(江苏)高考数学 压轴大题突破练 直线与圆()
- 格式:docx
- 大小:12.74 KB
- 文档页数:7
精选16 直线与圆的方程(选择与填空)1.涉及直线被圆截得的弦长问题的两种求解方法:(1)利用半径长r 、弦心距d 、弦长l 的一半构成直角三角形, 结合勾股定理222()2ld r +=求解;(2)若斜率为k 的直线l 与圆C 交于1122,,()()A x y B x y ,两点,则12|||AB x x =-. 2.求两圆公共弦长的两种方法:(1)联立两圆的方程求出交点坐标,再利用两点间的距离公式求解; (2)求出两圆公共弦所在直线的方程,转化为直线被圆截得的弦长问题. 3.两圆相交时公共弦所在直线的方程:设圆C 1:x 2+y 2+D 1x +E 1y +F 1=0 ①,圆C 2:x 2+y 2+D 2x +E 2y +F 2=0 ②,若两圆相交,则有一条公共弦,由①-②,得(D 1-D 2)x +(E 1-E 2)y +F 1-F 2=0 ③. 方程③表示圆C 1与圆C 2的公共弦所在直线的方程. 4.距离公式:(1)平面上任意两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离|P 1P 2| (2)点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d.(3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0(C 1≠C 2)间的距离d.一、单选题1.直线l :10mx y m -+-=与圆C :22(1)5x y +-=的位置关系是 A .相交 B .相切 C .相离D .不确定【答案】A【解析】直线l :10mx y m -+-=过定点(11),,因为221(11)5+-<,则点(11),在圆22(1)5x y +-=的内部,所以直线l 与圆相交,故选A .2.直线过点()0,2P ,且截圆224x y +=所得的弦长为2,则直线的斜率为A .32± B .C .±D .【答案】C【解析】设所求直线方程为2y kx =+,即20kx y -+=,∴圆心到直线的距离d =,2∴==,解得k =.故选C .3.已知点)P和圆C :224x y +=,则过点P 且与圆C 相切的直线方程是A 4y -=B 4y +=C .4x -=D .4x =【答案】B【解析】可知)P在圆上,则PC k =,所以切线方程为1y x -=4y +=.故选B . 4.若直线:10l x y -+=与圆22210x y ay +--=相切,则实数a = A .1- B .0 C .1D .2【答案】A【解析】()222222101x y ay x y a a +--=⇒+-=+,所以圆心为()0,a ,半径r :10l x y -+=与圆()2221x y a a -=++相切,=,解得1a =-.故选A.5.已知()0,0A ,()1,1B ,直线l 过点()2,0且和直线AB 平行,则直线l 的方程为A .20x y --=B .20x y +-=C .240x y --=D .240x y +-=【答案】A【解析】因为()0,0A ,()1,1B ,所以直线AB 的斜率为10110-=-, 因为直线l 过点()2,0且和直线AB 平行,所以直线l 的方程为01(2)y x -=⋅-, 即20x y --=,故选A .6.若直线210ax y ++=与直线220x y +-=互相垂直,则实数a 的值是 A .1 B .1- C .4D .4-【答案】B【解析】直线210ax y ++=的斜率为2a-,直线220x y +-=的斜率为2-, 因为直线210ax y ++=与直线220x y +-=互相垂直, 所以()2112a a ⎛⎫-⨯-=-⇒=- ⎪⎝⎭,故选B .7.若圆心坐标为()2,1-的圆被直线10x y --=截得的弦长为 A .()()22212x y -++= B .()()22214x y -++= C .()()22218x y -++= D .()()222116x y -++=【答案】B【解析】设圆的半径为r ,圆心到直线10x y --=的距离d ==∴==,解得24r =,∴圆的方程为()()22214x y -++=.故选B .8.过点()0,1P 的直线l 与圆()()22111x y -+-=相交于A ,B 两点,若该直线的斜率为1,则AB =A .1BCD .2【答案】B【解析】由题意可得直线l 的方程为1y x =+,圆()()22111x y -+-=的圆心()1,1,半径1r =,圆心()1,1到直线1y x =+的距离为d ==所以弦长22AB ===⨯= B. 9.已知过点()2,4M -的直线l 与圆C :()()22125x y -++=相切,且与直线230ax y -+=垂直,则实数a 的值为A .4B .2C .2-D .4-【答案】D【解析】因为点()2,4M -满足圆()()22125x y -++=的方程,所以M 在圆上,又过点()2,4M -的直线与圆()()22125x y -++=相切,且与直线230ax y -+=垂直,所以切点与圆心连线与直线230ax y -+=平行, 所以直线230ax y -+=的斜率为422221a -+==--,所以4a =-,故选D. 10.已知直线()1:3453l a x y a ++=-,()2:258l x a y ++=,若12l l //,则a 的值为 A .7- B .1- C .7-或1-D .2-或4【答案】A【解析】已知直线()1:3453l a x y a ++=-,()2:258l x a y ++=,且12l l //,则()()()()35883253a a a a ⎧++=⎪⎨+≠-⎪⎩,解得7a =-.故选A .【名师点睛】利用一般式方程判定直线的平行与垂直: 已知直线1111:0l A x B y C ++=和直线2222:0l A x B y C ++=. (1)121221//l l A B A B ⇔=且1221A C A C ≠;(2)2112210A A l B B l +⇔=⊥.11.若函数()f x x m =-有零点,则实数m 的取值范围是A .⎡-⎣B .4,⎡⎣C .[]4,4-D .4,⎡-⎣【答案】D【解析】由题意可知,若()f x x m =-有零点,则只需满足直线y x m =+与曲线y =当直线y x m =+4=,得m =y x m =+过点A 时,4m =-,故4m -≤≤D .【名师点睛】解答根据函数有零点求参数的取值范围的问题时,可采用数形结合法,将问题转化为()()f x g x =有解,分别画出函数()f x 和()g x 的图象,根据图象的位置变化确定参数的取值范围.12.已知直线1l :230ax y +-=,2l :()310x a y a ++-=,若12l l ⊥.则a 的值为 A .25- B .25C .1D .-2【答案】A 【解析】12l l ⊥,显然两直线的斜率存在且都不为0,312+1a a ⎛⎫⎛⎫∴-⨯-=- ⎪ ⎪⎝⎭⎝⎭,解得25a =-.故选A . 13.圆22420x y x y ++-=和圆22230x y x +--=交于A 、B 两点,则相交弦AB 的垂直平分线的方程为 A .6230x y -+= B .310x y +-= C .2230x y -+=D .310--=x y【答案】B【解析】由两圆的方程可得两圆的圆心分别为()()2,1,1,0,M N - 两圆的相交弦的垂直平分线是通过圆心,M N 的直线方程, 由直线方程的两点式得到直线MN 的方程为120112y x -+=-+,整理得310x y +-=,故选B . 14.若点()1,1P 到直线cos sin 2x y θθ⋅+⋅=的距离为d ,则d 的最大值是A .2+B .2C .2-D .2+【答案】A【解析】点()1,1P 到直线cos sin 2x y θθ⋅+⋅=的距离为cos sin 224d πθθθ⎛⎫==+-=+- ⎪⎝⎭,当sin 14πθ⎛⎫+=- ⎪⎝⎭时max 22d == A.15.圆1C :22430x y x +-+=与圆2C :()()2214x y a ++-=外切,则实数a 的值为 A .4 B .16 C .8D .12【答案】B【解析】将圆22430x y x +-+=化为标准方程为()2221x y -+=,故圆1C 的圆心为()2,0,半径为1;圆2C 的圆心为()1,4-1=+16a =.故选B .16.已知P 为圆22:1O x y +=上一个动点,O 为坐标原点,过点P 作圆O 的切线与圆221:28190O x y x y +---=相交于两点,A B ,则||AB 最小值是A 1B 1C .2D .2【答案】C【解析】由图象可知,当1O P AB ⊥时,且1O P 最大时,||AB 可取得最小值,()()22221:281901436O x y x y x y +---=⇒-+-=,所以圆心()11,6O ,半径16r =,而22:1O x y +=,圆心()0,0,半径1r =,又1OO ==1max 1O P =,在1Rt PO B 中,111,6O P O B ==,1PB ∴===,min 22AB PB ∴==.故选C.17.设点(3,4)M 在圆222(0)x y r r +=>外,若圆O 上存在点N ,使得3OMN π∠=,则实数r 的取值范围是A .5[,)2+∞ B .[,)2+∞C .D .5[,5)2【答案】C【解析】如图所示:222(0)x y r r +=>上存在点N 使得3OMN π∠=,则OMN ∠的最大值大于或者等于3π时,一定存在点N 使得3OMN π∠=,当MN 与圆相切时,OMN ∠取得最大值,此时,5OM =,sin 52ON ON OMN OM∠==≥,解得2ON ≥,即2r ≥,又(3,4)M 在圆外,22234r ∴+>,解得5r <,综上所述:52r ≤<.故选C .18.古希腊数学家阿波罗尼奧斯(约公元前262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,著作中有这样一个命题:平面内与两定点距离的比为常数k (0k >且1k ≠)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.已知(0,0),(3,0)O A ,动点(,)P x y 满足2PA PO=,则动点P 轨迹与圆22(1)1x y -+=位置关系是A .外离B .外切C .相交D .内切【答案】C【解析】设(),P x y ,由2PA PO =,得()2222344x y x y -+=+,整理得()2214x y ++=,表示圆心为(1,0)-,半径为2R =的圆,圆22(1)1x y -+=的圆心为(1,0)为圆心,1r =为半径的圆,两圆的圆心距为2,满足2R r R r -<<+,所以两个圆相交.故选C .19.已知动直线:20(0,0)l ax by c a c ++-=>>恒过点(2,)P n ,且(5,0)Q 到动直线l的最大距离为3,则22c a c+的最小值为A .92B .94C .3D .9【答案】C【解析】因为:20l ax by c ++-=恒过点(2,)P n ,所以220a bn c ++-=, 因为(5,0)Q 到动直线l 的最大距离为3,所以||3PQ =,所以22(25)9n -+=,得0n =, 所以22a c +=,0,0a c >>,所以22c a c +22c a c a c +=+21132c a a c =++≥=,当且仅当1,12a c ==时,等号成立.故选C20.已知点()1,0A m -,()()1,00B m m +>,若圆C :2288280x y x y +--+=上存在一点P ,使得PA PB ⊥,则实数m 的取值范围是 A .3m ≥ B .3m 7≤≤ C .27m -<≤ D .46m ≤≤【答案】B【解析】根据题意,圆2288280C x y x y +--+=:,即()()22444x y -+-=;其圆心为()4,4,半径2r =,设AB 的中点为M ,又由点()()1,0,1,0,A m B m -+则()1,0,2M AB m =,以AB 为直径的圆为()2221x y m -+=,若圆2288280C x y x y +--+=:上存在一点P ,使得P A ⊥PB ,则圆C 与圆M 有公共点,又由5MC ==,即有25m -≤且25m +≥,即37m ≤≤, 又0,37m m >∴≤≤, 故选B .21.已知圆C :()()22122x y -+-=和点()00P x ,,若圆C 上存在两点,A B 使得3APB π∠=,则实数0x 的取值范围是A .[]3,1-B .[13]-,C .[2,3]-D .[2,4]-【答案】B【解析】圆C :()()22122x y -+-=,圆心(1,2)C,半径r =由图可知,当PA 和PB 与圆C 相切时,APB ∠最大,要使圆C 上存在两点,A B ,使得3APB π∠=,则6APC π∠≥,sin6PC ∴≤=≤解得013x -≤≤,故选B.22.