟,六十分钟为一小时,满二十四小时重新计时。
而电路中的四个控制键拥有多种不同的功能,可以实现电子钟精确到秒的调整和闹钟的调整,应用Proteus的ISIS软件实现了单片机电子时钟系统的设计与仿真。
该方法仿真效果真实、准确,节省了硬件资源。
关键词:数码管;单片机;电子钟;键盘控制
1、设计任务与要求
本任务为:数码管显示电子钟。
设计任务具体内容如下:
基本设计任务
依据命题题意,本设计采用AT89C51进行24小时计时并用数码管显示。
要求其显示时间范围是00:00:00~23:59:59,具备有时分秒校准功能。
电子钟上面要带有闹钟,闹钟与时钟之间能随时切换,闹钟具备时分秒设置功能。
功能要求说明
设计一个具有特定功能的电子钟。
该电子钟具有设定闹钟(持续响5秒),及整点报时功能。
时间运行到正点时间时,闹钟响,几点钟就响几声(每声持续响2秒,每两声之间时间间隔2秒)。
2、方案论证与选择
单片机的型号选择
通过对多种单片机性能的分析,最终认为AT89C51是最理想的电子时钟开发芯片。
AT89C51是一种带4K字节闪烁可编程可擦除只读存储器的低电压,高性能CMOS8位微处理器,器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。
由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,而且它与MCS-51兼容,且具有4K 字节可编程闪烁存储器和1000写/擦循环,数据保留时间为10年等特点,是最好的选择。
控制选择方案
直接加减:使用7按键,1按键切换闹钟,6按键对时分秒分别加减,控制方式相当简单,但需要较多按键与I/O口,功能一般,成本较高。
矩阵键盘:使用16按键对时分秒直接设置,能最为灵活的对数字钟进行设置,功能强大,但控制方式相对困难,成本较高,需要较多按键与I/O口。
换位加减:使用4按键,1键切换闹钟,1键换位,另两键加减,控制方式相对简单,占用I/O口少,成本低廉,但功能一般。
经过反复比较,在3种方案中选取了第3种——换位加减,此方案成本低,功能已经足够满足电子钟的需要,而且硬件软件均比较简单。
3、总体设计
主程序
设计中计时采用定时器T0中断完成。
主程序循环调用显示子程序和查键,当端口有开关按下时,转入相应的功能程序。
流程图如图3-1所示。
图3-1 主程序流程
/*主函数*/
void main(void)
{
TMOD=0x11; [2] 何立民.单片机应用系统设计[M].北京:北京航空航天大学出版社,1993.
[3] 楼然笛.单片机开发[M].北京:人民邮电出版社,1994.
[4] 付家才.单片机控制工程实践技术[M].北京:化学工业出版社 .
[5] 李光才.单片机课程设计实例指导[M].北京:北京航空航天大学出版社 2004.
[6] 朱定华.单片机原理及接口技术实验[M].北京:北方交通大学
出版社.
[7] 刘湘涛.江世明.单片机原理与应用[M]. 北京:电子工业出版
社,2006.。