若关于x 的方程3kx k =+-恰有两个实数根,则实数k 的取值范围是A .4,3⎛⎫+∞ ⎪⎝⎭ B .43,32⎛⎤⎥⎝⎦ C .40,3⎛⎫ ⎪⎝⎭D .43,32⎛⎫ ⎪⎝⎭【答案】B【解析】因为关于x 的方程3kx k =+-恰有两个实数根,所以函数(1)3yk x =-+与函数y =(1)3yk x =-+与半圆y =直线(1)3y k x =-+经过定点(1,3)M ,当直线(1)3y k x =-+与半圆y =A1=,解得43k =,当直线(1)3y k x =-+经过点(1,0)B -时,32k,所以满足函数(1)3y k x =-+与函数y =的图象恰有两个交点的k 的范围为43,32⎛⎤⎥⎝⎦.故选B 23.若P 是直线l :260x y ++=上一动点,过P 作圆C :22230x y x ++-=的两条切线,切点分别为A ,B ,则四边形PACB 面积的最小值为 A .1 B .2 C .3D .4【答案】B【解析】根据题意:要使四边形PACB 面积的最小值,则只需切线长,PA PB 最小, 进而只需PC 取最小即可.由于()2214x y ++=,故圆心为()1,0-,2r,由于P 是直线l :260x y ++=上一动点,所以过圆心作直线l 的垂线,垂足即为P ,此时CP ==此时切线长1PA PB ===,此时四边形PACB 面积为122S =⨯=.即四边形PACB 面积的最小值为2.故选B .24.直线220ax by -+=被222440x y x y ++--=截得弦长为6,则ab 的最大值是 A .9 B .4 C .12D .14【答案】D【解析】将222440x y x y ++--=化为标准形式:22(1)(2)9x y ++-=, 故该圆圆心为(1,2)-,半径为3.因为直线截圆所得弦长为6, 故直线过圆心,所以2220a b --+=,即1a b +=,所以2124a b ab +⎛⎫≤= ⎪⎝⎭(当且仅当12a b ==时取等号),故选D . 25.点P 是直线2100x y ++=上的动点,直线PA ,PB 分别与圆224x y +=相切于A ,B 两点,则四边形PAOB (O 为坐标原点)的面积的最小值等于A .8B .4C .24D .16【答案】A【解析】因为圆224x y +=的圆心为()0,0O ,半径为2r,圆心()0,0O 到直线2100x y ++=的距离为2d ==>,所以直线2100x y ++=与圆224x y +=相离,又点P 是直线2100x y ++=上的动点,直线PA ,PB 分别与圆224x y +=相切于A ,B两点,所以PA PB =,PA OA ⊥,PB OB ⊥,因此四边形PAOB 的面积为12222PAO PBOPAOS SSSPA r PA =+==⨯⨯== 为使四边形面积最小,只需PO 最小,又min PO 为圆心()0,0O 到直线2100x y ++=的距离d =PAOB 的面积的最小值为8=.故选A .26.若P 是直线l :3490x y +-=上一动点,过P 作圆C :2240x y x ++=的两条切线,切点分别为A ,B ,则四边形PACB 面积的最小值为A B .CD .【答案】B【解析】圆C :22(2)4x y ++=,圆心为(-2,0)半径2AC r ==,画出图象,如图所示:因为直线与圆相切,所以90PAC PBC ∠=∠=︒,且PAC PBC ≌, 所以四边形PACB 面积12222PACS S AC PA PA ==⨯⨯⨯=,又PA ==所以当PC 最小时,P A 最小,四边形PACB 面积的最小值,由图象可得,PC 最小值即为点C 到直线3490x y +-=的距离,所以min 3PC ==,所以min PA =,所以四边形PACB 面积的最小值2S PA == B.27.已知圆C 的方程为222610x y x y +-++=,点P 在圆C 上,O 是坐标原点,则||OP 的最小值为A .3B 3C .3-D .2【答案】B【解析】化简得圆C 的标准方程为()()22139x y -++=,故圆心是()1,3C -,半径3r =,则连接线段OC ,交圆于点P 时||OP 最小,因为原点到圆心的距离OC =||3OP OC r =-=.故选B .28.已知圆O 的半径为3,且经过点()5,12P ,若点C 的坐标为(),a b 小值为 A .5 B .7 C .9D .10【答案】D3=,即()()225129a b -+-=,所以点(),C a b 在以()5,12P 为圆心,3为半径的圆上.表示点(),a b 到原点的距离,3310PO -=-=.故选D . 29.两圆222240x y ax a +++-=和2224140x y by b +--+=恰有三条公切线,若a R ∈,b R ∈且0ab ≠,则2211a b+的最小值为 A .72B .4C .1D .5【答案】C【解析】圆222240x y ax a +++-=的标准方程为()224x a y ++=,圆心为()1,0C a -,半径为12r =,圆2224140x y by b +--+=的标准方程为()2221x y b +-=,圆心为()20,2C b ,半径为21r =.由于圆222240x y ax a +++-=和2224140x y by b +--+=恰有三条公切线,则这两圆外切,所以,1212C C r r =+,即3=,所以,2249a b +=,所以,2222221114155199a b a b b a ⎛⎛⎫+=++≥⨯+=⎪ ⎝⎭⎝, 当且仅当222a b =时,等号成立,因此,2211a b+的最小值为1.故选C .二、多选题30.若圆22240x y x y +--=的圆心到直线0x y a -+=的距离为2,则实数a 的值为 A .2 B .2- C .12D .0【答案】AD【解析】因为圆22240x y x y +--=的圆心为(1,2),所以圆心(1,2)到直线0x y a -+=2=, 所以0a =或2a =.故选AD .31.已知圆C :()()223372x y -+-=,若直线0x y m +-=垂直于圆C 的一条直径,且经过这条直径的一个三等分点,则m = A .2 B .4 C .6D .10【答案】AD【解析】因为直线0x y m +-=垂直于圆C 的一条直径,且经过这条直径的一个三等分点,所以圆心到直线的距离等于半径的13.由题意圆心为(3,3)C ,半径为r ==2m =或10m =.故选AD .32.若过点()2,0有两条直线与圆222210x y x y m +-+++=相切,则实数m 的可能取值是 A .-3 B .3 C .0D .12【答案】CD【解析】由题意过点(2,0)有两条直线与圆222210x y x y m +-+++=相切, 则点(2,0)在圆外,即222210m -⨯++>,解得1m >-,由方程222210x y x y m +-+++=表示圆,则22(2)24(1)0m -+-+>,解得1m <, 综上,实数m 的取值范围是(1,1)-. 即实数m 取值范围是0,12.故选CD . 33.点P 在圆221:1C x y +=上,点Q 在圆222:68240C x y x y +-++=上,则A .PQ 的最小值为0B .PQ 的最大值为7C .两个圆心所在的直线斜率为43-D .两个圆相交弦所在直线的方程为68250x y --= 【答案】BC【解析】由已知1(0,0)C ,半径为1r =,圆2C 标准方程为22(3)(4)1x y -++=,2(3,4)C -,1R =,则125C C =,所以min 5113PQ =--=,A 错;max 5117PQ =++=,B 正确;4433PQ k -==-,C 正确; 又12C C R r >+,两圆相离,不相交,D 错.故选BC .【名师点睛】本题考查两圆的位置关系,判断两圆12,C C 的位置关系,一般通过圆心距d 与两圆半径,R r 的关系判断.d R r >+⇔相离,d R r =+⇔外切,R r d R r -<<+⇔相交,d R r =-⇔内切,d R r <-⇔内含.34.已知直线l :(2)10mx m y m --+-=,圆C :22(1)1x y -+=,则下列结论中正确的是A .存在m 的一个值,使直线l 经过圆心CB .无论m 为何值时,直线l 与圆C 一定有两个公共点 C .圆心C 到直线lD .当1m =时,圆C 关于直线l 对称的圆的方程为22(1)1y x +-=. 【答案】BCD【解析】圆心坐标为(1,0)C ,代入直线l 得10m m +-=,无解,所以不论m 为何值,圆心都不在直线l 上,A 错;直线l 方程整理为(1)210m x y y +-++=,由10210x y y +-=⎧⎨-+=⎩得1212x y ⎧=⎪⎪⎨⎪=⎪⎩,即直线l 过定点11,22M ⎛⎫ ⎪⎝⎭,又12MC ==<,M 在圆C 内部,所以直线与圆相交,B 正确;设直线l 与圆相交于,A B 两点,弦AB 中点为N ,则CN AB ⊥,CN 为C 到直线AB 的距离,显然CN CM ≤,,N M重合时取等号.MC =C 正确;1m =时直线l 方程为0x y -=,(1,0)C 关于l 的对称点为(0,1),因此对称圆方程为22(1)1y x +-=,D 正确.故选BCD .35.圆221:(2cos )(2sin )1C x y θθ-+-=与圆222:1C x y +=,下列说法正确的是A .对于任意的θ,圆1C 与圆2C 始终相切B .对于任意的θ,圆1C 与圆2C 始终有四条公切线 C .当6πθ=时,圆1C被直线10l y --=D .P ,Q 分别为圆1C 与圆2C 上的动点,则PQ 的最大值为4 【答案】ACD【解析】由已知1(2cos ,2sin )C θθ,2(0,0)C,122C C ==等于两圆半径之和,两圆始终相切,A 正确,B 错误;6πθ=时,1C ,1C 到已知直线l的距离为12d ==,则弦长为=,C 正确;由于122C C =,所以12max 114PQ C C =++=,12,,,P C C Q 共线时最大值.D 正确. 故选ACD .36.已知点()()1,0,1,0A B -,若圆()()2221221x a y a -++--=上存在点M 满足3MA MB ⋅=,则实数a 的值为A .2-B .1-C .2D .0【答案】BD【解析】设点(),M x y ,则()()1,,1,MA MB x y x y =---=-+-, 所以()()2113MA MB x x y =⋅---++=,所以M 的轨迹方程为224x y +=,圆心为()0,0,半径为2,由此可知圆()()2221221x a y a -++--=与224x y +=有公共点,又圆()()2221221x a y a -++--=的圆心为()21,22a a -+,半径为1,所以13≤≤,解得112a -≤≤.故选BD . 37.如图,直线12,l l 相交于点O ,点P 是平面内的任意一点,若x ,y 分别表示点P 到12,l l 的距离,则称(x ,y )为点P 的“距离坐标”.下列说法正确的是A .距离坐标为(0,0)的点有1个B .距离坐标为(0,1)的点有2个C .距离坐标为(1,2)的点有4个D .距离坐标为(x ,x )的点在一条直线上【答案】ABC【解析】对于A ,若距离坐标为(0,0),即P 到两条直线的距离都为0,P 为两直线的交点,即距离坐标为(0,0)的点只有1个,A 正确,对于B ,若距离坐标为(0,1),即P 到直线1l 的距离为0,到直线2l 的距离为1,P 在直线1l 上,到直线2l 的距离为1,符合条件的点有2个,B 正确,对于C ,若距离坐标为(1,2),即P 到直线1l 的距离为1,到直线2l 的距离为2,有4个符合条件的点,即四个交点为与直线1l 相距为2的两条平行线和与直线2l 相距为1的两条平行线的交点,C 正确,对于D ,若距离坐标为(x ,x ),即P 到两条直线的距离相等,则距离坐标为(x ,x )的点在2条相互垂直的直线上,D 错误,故选ABC38.如果()2,0A ,()1,1B ,()1,1C - ,()2,0D - ,CD 是以OD 为直径的圆上一段圆弧,CB 是以BC 为直径的圆上一段圆弧,BA 是以OA 为直径的圆上一段圆弧,三段弧构成曲线Ω,则下面说法正确的是A .曲线Ω与x 轴围成的面积等于32πB .CB 与BA 的公切线方程为10x y +--=C .AB 所在圆与CB 所在圆的交点弦方程为0x y -=D .用直线y x =截CD 所在的圆,所得的弦长为2【答案】BC【解析】连BC 交y 轴于点Q ,过点B 作BN x ⊥轴于N ,过点C 作CM x ⊥轴于M , 各段圆弧所在圆的方程分别为CD :()2211x y ++=;CB :()2211x y +-=;BA :()2211x y -+=;由题知曲线Ω与x 轴围成的图形是一个半圆,一个矩形和两个四分之一圆,所以围成的面积等于22242ππ⨯++=π+,故A 错误; 易知直线QN :1y x =-+,公切线l 平行于NQ ,且两直线间的距离为1,设直线l :()0y x b b =-+>1=,解得1b =+,所以直线l :10x y +-=,故B 正确;将AB 所在圆与CB 所在圆方程相减,得交点弦方程为0x y -=,故C 正确;圆心()1,0-到直线y x =的距离为d =,所以弦长为=故D 错误. 故选BC.39.下列说法正确的是A .直线(3)4330()m x y m m ++-+=∈R 恒过定点(3,3)--B .圆224x y +=上有且仅有3个点到直线l :0x y -=的距离等于1C .若圆1C :2220x y x ++=与圆2C :22480(20)x y x y m m +--+=<恰有三条公切线,则4m =D .若已知圆C :224x y +=,点P 为直线142x y+=上一动点(点P 在圆C 外),过点P 向圆C 引两条切线PA ,PB ,其中A ,B 为切点,则直线AB 经过定点(1,2) 【答案】BCD 【解析】对于A ,将(3)4330m x y m ++-+=化为(3)3430x m x y +++-=,由303430x x y +=⎧⎨+-=⎩得33x y =-⎧⎨=⎩,所以直线(3)4330()m x y m m ++-+=∈R 恒过定点()3,3-,故A 不正确;对于B ,圆224x y +=的圆心为(0,0),半径为2,圆心到直线的距离1d ==,所以圆224x y +=上有且仅有3个点到直线l :0x y -+=的距离等于1,故B 正确;对于C ,因为圆1C :2220x y x ++=与圆2C :22480(20)x y x y m m +--+=<恰有三条公切线,所以两圆外切,因为1(1,0)C -,半径11r =,2(2,4)C ,半径2r =所以12||5C C ==,所以15=,解得4m =,故C 正确; 对于D ,设00(,)P x y ,11(,)A x y ,22(,)B x y ,则1010(,)PA x x y y =--,11(,)CA x y =, 因为PA CA⊥,所以101101()()0PA CA x x x y y y ⋅=-+-=,所以220101114x x y y x y +=+=,同理02024x x y y +=,所以直线AB 的方程为004x x y y +=,又00142x y +=,所以0042x y =-,所以00(42)4y x y y -+=,即044(2)x x y y -=-, 由44020x x y -=⎧⎨-=⎩得1,2x y ==,所以直线AB 经过定点(1,2),故D 正确.故选BCD40.古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名,他发现:平面内到两个定点A 、B 的距离之比为定值λ(1λ≠)的点所形成的图形是圆.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系xOy 中,()2,0A -、()4,0B ,点P 满足12PA PB =,设点P 所构成的曲线为C ,下列结论正确的是 A .C 的方程为()22416x y ++=B .在C 上存在点D ,使得D 到点()1,1的距离为3 C .在C 上存在点M ,使得2MO MA = D .在C 上存在点N ,使得224NO NA += 【答案】ABD【解析】设点P (x ,y ),()2,0A -、()4,0B ,由12PA PB =12=, 化简得x 2+y 2+8x =0,即(x +4)2+y 2=16,故A 选项正确;曲线C 的方程表示圆心为(﹣4,0),半径为4的圆,圆心与点(1,1)的距离为=4,而3∈﹣4+4],故B 正确;对于C 选项,设M (x 0,y 0),由|MO |=2|MA |=,又 ()2200416x y ++=,联立方程消去y 0得x 0=2,解得y 0无解,故C 选项错误; 对于D 选项,设N (x 0,y 0),由|NO |2+|NA |2=4,得 ()2222000024x y x y ++++=, 又()2200416x y ++=,联立方程消去y 0得x 0=0,解得y 0=0,故D 选项正确.故选ABD . 41.在平面上有相异两点A ,B ,设点P 在同一平面上且满足PA PB λ=(其中0λ>,且1λ≠),则点P 的轨迹是一个圆,这个圆称为阿波罗尼斯圆.设(),0A a -,(),0B a ,a 为正实数,下列说法正确的是A .当2λ=时,此阿波罗尼斯圆的半径43r a =B .当12λ=时,以AB 为直径的圆与该阿波罗尼斯圆相切 C .当01λ<<时,点B 在阿波罗尼斯圆圆心的左侧 D .当1λ>时,点A 在阿波罗尼斯圆外,点B 在圆内 【答案】AD【解析】设(),P x y ,所以PA PB ==,因为PA PB λ=,所以PA ==()()222222221411a a x y λλλλ⎛⎫+ ⎪-+= ⎪--⎝⎭, A .当2λ=时,此阿波罗尼斯圆的半径22413a ar λλ==-,故正确; B . 当12λ=时,以AB 为直径的圆为222x y a +=,阿波罗尼斯圆为 22251639a x a y ⎛⎫++= ⎪⎝⎭,圆心距为53a ,两半径之和为73a ,两半径之差的绝对值为13a ,不相切,故错误;C . 当01λ<<时,圆心的横坐标为()22212111aa a λλλ+⎛⎫=+< ⎪--⎝⎭,所以点B 在阿波罗尼斯圆圆心的右侧,故错误; D . 当1λ>时,点A与圆心的距离()22222122111aa aa r λλλλλλ++=>=---,在阿波罗尼斯圆外,点B与圆心的距离()2222122111aa aa r λλλλλ+-=<=---,在圆内,故正确;故选AD .42.已知ABC 的三个顶点的坐标分别为(2)A -,3、()21B --,、(61)C -,,以原点为圆心的圆与此三角形有唯一的公共点,则圆的方程为 A .221x y += B .22165x y +=C .224x y +=D .2237x y +=【答案】AD【解析】依题意,直线AC 的方程为163126y x +-=+--,化为一般式方程:240x y +-=,点O 到直线240x y +-=的距离1d ==>, 又直线AB 的方程为2x =-,直线BC 的方程为1y =-, 因此点O 到直线AB 的距离为2,到直线BC 的距离为1,当以原点为圆心的圆与直线BC 相切时,能满足圆与此三角形有唯一公共点; 此时圆的半径为1,所以圆的方程为221x y +=;又OA ==,OB ==,OC ==由以原点为圆心的圆与此三角形有唯一的公共点,可得圆可以与三角形交于点(61)C -,,,则圆的方程为2237x y +=.故选AD .【名师点睛】解决本题的关键在于,根据三角形与圆的交点个数,分圆与三角形一边相切,或圆过三角形的一点这两种情况进行讨论,即可求出结果.43.“平面内到两个定点A ,B 的距离之比为定值()1λλ≠的点的轨迹是圆”.在平面直角坐标系xOy 中,()2,0A -,()4,0B ,点P 满足12PA PB =.设点P 的轨迹为C ,下列结论正确的是A .C 的方程为()22416x y ++=B .当A ,B ,P 三点不共线时,射线PO 是APB ∠的平分线C .PAB △的面积最大值为12D .在C 上存在点M ,使得2MO MA = 【答案】ABC【解析】在平面直角坐标系xOy 中,(2,0)A -,(4,0)B ,点P 满足||1||2PA PB =,设(,)P x y 12=,化简可得22(4)16x y ++=,故A 正确; 当A ,B ,P 三点不共线时,由||1||||2||OA PA OB PB ==,可得射线PO 是APB ∠的平分线,故B正确;因为||6AB =,而P 在圆22(4)16x y ++=上,所以P 到AB 的最大距离为4,所以PAB△的面积最大值为164122S =⨯⨯=,故C 正确; 若在C 上存在点M ,使得||2||MO MA =,可设(,)M x y ,=化简可得221616033x y x +++=,联立2280x y x ++=,可得方程组无解,故不存在M ,故D 错误.故选ABC【名师点睛】求平面上点的轨迹方程的一般步骤:建系,设点,建立方程,代入坐标化简方程;根据这一过程可求出满足12PA PB =的点P 的轨迹方程,圆上的动点到直径的距离的最大值即为半径,可求出该题中三角形面积的最大. 44.已知曲线22:20(1,2,)n C x nx y n -+==.从点(1,0)P -向曲线n C 引斜率为(0)n n k k >的切线n l ,切点为(),n n n P x y .则下列结论正确的是A .数列{}n x 的通项为1n n x n =+ B .数列{}n y的通项为1n y n =+C .当3n >时,13521n x x x x -⋅⋅⋅⋅>Dn nxy < 【答案】ABD【解析】设直线:(1)n n l y k x =+,联立2220x nx y -+=, 得()()22221220n n n k x k n x k ++-+=, 则由0∆=,即()()222222410n n n k nk k ∆=--+=,得n k =(负值舍去) 所以可得211n n n n k n x k n -==++,()1n n n y k x =+=AB 对;= 因为22441n n >-,则2211421n n n -<+,即()222121421n n n n --<+,所以212n n -<135211321242n n x x x x n --⋅⋅⋅⋅⋅=⨯⨯⋅⋅⋅⨯<=C 错;因为n n x y ==()f x x x =,()1f x x =-'. 可得()f x 在0,4π⎛⎫ ⎪⎝⎭上递减,可知x x <在0,4π⎛⎫⎪⎝⎭上恒成立.4π≤<.< 故D 正确.故选ABD. 三、填空题45.直线3450x y ++=被圆224x y +=截得的弦长为____________.【答案】【解析】224x y +=的圆心坐标为()0,0,圆心到直线3450x y ++=的距离1d ==,则直线3450x y ++=被圆224x y +=截得的弦长为==46.直线:1l y x =+与圆22:430C x y y +-+=交于A 、B 两点,则ABC 的面积是____________. 【答案】12【解析】圆()22:21C x y +-=,()0,2C 到直线l的距离2d ==,所以AB ==所以1112222ABC S AB d =⋅==△,故答案为12. 47.已知两点()1,0M -,()1,0N ,若直线340x y m -+=上存在点P 满足0PM PN ⋅=,则实数m 的取值范围是____________. 【答案】[]5,5-【解析】因为0PM PN ⋅=,所以PM PN ⊥,所以以MN 为直径的圆与直线340x y m -+=有公共点,2MN =,MN 中点为(0,0)O ,1≤,解得55m -≤≤.故答案为[5,5]-.48.在平面直角坐标系中,已知点()2,0A 、()4,0B .若直线:0l x y m -+=上存在点P使得PB PA =,则实数m 的取值范围是____________.【答案】[]4,4-【解析】设点(),P x y,由于PB PA ==化简可得228x y +=,由题意可知,直线l 与圆228x y +=有公共点,≤解得44m -≤≤.因此,实数m 的取值范围是[]4,4-.故答案为[]4,4-.49.若直线1:26l x ay C +-=与直线()()2:150l x a y a +-++=平行,则实数a =_________. 【答案】2【解析】由题意2(1)0a a --=,解得2a =,2a =时,两直线方程分别为2260x y +-=和70x y ++=,平行.故答案为250.在平面直角坐标系xOy 中,过圆1C :22()(4)1x k y k -++-=上任一点P 作圆2C :22(1)1x y ++=的一条切线,切点为Q ,则当PQ 取最小值时,k =____________.【答案】32【解析】由方程可得圆C 1,C 2的圆心坐标分别为(),4k k -+,()1,0-,半径都是1. 如图,因为PQ 为切线,所以2PQ C Q ⊥,由勾股定理,得PQ =PQ 最小,则需2PC 最小,显然当点P 为12C C 与1C 的交点时,2PC 最小,此时,2121PC C C =-,所以当12C C 最小时,2PC 就最小,12C C === 当32k 时,12C C 最小,得到PQ 最小,故答案是32.51.已知直线1:0l ax y a ++=,()()2:2130l x a y a a R +++=∈,若12l l ⊥,则a =_________. 【答案】13-【解析】已知直线1:0l ax y a ++=,()()2:2130l x a y a a R +++=∈,且12l l ⊥, 所以,()210a a ++=,解得13a =-.故答案为13-. 【名师点睛】利用一般式方程判定直线的平行与垂直: 已知直线1111:0l A x B y C ++=和直线2222:0l A x B y C ++=. (1)121221//l l A B A B ⇔=且1221A C A C ≠; (2)2112210A A l B B l +⇔=⊥.52.已知直线0x y a -+=与圆22:2O x y +=相交于A 、B 两点(O 为坐标原点),且AOB 为等边三角形,则实数a =____________.【答案】【解析】因为OAB 是等边三角形,OA =所以圆心O 到直线AB 距离为d ==(0,0)O所以2d ==,解得a = 53.已知圆()()2245169x y -+-=,过点()1,1的直线交圆于A ,B 两点,则AB 的取值范围为____________. 【答案】[]24,26【解析】由题意可知,该圆的圆心为(4,5)O ,因为22(14)(15)169-+-<,所以点(1,1)C 在圆O 内部, 由圆的对称性可知,当(1,1)C 为弦AB 的中点时,弦AB 最短,且24AB ===,当弦AB 恰好为直径时,弦AB 最长, 即26AB =,则[]24,26AB ∈,故答案为[]24,26.54.已知直线():120l kx y k k R -+-=∈,则点()5,0A 到l 的距离的最大值为_________.【解析】由题意,直线():120l kx y k k R -+-=∈,可化为直线的点斜式方程1(2)y k x -=-,可得直线l 过定点(2,1)P ,又由点()5,0A ,可得PA ==当直线l 与PA 所在的直线垂直时,此时点()5,0A 到l ..55.已知圆()()22:215C x y -+-=及点()0,2B ,设P ,Q 分别是直线:20l x y ++=和圆C 上的动点,则PB PQ +的最小值为____________.【答案】【解析】如图所示:设点B 关于直线:20l x y ++=的对称点为(),B x y ',则2202221x y y x+⎧++=⎪⎪⎨-⎪=⎪⎩,解得42x y =-⎧⎨=-⎩,则()4,2B '--,因为PB PB '=,所以 PB PQ +的最小值为B C r '-==.56.已知圆()222:2400C x y mx y m m +--+=>被直线:30l x y -+=截得的弦长为,则m =____________.【答案】1【解析】根据题意,圆()222:2400C x y mx y m m +--+=>,即()()2224-+-=x m y ,其圆心C 为()m,2,半径2r,若圆C 被直线:30l x y -+=截得的弦长为则圆心到直线l 的距离d==l的距离d ==,则有=1m =或-3(舍),故1m =,故答案为1.57.关于x 、y 的方程组282(3)mx y x m y m +=⎧⎨+-=⎩无解,则实数m =_________.【答案】1-【解析】因为关于x 、y 的方程组282(3)mx y x m y m+=⎧⎨+-=⎩无解,所以直线280mx y +-=与直线2(3)0x m y m +--=平行,所以(3)220m m --⨯=且216m -≠-,解得1m =-.故答案为1-.【名师点睛】利用两直线平行求参数时,容易忽视条件1221A C A C ≠造成增解的情况. 58.已知直线y =ax 与圆C :x 2+y 2-6y +6=0相交于A ,B 两点,C 为圆心.若△ABC 为等边三角形,则a 的值为____________.【答案】【解析】根据题意,圆C :x 2+y 2-6y +6=0即x 2+(y -3)2=3,其圆心为(0,3),半径r直线y =ax 与圆C :x 2+y 2-6y +6=0相交于A ,B 两点,若△ABC 为等边三角形,则圆心C 到直线y =ax 的距离3cos302d r =︒=,32=,解得a =59.大约2000多年前,我国的墨子就给出了圆的概念:“一中同长也.”意思是说,圆有一个圆心,圆心到圆周上的点的距离都相等.这个定义比古希腊数学家欧几里德给出的圆的定义要早100年.已知O 是坐标原点,3OP =,若1(2M -,则线段PM 长的最小值是___________. 【答案】2【解析】因为O 是坐标原点,3OP =,所以点P 在以坐标原点为圆心,3为半径的圆上,因为1OM ==,所以点M 在圆内, 所以当,,O P M 共线,且,P M 在点O 的同侧时,PM 长的最小,此时3312PM OM =-=-=,所以线段PM 长的最小值为2,故答案为2.60.已知圆22(1)4x y -+=上一动点Q ,则点()2,3P --到点Q 的距离的最小值为___________.【答案】2【解析】由题意圆22(1)4x y -+=的圆心为()1,0,半径为2r,所以圆心与P=所以点()2,3P--到点Q的距离的最小值为2,故答案为2.61.已知圆C 与y 轴相切于点(P ,与x 轴正半轴交于两点A ,B ,30APB ∠=,则圆C 的方程为___________.【答案】()(2224x y -+-=【解析】连接PC AC BC 、、,因为30APB ∠=,所以圆心角60ACB ∠=, ACB △是等边三角形,作CD AB ⊥于D ,所以D 是AB 的中点,因为圆C 与y 轴相切于点(P ,所以PO DC ==所以=2AC PC =,所以(C ,所以圆的方程为()(2224x y -+-=.故答案为()(2224x y -+-=.62.已知点()3,0A ,()0,4B ,点P 在圆221x y +=上运动,则22||||PA PB +的最小值为___________. 【答案】17【解析】设(),P x y ,则22||||PA PB +2222(3)(4)x y x y =-+++-223252(2)2524x y ⎡⎤⎛⎫=⨯-+--+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,若求()22min||||PA PB +,即求(),P x y 与3,22⎛⎫⎪⎝⎭距离的平方的最小值, 2222min511924d r ⎤⎤⎛⎫⎥⎥===-= ⎪⎥⎥⎝⎭⎦⎦,所以()22min925||||2251744PA PB ⎛⎫+=⨯-+= ⎪⎝⎭.故答案为17.63.已知点(),P x y 是直线240x y -+=上一动点,直线PA ,PB 是圆22:20C x y y ++=的两条切线,A ,B 为切点,C 为圆心,则四边形PACB 面积的最小值是____________. 【答案】2【解析】圆22:20C x y y ++=化为()2211x y ++=,可得圆心为()0,1-,半径为1,如图,可得22221PA PC AC PC =-=-,1222PACB PACS SPA AC PA ==⨯⨯⨯==则当PC 取得最小值时,PACB S最小,点(),P x y 是直线240x y -+=上一动点,()0,1C ∴-到直线240x y -+=的距离即为PC 的最小值,min PC ∴==()min 2PACB S∴==.故答案为2.64.已知两定点()()1,0,1,0A B -,如果平面内动点C满足条件CA =,则ABC S ∆的最大值是___________.【解析】设(),C x y,由CA =,=整理得 22410x y x +-+=,即()2223x y -+=所以12ABC AB S AB h ∆=⨯⨯(AB h 表示ABC 中AB 边上的高), 显然()max AB h=ABC S ∆65.过点()3,1的直线分别与x 轴、y 轴的正半轴交于A 、B 两点,则AOB (O 为坐标原点)面积取得最小值时直线方程为_________. 【答案】360xy +-=【解析】易知直线AB 的斜率存在且不为零,设直线AB 的方程为()13y k x -=-,即13y kx k =+-.在直线AB 的方程中,令0x =,可得13=-y k ;令0y =,可得31k x k-=. 所以,点31,0k A k -⎛⎫⎪⎝⎭、()0,13B k -.由已知条件可得310130k k k -⎧>⎪⎨⎪->⎩,解得0k <.OAB 的面积为()131111136966222k S k k k k ⎡-⎛⎫=⨯-⨯=--≥⨯+=⎢ ⎪⎝⎭⎢⎣.当且仅当()190k k k-=-<时,即当13k =-时,等号成立,所以,直线AB 的方程为123y x =-+,即360x y +-=.故答案为360x y +-=. 【名师点睛】解本题的关键在于将三角形的面积利用斜率k 有关的代数式表示,并结合基本不等式求出三角形面积的最小值,同时不要忽略了斜率k 的取值范围的求解.66.2020年是中国传统的农历“鼠年”,有人用3个圆构成“卡通鼠”的形象,如图:(0,3)Q -是圆Q 的圆心,圆Q 过坐标原点O ;点L 、S 均在x 轴上,圆L 与圆S 的半径都等于2,圆S 、圆L 均与圆Q 外切.已知直线l 过点O .若直线l 截圆L 、圆S 、圆Q 所得弦长均等于d ,则d =____________.【答案】125【解析】由题意圆L 与圆S 关于原点对称,设(),0(0)S aa >,234a =+=,,即()()4,04,0S L ∴-,.设方程为(0y kx mk =+≠),则三个圆心到该直线的距离分别为1d =2d =,3d =,则()()()2222123444449d d d d =-=-=-,即有222449⎛⎫⎛⎫⎛⎫-=-=-,解得240,21m k ==, 则24161442144425121d ⎛⎫⨯ ⎪=-= ⎪ ⎪+⎝⎭,即125d =,故答案为 125.67.已知圆M :()()22004x x y y -+-=,从点()3,4N 向圆M 作两条切线NP ,NQ ,切点分别为P ,Q ,若3PNQ π∠=,则点M 到直线34250x y ++=的最小距离为___________. 【答案】6【解析】如图所示,从点()3,4N 向圆M 作两条切线NP ,NQ ,且3PNQ π∠=,可得在Rt MPN △中,6PNM π∠=,2PM =,所以4MN =,所以点M 的轨迹是以(3,4)N 为圆心,4为半径的圆, 因为N 到直线34250x y ++=的距离10d ==,所以点M 到直线34250x y ++=的最小距离为1046-=.故答案为6.68.圆222410x y x y +-++=关于直线30(00)ax by a b --=>>,对称,则12a b+的最小值是___________. 【答案】3【解析】由已知得圆的圆心坐标为()1,2-,半径为2r,由于圆222410x y x y +-++=关于直线30(00)ax by a b --=>>,对称, 所以直线30(00)ax by a b --=>>,过圆心, 所以23a b +=,00a b >>,,所以2133a b +=,00a b >>,,所以1212522233333533a b a b b a a b a b ⎛⎫⎛⎫+=+=++ ⎪⎪⎝⎭⎝+≥⎭+=, 当且仅当2233a bb a=,即1a b ==时等号成立,故答案为3. 69.已知方程为2220x y x ay a ++-+=的圆关于直线40x y +=对称,则圆的半径r =___________;若过点()1,0M 作该圆的切线,切点为A ,则线段MA 长度为___________.【答案】3【解析】圆的标准方程为222(1)()124a a x y a ++-=+-,因为圆关于直线40x y +=对称,所以圆心(1,)2a-在直线40x y +=上,所以8a =,圆半径3r ==,设圆心为C ,则(1,4)C -,所以MC =所以MA ===,故答案为370.公元前3世纪,古希腊数学家阿波罗尼斯(Apollonius )在《平面轨迹》一书中,曾研究了众多的平面轨迹问题,其中有如下结果:平面内到两定点距离之比等于已知数的动点轨迹为直线或圆.后世把这种圆称之为阿波罗尼斯圆.已知直角坐标系中()2,0A -,()2,0B ,(),P x y ,且满足PA =,则点P 的运动轨迹方程为___________,点P 到直线40x y +-=的最小距离为___________.【答案】()22632x y ++=。
2019江苏高考最后一讲(二)——直线与圆压轴填空题先计算出满足条件p的点的轨迹曲线D,再使曲线C与曲线D有交点即可。
这类题目在最近的各地模拟中不胜枚已知圆,线段,使得,则线段长度的最大值是【解析】略.【解析】设(,)P x y ,222222222(4)(2)2[(2)(1)]10PB PA x y x y x y =⇒++-=++-⇒+=,22222213[(4)(2)][(2)(1)]1321PBPA x y x y y x -≥⇒++--++-≥⇒≤+,联立221091,521B A x y x x y x ⎧+=⇒==-⎨≤+⎩,则9[5P x ∈-.则12cos 2sin 2022(2,3)11x y Q θθθθ⎧-+++--=⎪⎪⇒+-+⎨⎪=-⎪⎩,由点Q 在直线5y kx =-上,3(2)5cos sin k k θθθθ-+=+-⇒-=-,则关于θ的方程cos sin k θθ-=-+)θϕ=-有解,|22k ≥-⇒-≤+【点评】(1)将满足条件的点的轨迹线求出来,使轨迹与所给曲线有交点即可,如方法一;(2)方法二利用三角换元转化为方程有解的问题,三角方程有解的处理非常典型,需要重点理解记忆.【解析】取AB 中点D,1AB CD ===,又CM =,故11PC CM ≥-=,则2PD PC CD ≥-=,故2319PA PB PD ⋅=-≥-则12k k ≤<⎪⇒≤<⎨⎪>⎩.【解析】如图所示,使0PO PM ⋅≤成立的点P 在以OM 为直径的圆的内部(包括边界),交线AB 要与阴影部分有交点,则交线AB 在两条虚线之间,(2,r ∈.【点评】本质上是一个求轨迹问题.找寻使0PO PM ⋅≤ 成立的点P 的轨迹(区域).【解析】如图所示,易知,阴影圆均在直线AB一侧,r∈.【解析】设A点和B点的坐标分别为(,),(,)A AB Bx y x y,根据题意可得412220592AAxBB Byxx yθθθθ==⎧⎪⎪=-+=⎧⎪++⎪⎪⎪-+-=,2200152x y+=⎩易知AN PQ ⊥,设220000(,)(1)P x y x y +=,(1,0)A -,则00001,1AP AN PO y x k k x k y ==-=-+,3),C AB AB d -==,设1122(,),(,),(,),(4,)P m m A x y B x y C a -,则121224()2x x m PA PB OC y y m a +-=-⎧+=⇒*⎨+-=⎩ ,设AB 的中点为D ,则221212||(22x x y y CD ++=⇒++-=**,将()*式代入()**并化简得22(4)m a m +-因为点P 是唯一的,所以上述关于m 即221(4)4(2)004a a a ∆=--+=⇒=【解法二】借助几何关系C AB AB d -==,设AB则AB 的中点为D 的轨迹方程为2(4)x ++2PA PB PD OC +== ,如图所示,连接|2||CD ==,因此直线:l y x =上存在唯一点E 使得||CE =08a =⇒=-或.【点评】本题难度较大,主要考察直线与圆的位置关系,点到直线的距离公式,考察运算和求解能力、转化与化归能力、数形结合思想,意在让少数学生得分.【解析】易知:30AB l x y ++=,即点M 到直线AB l 的距离M d 为点N 到直线AB l 的距离N d 的2倍,则2M N d d =.由图易知CH =,52222()6M N d d MH NH CH r CH r r =⇒=⇒+=-⇒=.C l 的距离的最小值,【解析】略.【解析】圆1C 的圆心(,4)k k -+在直线4y x =-+上,由于PQ =2C 做4y x =-+的垂线,垂足为S ,则122232112233PC P C PC PQ P Q PQ ≥≥⇒≥≥,(2,2)2S k ⇒=.【点评】圆的切点四边形中的最值问题一般情况下都由点到圆心的距离决定(关于点到圆心的距离为单调函数).【解析】略.【解析】2222222212211122x x y y x y x y OA OB -=-⇒+=+⇒=,1122C A C B C A C B OA OB =⎧⎪=⇒⎨⎪=⎩12,,C O C 三点共线6m ⇒=-.【解析】易知:430AB l x y a -+=,且||5AB =,由题设易知,圆229x y +=上有且仅有四个点C 到直线AB l 的距离为2|3|5532(,)533a a ⇒<-⇒∈-.设直线:l y kx b =+,则|||AB CD ==,2||33181871083240(0,)||4477AB b b b M CD =⇒=⇒+-=⇒=.【解法二】解析法注意到两圆直径的比为3:4,因此点M 一定在圆心的连线12O O 上,设0(0,)M y ,0:l y kx y =+,下同方法一.【解法三】借助几何关系注意到两圆直径的比为3:4,因此点M 一定在圆心的连线12O O 上.如图,过点12,O O 分别做直线l 的垂线垂足分别为,E F ,上.【解析】由4AB =易知AB 中点M 的轨迹圆方程为221x y +=,取BM 的中点N ,则()()()()222=||||||1PM PB PN NM PN NB PN NM PN NM PN NM PN ⋅+⋅+=+⋅-=-=- ,连接,OM ON ,易知ON =N 的轨迹圆方程为222x y +=,则min ||PN == ()min PM PB ⋅=【解析】易知当PC 最小时切线最小,此时1PA PB ===,易知此时PA PB ⊥,则12PAB S ∆=.22222932532cos cos 164162BM c c c c A c A =+-⋅⋅⋅=-,222229131532cos cos 442222CN c c A c c A =+-⋅⋅⋅=-,BM CN =易知15155(0,)cos (1,1)(,)4024cos 6416A A A π∈⇒∈-⇒∈-,则17()48BM CN =.【解法二】中线长定理由中线长定理易知22222222122122BM b a c CN c a b ⎧+=+⎪⎪⎨⎪+=+⎪⎩,易知33sin 2sin 2C B b c =⇒=,22222222118()1871814()9b a b BM a b CN a b a --==++,令b t a =,2323(,3)3523a b b a b c b a c b a b b t a b c a b b a ⎧+>⎪+>⎧⎪⎪⎪+>⇒+>⇒=∈⎨⎨⎪⎪+>⎩⎪+>⎪,224AB AC =212)5,12【解析】设(,)(0)P s t t ≠,则:(1),:5)15PA PB l y x l y x s s =+=-+-,由题设22255(2)9,0(1)(5)t s t t s s -=⇒-+=≠+-,15m =⇒=或;②(1,0)-或(5,0)在圆M 上m ⇒=。
9.直线和圆的方程较难题及难题组)1.(2012年江苏高考12)在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是 ▲ .2、(2011江苏高考14)设集合},,)2(2|),{(222R y x m y x my x A ∈≤+-≤=, },,122|),{(R y x m y x m y x B ∈+≤+≤=, 若,φ≠⋂B A 则实数m 的取值范围是______________3.(连云港市2012-2013学年度第一学期高三期末考试13)如图,点A ,B 分别在x 轴与y 轴的正半轴上移动,且AB =2,若点A 从(3,0)移动到(2,0),则AB 中点D 经过的路程为 ▲ .4.(南通市2013届高三第一次调研测试13)已知直线y =ax +3与圆22280x y x ++-=相交于A ,B 两点,点00(,)P x y 在直线y =2x 上,且P A =PB ,则0x 的取值范围为 ▲ . .5.(苏州市2012-2013学年度第一学期高三期末考试13)在平面直角坐标系xOy 中,已知直线60y +-=与圆22((1)2x y -+-=交于A ,B 两点,则直线OA 与直线OB 的倾斜角之和为 .6. (镇江市2012-2013学年度第一学期高三期末考试12)从直线3480x y ++=上一点P 向圆22:2210C x y x y +--+=引切线,PA PB ,,A B 为切点,则四边形PACB 的周长最小值为 .7.(无锡市2013届高三上学期期末考试13)定义一个对应法则f :P (rn ,n )→p '(m ,2|n|).现有直角坐标平面内的点A (-2,6)与点B (6,-2),点M 是线段AB 上的动点,按定义的对应法则f :M→M'.当点M 在线段AB 上从点A 开始运动到点B 时,点M 的对应点M'经过的路线的长度为 。
高考数学压轴题:直线与圆直线与圆是高中数学的知识点,是高中数学中数形结合思想的典型体现.但有些时候,在条件中没有直接给出圆方面的信息,而是隐藏在题目中的,要通过分析和转化,发现圆(或圆的方程),从而最终可以利用圆的知识来求解,我们称这类问题为“隐形圆”问题 类型一 利用圆的定义(到定点的距离等于定长的点的轨迹)确定隐形圆典例1 如果圆22(2)(3)4x a y a -+--=上总存在两个点到原点的距离为1,则实数a 的取值范围是________类型二 由圆周角的性质确定隐形圆典例2 已知圆为圆上的两个动点,且为弦的中点,.当在圆上运动时,始终有为锐角,则实数的取值范围为__________.类型三 两定点A 、B ,动点P 满足(0,1)PAPBλλλ=>≠确定隐形圆(阿波罗尼斯圆) 典例3 一缉私艇巡航至距领海边界线l (一条南北方向的直线)3.8 海里的A 处,发现在其北偏东30°方向相距4 海里的B 处有一走私船正欲逃跑,缉私艇立即追击.已知缉私艇的最大航速是走私船最大航速的3 倍.假设缉私艇和走私船均按直线方向以最大航速航行. (1)若走私船沿正东方向逃离,试确定缉私艇的追击方向,使得用最短时间在领海内拦截成功;(参考数据:sin17 5.74466︒≈≈ )(2)问:无论走私船沿何方向逃跑,缉私艇是否总能在领海内成功拦截?并说明理由.1.已知中, , 所在平面内存在点使得22:5,,O x y A B +=O 2,AB M =AB ()(),2C a D a +,A B O CMD ∠a ABC∆AB AC ==ABC ∆P,则面积的最大值为__________.2.在平面直角坐标系xOy 中,已知B ,C 为圆224x y +=上两点, 点A(1,1),且AB ⊥AC ,则线段BC 的长的取值范围为_______3.在平面直角坐标系中,已知圆和两点,且,若圆上存在两个不同的点,使得,则实数的取值范围为__________.4.在平面直角坐标系中,已知点A (,0),B (1,0)均在圆:外,且圆上存在唯一一点满足,则半径的值为____.5.已知等边的边长为2,点在线段上,若满足等式的点有两个,则实数的取值范围是_____.6.已知圆O :x2+y2=1,圆M :(x -a)2+(y -a +4)2=1.若圆M 上存在点P ,过点P 作圆O 的两条切线,切点为A ,B ,使得∠APB =60°,则实数a 的取值范围为____________.7.在平面直角坐标系xOy 中,已知过原点O 的动直线l 与圆C :x2+y2-6x +5=0相交于不同的两点A ,B ,若点A 恰为线段OB 的中点,则圆心C 到直线l 的距离为____________.8.在平面直角坐标系xOy 中,过点P(-2,0)的直线与圆x2+y2=1相切于点T ,与圆(x -a)2+(y -3)2=3相交于点R ,S ,且PT =RS ,则正数a 的值为____________.9.在平面直角坐标系xOy 中,圆M :(x -a)2+(y +a -3)2=1(a >0),点N 为圆M 上任意一点.若以N 为圆心,ON 为半径的圆与圆M 至多有一个公共点,则a 的最小值为__________. 10.已知线段AB 的长为2,动点C 满足CA →·CB →=λ(λ为常数),且点C 总不在以点B 为圆心,12为半径的圆内,则实数λ的最大值是__________. 11.在平面直角坐标系xOy 中,设直线y =-x +2与圆x2+y2=r2(r >0)交于A ,B 两点.若圆上存在一点C ,满足OC →=54OA →+34OB →,则r 的值为________.12.已知圆M :(x -1)2+(y -1)2=4,直线l :x +y -6=0,A 为直线l 上一点.若圆M 上存在两点B ,C ,使得∠BAC =60°,则点A 横坐标的取值范围是__________.13.已知点A(0,2)为圆M :x2+y2-2ax -2ay =0(a >0)外一点,圆M 上存在点T 使得∠MAT22233PB PC PA +==ABC ∆xOy ()(22:11C x y -+-=()(),2,,2A a a B a a ---1a >C ,P Q 90APB AQB ∠=∠=︒a xOy 1-C ()()22234x y r -+-=C P AP BP ⊥r ABC ∆P AC •PA PB λ=P λ=45°,则实数a 的取值范围是________________.14.在平面直角坐标系xOy 中,已知圆O1,圆O2均与x 轴相切且圆心O1,O2与原点O 共线,O1,O2两点的横坐标之积为6,设圆O1与圆O2相交于P ,Q 两点,直线l :2x -y -8=0,则点P 与直线l 上任意一点M 之间的距离的最小值为____________.15.已知直线l 过点P(1,2)且与圆C :x2+y2=2相交于A ,B 两点,△ABC 的面积为1,则直线l 的方程为________________.16.在平面直角坐标系xOy 中,已知圆C :x2+(y -1)2=5,A 为圆C 与x 轴负半轴的交点,过A 作圆C 的弦AB ,记线段AB 的中点为M.若OA =OM ,则直线AB 的斜率为________. 17.在平面直角坐标系xOy 中,圆C1:(x +1)2+(y -6)2=25,圆C2:(x -17)2+(y -30)2=r2.若圆C2上存在一点P ,使得过点P 可作一条射线与圆C1依次交于点A 、B ,满足PA =2AB ,则半径r 的取值范围是______________.18.直角坐标系xOy 中,圆C 的方程为(x -1)2+(y -1)2=9,直线l :y =kx +3与圆C 相交于A 、B 两点,M 为弦AB 上一动点,以M 为圆心,2为半径的圆与圆C 总有公共点,则实数k 的取值范围为________.19平面直角坐标系xOy 中,已知圆C :(x -a)2+(y -a +2)2=1,点A(0,2),若圆C 上存在点M ,满足MA2+MO2=10,则实数a 的取值范围是________.20. 平面直角坐标系xOy 中,圆C 的方程为(x -1)2+y2=4,P 为圆C 上一点.若存在一个定圆M ,过P 作圆M 的两条切线PA 、PB ,切点分别为A 、B ,当P 在圆C 上运动时,使得∠APB 恒为60°,则圆M 的方程为______________. 答案类型一 利用圆的定义(到定点的距离等于定长的点的轨迹)确定隐形圆典例1 如果圆22(2)(3)4x a y a -+--=上总存在两个点到原点的距离为1,则实数a 的取值范围是________ 【答案】605a -<< 【解析】到原点的距离为1的点的轨迹是以原点为圆心的单位圆,转化到此单位圆与已知圆相交求解2121-<+∴605a -<<类型二 由圆周角的性质确定隐形圆典例2 已知圆为圆上的两个动点,且为弦的中点,22:5,,O x y A B +=O 2,AB M =AB.当在圆上运动时,始终有为锐角,则实数的取值范围为__________. 【答案】【解析】由题意得, ∴点在以为圆心,半径为2的圆上.设的中点为,则,且. ∵当在圆上运动时,始终有为锐角,∴以为圆心,半径为2的圆与以为圆心,半径为1的圆外离.,整理得, 解得或.∴实数的取值范围为.类型三 两定点A 、B ,动点P 满足(0,1)PAPBλλλ=>≠确定隐形圆(阿波罗尼斯圆)典例3 一缉私艇巡航至距领海边界线l (一条南北方向的直线)3.8 海里的A 处,发现在其北偏东30°方向相距4 海里的B 处有一走私船正欲逃跑,缉私艇立即追击.已知缉私艇的最大航速是走私船最大航速的3 倍.假设缉私艇和走私船均按直线方向以最大航速航行. (1)若走私船沿正东方向逃离,试确定缉私艇的追击方向,使得用最短时间在领海内拦截成功;(参考数据: sin17 5.7446︒≈≈ )(2)问:无论走私船沿何方向逃跑,缉私艇是否总能在领海内成功拦截?并说明理由.【答案】(1)略(2)能()(),2C a D a +,A B O CMD ∠a ()(),20,-∞-⋃+∞2OM ==M O CD N ()1N a +2CD =,A B O CMD ∠O ()1N a +3>()211a +>2a <-0a >a ()(),20,-∞-⋃+∞【解析】:(1)略 (2)如图乙,以A 为原点,正北方向所在的直线为y 轴建立平面直角坐标系xOy.则(2,B ,设缉私艇在P (x ,y )处(缉私艇恰好截住走私船的位置)与走私船相遇,则3PAPB=3=,229944x y ⎛⎫⎛-+= ⎪ ⎝⎭⎝因为圆心94⎛⎝到领海边界线l :x = 3.8的距离为1.55,大于圆半径32所以缉私艇能在领海内截住走私船.1.已知中, , 所在平面内存在点使得,则面积的最大值为__________.【解析】设,以所在直线为轴、其中垂线所在直线为轴建立直角坐标系(如图所示),ABC ∆AB AC ==ABC ∆P 22233PB PC PA +==ABC ∆2BC a =BC x OA y则,设,由,得,即,则,则 即, 解得,即,即.2.在平面直角坐标系xOy 中,已知B ,C 为圆224x y +=上两点, 点A(1,1),且AB ⊥AC ,则线段BC 的长的取值范围为_______ 【答案】[62,62]-+ 【解析】设BC 的中点为M (x,y),,因为22222OB OM BM OM AM =+=+,所以22224(1)(1)x y x y =++-+-,化简得22113222x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,()()(2,0,,0,3B a C a A a --(),P x y 22233PB PC PA +==222((3{(1x x yy y x +++=+=222222232{ 2331x y a x y a a +=-+--+-=222272232{3131a a y a y a -=--≤≤-()()222222323232323a a a a a ---≤-≤-+-()()2222272323223232aa a a a ---≤-≤-+-234a ≤2241523233216ABC S a a a a ∆=⨯-=-ABC ∆523所以点M的轨迹是以11,22⎛⎫⎪⎝⎭为圆心,2为半径的圆,所以AM的取值范围是,22⎣⎦,所以BC的取值范围是.3.在平面直角坐标系中,已知圆和两点,且,若圆上存在两个不同的点,使得,则实数的取值范围为__________.【答案】【解析】原问题等价于以为圆心的圆与圆有两个交点,AB中点坐标为,以为圆心的圆的半径,且圆的圆心为,半径为,两圆的圆心距为:,结合可得关于实数的不等式组:,求解关于实数的不等式组可得实数的取值范围为.4.在平面直角坐标系中,已知点A(,0),B(1,0)均在圆:外,且圆上存在唯一一点满足,则半径的值为____.【答案】4【解析】根据题意,点A(−1,0),B(1,0),若点满足,则点P在以AB为直径的圆上,设AB的中点为M,则M的坐标为 (0,0), |AB|=2,则圆M的方程为,若圆上存在唯一一点满足,则圆C与圆M只有一个交点,即两圆外切,则有,解可得r=4.xOy()(22:11C x y-+-=()(),2,,2A a aB a a---1a>C,P Q90APB AQB∠=∠=︒a11a≤≤,A B C()0,0,A B1R=C(21R=5d==1a>a1515≤≥a a11a+≤≤xOy1-C()()22234x y r-+-=C P AP BP⊥rP AP BP⊥221x y+=C P AP BP⊥5=5.已知等边的边长为2,点在线段上,若满足等式的点有两个,则实数的取值范围是_____. 【答案】 【解析】以AB 中点为坐标原点,AB 所在直线为x 轴建立直角坐标系,则,AC :由得,6.已知圆O :x 2+y 2=1,圆M :(x -a)2+(y -a +4)2=1.若圆M 上存在点P ,过点P 作圆O 的两条切线,切点为A ,B ,使得∠APB =60°,则实数a 的取值范围为____________. 【答案】⎣⎢⎡⎦⎥⎤2-22,2+22 【解析】设P(x ,y),sin ∠OPA =sin30°=1x 2+y2,则x 2+y 2=4 ①.又P 在圆M 上,则(x -a)2+(y -a +4)2=1 ②.由①②得1≤a 2+(a -4)2≤3,所以4-22≤a ≤4+22.7.在平面直角坐标系xOy 中,已知过原点O 的动直线l 与圆C :x 2+y 2-6x +5=0相交于不同的两点A ,B ,若点A 恰为线段OB 的中点,则圆心C 到直线l 的距离为____________. 【答案】364【解析】∵ 圆C 1:x 2+y 2-6x +5=0,整理,得其标准方程为(x -3)2+y 2=4,∴ 圆C 1的圆心坐标为(3,0);设直线l 的方程为y =kx ,A(x 1,y 1),B(x 2,y 2),联立(x -3)2+y 2=4,y =kx ,消去y 可得(1+k 2)x 2-6x +5=0,由题知x 1=12x 2, y 1=12y 2,由韦达定理化简可得k2=35,即k =±155,直线l 的方程为y =±155x ,由点到直线的距离公式知,所求的距离为364.8.在平面直角坐标系xOy 中,过点P(-2,0)的直线与圆x 2+y 2=1相切于点T ,与圆(x -a)2+(y -3)2=3相交于点R ,S ,且PT =RS ,则正数a 的值为____________. 【答案】4【解析】圆x 2+y 2=1半径为1,PO =2,则直线PT 的倾斜角为30°,则直线方程为x -3ABC ∆P AC •PA PB λ=Pλ104λ-<≤()()(()10,10,,,A B C P x y -,,()10y x -≤≤•PA PB λ=221x y λ-+=()22111,1010044λλλ∴>-=-≤-+-=∴-<≤⎪⎝⎭y +2=0,PT =3,RS =3,圆(x -a)2+(y -3)2=3的半径为3,则圆(x -a)2+(y -3)2=3的圆心(a ,3)到直线PT 的距离为32,由点到直线距离公式得|a -1|=3,则正数a =4.9.在平面直角坐标系xOy 中,圆M :(x -a)2+(y +a -3)2=1(a >0),点N 为圆M 上任意一点.若以N 为圆心,ON 为半径的圆与圆M 至多有一个公共点,则a 的最小值为__________. 【答案】3【解析】根据题意,圆M 与以N 为圆心的圆的位置关系是内切或内含.则d MN ≤d ON -1,即1≤d ON -1.所以d ON ≥2恒成立.因为N 在圆M 上运动,所以d ON 的最小值为d OM -1,即d OM -1≥2,所以a 2+(3-a )2≥3,解得a ≥3,所以a 的最小值为3.10.已知线段AB 的长为2,动点C 满足CA →·CB →=λ(λ为常数),且点C 总不在以点B 为圆心,12为半径的圆内,则实数λ的最大值是__________. 【答案】-34【解析】建立平面直角坐标系,B(0,0),A(2,0),设C(x ,y),则CA →·CB →=x(x -2)+y 2=λ,则(x -1)2+y 2=λ+1,得(x -1)2+y 2=λ+1,点C 的轨迹是以(1,0)为圆心λ+1为半径的圆且与x 2+y 2=14外离或相切.所以λ+1≤12,λ的最大值为-34.11.在平面直角坐标系xOy 中,设直线y =-x +2与圆x 2+y 2=r 2(r >0)交于A ,B 两点.若圆上存在一点C ,满足OC →=54OA →+34OB →,则r 的值为________.【答案】10【解析】OC →2=⎝ ⎛⎭⎪⎫54OA →+34OB →2=2516OA →2+2·54OA →·34OB →+916OB →2,即r 2=2516r 2+158r 2cos ∠AOB +916r 2,整理化简得cos ∠AOB =-35,过点O 作AB 的垂线交AB 于D ,则cos ∠AOB =2cos 2∠AOD -1=-35,得cos 2∠AOD =15.又圆心到直线的距离为OD =22=2,所以cos 2∠AOD =15=OD 2r 2=2r 2,所以r 2=10,r =10.12.已知圆M :(x -1)2+(y -1)2=4,直线l :x +y -6=0,A 为直线l 上一点.若圆M 上存在两点B ,C ,使得∠BAC =60°,则点A 横坐标的取值范围是__________. 【答案】[1,5]【解析】圆M :(x -1)2+(y -1)2=4上存在两点B ,C ,使得∠BAC =60°,说明点A(x ,y)到M (1,1)的距离小于等于4,即(x -1)2+(y -1)2≤16,而y =6-x ,得x 2-6x +5≤0,即1≤x ≤5.点A 横坐标的取值范围为[1,5].13.已知点A(0,2)为圆M :x 2+y 2-2ax -2ay =0(a >0)外一点,圆M 上存在点T 使得∠MAT =45°,则实数a 的取值范围是__________. 【答案】3-1≤a <1【解析】点A(0,2)在圆M :x 2+y 2-2ax -2ay =0(a >0)外,得4-4a >0,则a <1.圆M 上存在点T 使得∠MAT =45°,则AM 2≤r =2a ,即AM ≤2a ,(a -2)2+a 2≤4a 2(a >0),解得3-1≤a.综上,实数a 的取值范围是3-1≤a <1.14.在平面直角坐标系xOy 中,已知圆O 1,圆O 2均与x 轴相切且圆心O 1,O 2与原点O 共线,O 1,O 2两点的横坐标之积为6,设圆O 1与圆O 2相交于P ,Q 两点,直线l :2x -y -8=0,则点P 与直线l 上任意一点M 之间的距离的最小值为____________. 【答案】855- 6【解析】设圆O 1的方程为(x -a)2+(y -ka)2=k 2a 2①,圆O 2的方程为⎝ ⎛⎭⎪⎫x -6a 2+⎝⎛⎭⎪⎫y -6k a 2=36k 2a 2 ②,②-①,得2ax -12a x +2aky -12a ky +36a 2-a 2=0,即2x +2y -a -6a =0.设P(x 0,y 0),则(x 0-a)2+(y 0-ka)2=k 2a 2,即x 20+y 20=2ax 0+2ay 0-a 2,又2x 0+2y 0-a -6a =0,可得2ax 0+2ay 0-a 2=6,故x 20+y 20=6,即点P 的轨迹是以原点为圆心,半径为6的圆,则点P 与直线l 上任意一点M 之间的距离的最小值为855- 6.15.已知直线l 过点P(1,2)且与圆C :x 2+y 2=2相交于A ,B 两点,△ABC 的面积为1,则直线l 的方程为___________. 【答案】x -1=0,3x -4y +5=0【解析】由S △ABC =12×2×sin ∠ACB =1,sin ∠ACB =1,∠ACB =90°,则点C(0,0)到直线l 的距离为1,设直线l 的方程为y -2=k(x -1),利用距离公式可得k =34,此时直线l 的方程为3x -4y +5=0,当k 不存在时,x -1=0满足题意.16.在平面直角坐标系xOy 中,已知圆C :x 2+(y -1)2=5,A 为圆C 与x 轴负半轴的交点,过A 作圆C 的弦AB ,记线段AB 的中点为M.若OA =OM ,则直线AB 的斜率为________. 【答案】2【解析】设点B(x 0,y 0),则M ⎝⎛⎭⎪⎫x 0-22,y 02,圆x 2+(y -1)2=5与x 轴负半轴的交点A(-2,0),OA =OM =2=⎝ ⎛⎭⎪⎫x 0-222+⎝ ⎛⎭⎪⎫y 022,即⎝ ⎛⎭⎪⎫x 0-222+⎝ ⎛⎭⎪⎫y 022=4.又 x 20+(y 0-1)2=5,两式相减得y 0=2x 0+4.而A(-2,0)也满足y 0=2x 0+4,即直线AB 的方程为y 0=2x 0+4,则直线AB 的斜率为2.17.在平面直角坐标系xOy 中,圆C 1:(x +1)2+(y -6)2=25,圆C 2:(x -17)2+(y -30)2=r 2.若圆C 2上存在一点P ,使得过点P 可作一条射线与圆C 1依次交于点A 、B ,满足PA =2AB ,则半径r 的取值范围是___________.【答案】[5,55]【解析】在圆C 2上任取一点P ,过点P 可作一条射线与圆C 1依次交于点A 、B ,当AB 过圆心时,此时PA 在该点处最小,AB 在该点情况下最大,此时在P 点情况下PA PB最小,当P ,A ,B 三点共线时,如图1,2,PA 为所有位置最小,且PA AB 是所有位置中最小,所以只要满足PA AB≤2,即满足题意,错误!5≤r ≤55.18.直角坐标系xOy 中,圆C 的方程为(x -1)2+(y -1)2=9,直线l :y =kx +3与圆C 相交于A 、B 两点,M 为弦AB 上一动点,以M 为圆心,2为半径的圆与圆C 总有公共点,则实数k 的取值范围为________. 【答案】⎣⎢⎡⎭⎪⎫-34,+∞ 【解析】以M 为圆心,2为半径的圆与圆C 总有公共点,则C 点到直线l 的距离小于1,即d =|k +2|k 2+1≤1,解得k ≤-34. 19平面直角坐标系xOy 中,已知圆C :(x -a)2+(y -a +2)2=1,点A(0,2),若圆C 上存在点M ,满足MA 2+MO 2=10,则实数a 的取值范围是________.【答案】[0,3]【解析】设M(x ,y),由MA 2+MO 2=10,A(0,2),得x 2+(y -1)2=4,而(x -a)2+(y -a +2)2=1,它们有公共点,则1≤a 2+(a -3)2≤9,解得实数a 的取值范围是[0,3].20.平面直角坐标系xOy 中,圆C 的方程为(x -1)2+y 2=4,P 为圆C 上一点.若存在一个定圆M ,过P 作圆M 的两条切线PA 、PB ,切点分别为A 、B ,当P 在圆C 上运动时,使得∠APB 恒为60°,则圆M 的方程为___________.【答案】(x -1)2+y 2=1【解析】∵ 当P 在圆C 上运动时∠APB 恒为60°,∴ 圆M 与圆C 一定是同心圆,∴ 可设圆M 的方程为(x -1)2+y 2=r 2.当点P 坐标是(3,0)时,设直线AB 与x 轴的交点为H ,则MH+HP =2,MH =12r ,AB =2×32r ,所以12r +2×32r ×32=2,解得r =1,所以所求圆M 的方程为(x -1)2+y 2=1.。
第二讲 大题考法——直线与圆题型(一) 直线与圆的位置关系主要考查直线与圆的位置关系以及复杂背景下直线、圆的方程.[典例感悟][例1] 如图,在Rt △ABC 中,∠A 为直角,AB 边所在直线的方程为x -3y -6=0,点T (-1,1)在直线AC 上,BC 中点为M (2,0).(1)求BC 边所在直线的方程;(2)若动圆P 过点N (-2,0),且与Rt △ABC 的外接圆相交所得公共弦长为4,求动圆P 中半径最小的圆方程.[解] (1)因为AB 边所在直线的方程为x -3y -6=0,AC 与AB 垂直,所以直线AC 的斜率为-3.故AC 边所在直线的方程为y -1=-3(x +1), 即3x +y +2=0.设C 为(x 0,-3x 0-2),因为M 为BC 中点, 所以B (4-x 0,3x 0+2).点B 代入x -3y -6=0,解得x 0=-45,所以C ⎝ ⎛⎭⎪⎫-45,25. 所以BC 所在直线方程为x +7y -2=0.(2)因为Rt △ABC 斜边中点为M (2,0),所以M 为Rt △ABC 外接圆的圆心. 又AM =22,从而Rt △ABC 外接圆的方程为(x -2)2+y 2=8. 设P (a ,b ),因为动圆P 过点N ,所以该圆的半径r =a +22+b 2,圆方程为(x -a )2+(y -b )2=r 2.由于⊙P 与⊙M 相交,则公共弦所在直线m 的方程为(4-2a )x -2by +a 2+b 2-r 2+4=0. 因为公共弦长为4,⊙M 半径为22,所以M (2,0)到m 的距离d =2,即|24-2a +a 2+b 2-r 2+4|22-a 2+b2=2,化简得b 2=3a 2-4a ,所以r =a +22+b 2= 4a 2+4.当a =0时,r 最小值为2,此时b =0,圆的方程为x 2+y 2=4.[方法技巧]解决有关直线与圆位置关系的问题的方法(1)直线与圆的方程求解通常用的待定系数法,由于直线方程和圆的方程均有不同形式,故要根据所给几何条件灵活使用方程.(2)对直线与直线的位置关系的相关问题要用好直线基本量之一斜率,要注意优先考虑斜率不存在的情况.(3)直线与圆的位置关系以及圆与圆的位置关系在处理时几何法优先,有时也需要用代数法即解方程组.[演练冲关]已知以点C ⎝⎛⎭⎪⎫t ,2t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O ,A ,与y 轴交于点O ,B ,其中O 为坐标原点.(1)求证:△OAB 的面积为定值;(2)设直线y =-2x +4与圆C 交于点M ,N ,若OM =ON ,求圆C 的方程. 解:(1)证明:因为圆C 过原点O ,所以OC 2=t 2+4t2.设圆C 的方程是(x -t )2+⎝⎛⎭⎪⎫y -2t 2=t 2+4t2,令x =0,得y 1=0,y 2=4t;令y =0,得x 1=0,x 2=2t ,所以S △OAB =12OA ·OB =12×⎪⎪⎪⎪⎪⎪4t ×|2t |=4,即△OAB 的面积为定值. (2)因为OM =ON ,CM =CN , 所以OC 垂直平分线段MN . 因为k MN =-2,所以k OC =12.所以2t =12t ,解得t =2或t =-2.当t =2时,圆心C 的坐标为(2,1),OC =5, 此时C 到直线y =-2x +4的距离d =55<5, 圆C 与直线y =-2x +4相交于两点.当t =-2时,圆心C 的坐标为(-2,-1),OC =5, 此时C 到直线y =-2x +4的距离d =955> 5.圆C 与直线y =-2x +4不相交, 所以t =-2不符合题意,舍去. 所以圆C 的方程为(x -2)2+(y -1)2=5.题型(二) 圆中的定点、定值问题主要考查动圆过定点的问题其本质是含参方程恒有解,定值问题是引入参数,再利用其满足的约束条件消去参数得定值.[典例感悟][例2] 已知圆C :x 2+y 2=9,点A (-5,0),直线l :x -2y =0. (1)求与圆C 相切,且与直线l 垂直的直线方程;(2)在直线OA 上(O 为坐标原点),存在定点B (不同于点A )满足:对于圆C 上任一点P ,都有PB PA为一常数,试求所有满足条件的点B 的坐标.[解] (1)设所求直线方程为y =-2x +b , 即2x +y -b =0. 因为直线与圆C 相切, 所以|-b |22+12=3,解得b =±3 5.所以所求直线方程为2x +y ±35=0. (2)法一:假设存在这样的点B (t,0). 当点P 为圆C 与x 轴的左交点(-3,0)时,PB PA =|t +3|2;当点P 为圆C 与x 轴的右交点(3,0)时,PB PA =|t -3|8.依题意,|t +3|2=|t -3|8,解得t =-95或t =-5(舍去).下面证明点B ⎝ ⎛⎭⎪⎫-95,0对于圆C 上任一点P ,都有PB PA 为一常数. 设P (x ,y ),则y 2=9-x 2,所以PB 2PA2=⎝ ⎛⎭⎪⎫x +952+y 2x +52+y 2=x 2+185x +9-x 2+8125x 2+10x +25+9-x 2=1825·5x +172·5x +17=925.从而PB PA =35为常数.法二:假设存在这样的点B (t,0),使得PBPA为常数λ,则PB 2=λ2PA 2,所以(x -t )2+y 2=λ2[(x +5)2+y 2],将y 2=9-x 2代入,得x 2-2xt +t 2+9-x 2=λ2(x 2+10x +25+9-x 2),即2(5λ2+t )x +34λ2-t 2-9=0对x ∈[-3,3]恒成立,所以⎩⎪⎨⎪⎧5λ2+t =0,34λ2-t 2-9=0.解得⎩⎪⎨⎪⎧λ=35,t =-95或⎩⎪⎨⎪⎧λ=1,t =-5(舍去).故存在点B ⎝ ⎛⎭⎪⎫-95,0对于圆C 上任一点P ,都有PB PA 为常数35. [方法技巧]关于解决圆中的定点、定值问题的方法(1)与圆有关的定点问题最终可化为含有参数的动直线或动圆过定点.解这类问题关键是引入参数求出动直线或动圆的方程.(2)与圆有关的定值问题,可以通过直接计算或证明,还可以通过特殊化,先猜出定值再给出证明.[演练冲关]1.已知圆C :(x -3)2+(y -4)2=4,直线l 1过定点A (1,0). (1) 若l 1与圆相切,求直线l 1的方程;(2) 若l 1与圆相交于P ,Q 两点,线段PQ 的中点为M ,又l 1与l 2:x +2y +2=0的交点为N ,判断AM ·AN 是否为定值.若是,则求出定值;若不是,请说明理由.解:(1)若直线l 1的斜率不存在,即直线l 1的方程为x =1,符合题意; 若直线l 1斜率存在,设直线l 1的方程为y =k (x -1),即kx -y -k =0. 由题意知,圆心(3,4)到直线l 1的距离等于半径2,即||3k -4-k k 2+1=2,解得k =34,则l 1:3x -4y -3=0.所求直线l 1的方程是x =1或3x -4y -3=0.(2)直线与圆相交,斜率必定存在,且不为0,可设直线l 1方程为kx -y -k =0. 由⎩⎪⎨⎪⎧x +2y +2=0,kx -y -k =0得N ⎝⎛⎭⎪⎫2k -22k +1,-3k 2k +1.又因为直线CM 与l 1垂直,故⎩⎪⎨⎪⎧y =kx -k ,y -4=-1k x -3,可得M ⎝ ⎛⎭⎪⎫k 2+4k +31+k2,4k 2+2k 1+k 2.所以AM ·AN =⎝ ⎛⎭⎪⎫k 2+4k +31+k 2-12+⎝ ⎛⎭⎪⎫4k 2+2k 1+k 22·⎝ ⎛⎭⎪⎫2k -22k +1-12+⎝ ⎛⎭⎪⎫-3k 2k +12=2||2k +11+k 21+k 2·31+k 2||2k +1=6,为定值.故AM ·AN 是定值,且为6. 2.已知圆M 的方程为x 2+(y -2)2=1,直线l 的方程为x -2y =0,点P 在直线l 上,过P 点作圆M 的切线PA ,PB ,切点为A ,B .(1)若∠APB =60°,求点P 的坐标;(2)若P 点的坐标为(2,1),过P 作直线与圆M 交于C ,D 两点,当CD =2时,求直线CD 的方程;(3)求证:经过A ,P ,M 三点的圆必过定点,并求出所有定点的坐标. 解:(1)设P (2m ,m ),因为∠APB =60°,AM =1, 所以MP =2,所以(2m )2+(m -2)2=4, 解得m =0或m =45,故所求点P 的坐标为P (0,0)或P ⎝ ⎛⎭⎪⎫85,45. (2)易知直线CD 的斜率存在,可设直线CD 的方程为y -1=k (x -2), 由题知圆心M 到直线CD 的距离为22,所以22=|-2k -1|1+k2, 解得k =-1或k =-17,故所求直线CD 的方程为x +y -3=0或x +7y -9=0. (3)证明:设P (2m ,m ),MP 的中点Q ⎝ ⎛⎭⎪⎫m ,m2+1,因为PA 是圆M 的切线,所以经过A ,P ,M 三点的圆是以Q 为圆心,以MQ 为半径的圆,故其方程为(x -m )2+⎝ ⎛⎭⎪⎫y -m 2-12=m 2+⎝ ⎛⎭⎪⎫m2-12,化简得x 2+y 2-2y -m (2x +y -2)=0,此式是关于m 的恒等式,故⎩⎪⎨⎪⎧x 2+y 2-2y =0,2x +y -2=0,解得⎩⎪⎨⎪⎧x =0,y =2或⎩⎪⎨⎪⎧x =45,y =25.所以经过A ,P ,M 三点的圆必过定点(0,2)或⎝ ⎛⎭⎪⎫45,25.题型(三)与直线、圆有关的最值或范围问题主要考查与直线和圆有关的长度、面积的最值或有关参数的取值范围问题.[典例感悟][例3] 已知△ABC 的三个顶点A (-1,0),B (1,0),C (3,2),其外接圆为圆H . (1)若直线l 过点C ,且被圆H 截得的弦长为2,求直线l 的方程;(2)对于线段BH 上的任意一点P ,若在以C 为圆心的圆上都存在不同的两点M ,N ,使得点M 是线段PN 的中点,求圆C 的半径r 的取值范围.[解] (1)线段AB 的垂直平分线方程为x =0,线段BC 的垂直平分线方程为x +y -3=0.所以外接圆圆心H (0,3),半径为12+32=10. 圆H 的方程为x 2+(y -3)2=10.设圆心H 到直线l 的距离为d ,因为直线l 被圆H 截得的弦长为2,所以d =102-1=3.当直线l 垂直于x 轴时,显然符合题意,即x =3为所求;当直线l 不垂直于x 轴时,设直线方程为y -2=k (x -3),则|3k +1|1+k 2=3,解得k =43. 所以直线l 的方程为y -2=43(x -3),即4x -3y -6=0.综上,直线l 的方程为x =3或4x -3y -6=0.(2) 直线BH 的方程为3x +y -3=0,设P (m ,n )(0≤m ≤1),N (x ,y ). 因为点M 是线段PN 的中点,所以M ⎝⎛⎭⎪⎫m +x 2,n +y 2,又M ,N 都在半径为r 的圆C 上,所以⎩⎪⎨⎪⎧x -32+y -22=r 2,⎝ ⎛⎭⎪⎫m +x 2-32+⎝ ⎛⎭⎪⎫n +y 2-22=r 2,即⎩⎪⎨⎪⎧x -32+y -22=r 2,x +m -62+y +n -42=4r 2.因为该关于x ,y 的方程组有解,即以(3,2)为圆心,r 为半径的圆与以(6-m,4-n )为圆心,2r 为半径的圆有公共点,所以(2r -r )2≤(3-6+m )2+(2-4+n )2≤(r +2r )2.又3m +n -3=0,所以r 2≤10m 2-12m +10≤9r 2对任意的m ∈[0,1]成立. 而f (m )=10m 2-12m +10在[0,1]上的值域为⎣⎢⎡⎦⎥⎤325,10,所以r 2≤325且10≤9r 2.又线段BH 与圆C 无公共点,所以(m -3)2+(3-3m -2)2>r 2对任意的m ∈[0,1]成立,即r 2<325.故圆C 的半径r 的取值范围为⎣⎢⎡⎭⎪⎫103,4105.[方法技巧]1.隐形圆问题有些时候,在条件中没有直接给出圆方面的信息,而是隐藏在题目中的,要通过分析和转化,发现圆(或圆的方程), 从而最终可以利用圆的知识来求解,我们称这类问题为“隐形圆”问题.2.隐形圆的确定方法(1)利用圆的定义(到定点的距离等于定长的点的轨迹)确定隐形圆; (2)动点P 对两定点A ,B 张角是90°(k PA ·k PB =-1)确定隐形圆;(3)两定点A ,B ,动点P 满足PA ―→·PB ―→=λ确定隐形圆; (4)两定点A ,B ,动点P 满足PA 2+PB 2是定值确定隐形圆;(5)两定点A ,B ,动点P 满足PA =λPB (λ>0,λ≠1)确定隐形圆(阿波罗尼斯圆); (6)由圆周角的性质确定隐形圆. 3.与圆有关的最值或范围问题的求解策略与圆有关的最值或取值范围问题的求解,要对问题条件进行全方位的审视,特别是题中各个条件之间的相互关系及隐含条件的挖掘,要掌握解决问题常使用的思想方法,如要善于利用数形结合思想,利用几何知识,求最值或范围,要善于利用转化与化归思想将最值或范围转化为函数关系求解.[演练冲关]1.(2018·苏北四市期中)如图,在平面直角坐标系xOy 中,已知圆C :x 2+y 2-4x =0及点A (-1,0),B (1,2).(1)若直线l 平行于AB ,与圆C 相交于M ,N 两点,MN =AB ,求直线l 的方程; (2)在圆C 上是否存在点P ,使得PA 2+PB 2=12?若存在,求点P 的个数;若不存在,说明理由.解:(1)因为圆C 的标准方程为(x -2)2+y 2=4, 所以圆心C (2,0),半径为2. 因为l ∥AB ,A (-1,0),B (1,2), 所以直线l 的斜率为2-01--1=1,设直线l 的方程为x -y +m =0,则圆心C 到直线l 的距离为d =|2-0+m |2=|2+m |2.因为MN =AB =22+22=22, 而CM 2=d 2+⎝ ⎛⎭⎪⎫MN 22,所以4=2+m 22+2,解得m =0或m =-4,故直线l 的方程为x -y =0或x -y -4=0. (2)假设圆C 上存在点P ,设P (x ,y ), 则(x -2)2+y 2=4,PA 2+PB 2=(x +1)2+(y -0)2+(x -1)2+(y -2)2=12,即x 2+y 2-2y -3=0,x 2+(y -1)2=4,因为|2-2|<2-02+0-12<2+2,所以圆(x -2)2+y 2=4与圆x 2+(y -1)2=4相交, 所以点P 的个数为2.2.在等腰△ABC 中,已知AB =AC ,且点B (-1,0).点D (2,0)为AC 的中点. (1)求点C 的轨迹方程;(2)已知直线l :x +y -4=0,求边BC 在直线l 上的射影EF 长的最大值. 解:(1)设C (x ,y ), ∵D (2,0)为AC 的中点. ∴A (4-x ,-y ),∵B (-1,0),由AB =AC ,得AB 2=AC 2. ∴(x -5)2+y 2=(2x -4)2+(2y )2, 整理得(x -1)2+y 2=4.∵A ,B ,C 三点不共线,∴y ≠0,则点C 的轨迹方程为(x -1)2+y 2=4(y ≠0). (2)法一:由条件,易得BE :x -y +1=0. 设CF :x -y +b =0. 当EF 取得最大值时,直线CF 与圆(x -1)2+y 2=4相切,设M (1,0),则M 到CF 的距离为|1-0+b |2=2.∴b =22-1(舍去)或b =-22-1. ∴CF :x -y -22-1=0. ∴EF max 等于点B 到CF 的距离 =|-1-0-22-1|2=2+2.法二:设点M (1,0),如图,过点C 的轨迹圆心M 作BE ,CF 的垂线,垂足分别为G ,H ,则四边形EFHG 是矩形. ∴EF =GH =GM +MH . 由条件,得MG =BM2=22= 2.∵MH 的最大值为半径2. ∴EF max =2+2.3.如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且BC =OA ,求直线l 的方程; (3)设点T (t,0)满足:存在圆M 上的两点P 和Q ,使得TA ―→+TP ―→=TQ ―→,求实数t 的取值范围.解:圆M 的标准方程为(x -6)2+(y -7)2=25, 所以圆心M (6,7),半径为5.(1)由圆心N 在直线x =6上,可设N (6,y 0). 因为圆N 与x 轴相切,与圆M 外切, 所以0<y 0<7,圆N 的半径为y 0, 从而7-y 0=5+y 0,解得y 0=1.因此,圆N 的标准方程为(x -6)2+(y -1)2=1.(2)因为直线l ∥OA , 所以直线l 的斜率为4-02-0=2.设直线l 的方程为y =2x +m , 即2x -y +m =0, 则圆心M 到直线l 的距离d =|2×6-7+m |5=|m +5|5. 因为BC =OA =22+42=25,而MC 2=d 2+⎝ ⎛⎭⎪⎫BC 22,所以25=m +525+5,解得m =5或m =-15.故直线l 的方程为2x -y +5=0或2x -y -15=0. (3)设P (x 1,y 1),Q (x 2,y 2).因为A (2,4),T (t,0),TA ―→+TP ―→=TQ ―→,所以⎩⎪⎨⎪⎧ x 2=x 1+2-t ,y 2=y 1+4.①因为点Q 在圆M 上,所以(x 2-6)2+(y 2-7)2=25.②将①代入②,得(x 1-t -4)2+(y 1-3)2=25.于是点P (x 1,y 1)既在圆M 上,又在圆[x -(t +4)]2+(y -3)2=25上,从而圆(x -6)2+(y -7)2=25与圆[x -(t +4)]2+(y -3)2=25有公共点,所以5-5≤[t +4-6]2+3-72≤5+5, 解得2-221≤t ≤2+221.因此,实数t 的取值范围是[2-221,2+221 ].[课时达标训练]A 组——大题保分练1.已知圆O :x 2+y 2=4交y 轴正半轴于点A ,点B ,C 是圆O 上异于点A 的两个动点.(1)若B 与A 关于原点O 对称,直线AC 和直线BC 分别交直线y =4于点M ,N ,求线段MN 长度的最小值;(2)若直线AC 和直线AB 的斜率之积为1,求证:直线BC 与x 轴垂直.解:(1)由题意,直线AC 和直线BC 的斜率一定存在且不为0,且A (0,2),B (0,-2),AC ⊥BC .设直线AC 的斜率为k ,则直线BC 的斜率为-1k, 所以直线AC 的方程为y =kx +2,直线BC 的方程为y =-1kx -2, 故它们与直线y =4的交点分别为M ⎝ ⎛⎭⎪⎫2k ,4,N (-6k,4). 所以MN =⎪⎪⎪⎪⎪⎪6k +2k ≥43,当且仅当k =±33时取等号,所以线段MN 长度的最小值为4 3.(2)证明:易知直线AC 和直线AB 的斜率一定存在且不为0,设直线AC 的方程为y =kx+2,则直线AB 的方程为y =1kx +2. 由⎩⎪⎨⎪⎧ y =kx +2,x 2+y 2=4解得C ⎝ ⎛⎭⎪⎫-4k 1+k 2,21-k 21+k 2,同理可得B ⎝ ⎛⎭⎪⎫-4k 1+k 2,2k 2-11+k 2.因为B ,C 两点的横坐标相等,所以BC ⊥x 轴.2.已知圆x 2+y 2-4x +2y -3=0和圆外一点M (4,-8).(1)过M 作直线交圆于A ,B 两点,若|AB |=4,求直线AB 的方程;(2)过M 作圆的切线,切点分别为C ,D ,求切线长及CD 所在直线的方程.解:(1)圆即(x -2)2+(y +1)2=8,圆心为P (2,-1),半径r =2 2.①若割线斜率存在,设AB :y +8=k (x -4),即kx -y -4k -8=0,设AB 的中点为N ,则|PN |=|2k +1-4k -8|k 2+1=|2k +7|k 2+1, 由|PN |2+⎝ ⎛⎭⎪⎫|AB |22=r 2,得k =-4528, AB :45x +28y +44=0.②若割线斜率不存在,AB :x =4,代入圆方程得y 2+2y -3=0,y 1=1,y 2=-3符合题意.综上,直线AB 的方程为45x +28y +44=0或x =4.(2)切线长为|PM |2-r 2=4+49-8=3 5.以PM 为直径的圆的方程为(x -2)(x -4)+(y +1)(y +8)=0,即x 2+y 2-6x +9y +16=0.又已知圆的方程为x 2+y 2-4x +2y -3=0,两式相减,得2x -7y -19=0,所以直线CD 的方程为2x -7y -19=0.3.已知直线l :4x +3y +10=0,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方.(1)求圆C 的方程;(2)过点M (1,0)的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分∠ANB ?若存在,请求出点N 的坐标;若不存在,请说明理由.解:(1)设圆心C (a,0)⎝⎛⎭⎪⎫a >-52, 则|4a +10|5=2⇒a =0或a =-5(舍去).所以圆C 的方程为x 2+y 2=4.(2)当直线AB ⊥x 轴时,x 轴平分∠ANB .当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -1),N (t,0),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧ x 2+y 2=4,y =k x -1,得(k 2+1)x 2-2k 2x +k 2-4=0, 所以x 1+x 2=2k 2k 2+1,x 1x 2=k 2-4k 2+1.若x 轴平分∠ANB ,则k AN =-k BN ⇒y 1x 1-t +y 2x 2-t =0⇒k x 1-1x 1-t +k x 2-1x 2-t =0⇒2x 1x 2-(t +1)(x 1+x 2)+2t =0⇒2k 2-4k 2+1-2k 2t +1k 2+1+2t =0⇒t =4,所以当点N 为(4,0)时,能使得∠ANM =∠BNM 总成立.4.在平面直角坐标系xOy 中,已知圆C 1:(x +3)2+(y -1)2=4和圆C 2:(x -4)2+(y -5)2=4.(1)若直线l 过点A (4,0),且被圆C 1截得的弦长为23,求直线l 的方程;(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线l 1和l 2,它们分别与圆C 1和C 2相交,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,求所有满足条件的点P 的坐标.解:(1)由于直线x =4与圆C 1不相交,∴直线l 的斜率存在,设直线l 的方程为y =k (x -4),圆C 1的圆心到直线l 的距离为d .∵l 被圆C 1截得的弦长为23,∴d = 22-32=1.又由点到直线的距离公式得d =|-1-7k |1+k2, ∴k (24k +7)=0,解得k =0或k =-724, ∴直线l 的方程为y =0或7x +24y -28=0.(2)设点P (a ,b )满足条件,由题意分析可得直线l 1,l 2的斜率均存在且不为0,不妨设直线l 1的方程为y -b =k (x -a ),则直线l 2的方程为y -b =-1k(x -a ).∵圆C 1和圆C 2的半径相等,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,∴圆C 1的圆心到直线l 1的距离和圆C 2的圆心到直线l 2的距离相等, 即|1-k -3-a -b |1+k 2=⎪⎪⎪⎪⎪⎪5+1k 4-a -b 1+1k 2,整理得|1+3k +ak -b |=|5k +4-a -bk |.∴1+3k +ak -b =±(5k +4-a -bk ),即(a +b -2)k =b -a +3或(a -b +8)k =a +b -5.∵k 的取值有无穷多个,∴⎩⎪⎨⎪⎧ a +b -2=0,b -a +3=0或⎩⎪⎨⎪⎧a -b +8=0,a +b -5=0. 解得⎩⎪⎨⎪⎧ a =52,b =-12或⎩⎪⎨⎪⎧ a =-32,b =132,故这样的点只可能是点P 1⎝ ⎛⎭⎪⎫52,-12或点P 2-32,132.B 组——大题增分练1.如图,已知以点A (-1,2)为圆心的圆与直线l 1:x +2y +7=0相切.过点B (-2,0)的动直线l 与圆A 相交于M ,N 两点,Q 是MN 的中点,直线l 与l 1相交于点P .(1)求圆A 的方程;(2)当MN =219时,求直线l 的方程.解:(1)设圆A 的半径为r .由于圆A 与直线l 1:x +2y +7=0相切,∴r =|-1+4+7|5=2 5.∴圆A 的方程为(x +1)2+(y -2)2=20.(2)①当直线l 与x 轴垂直时,易知x =-2符合题意;②当直线l 的斜率存在时,设直线l 的方程为y =k (x +2).即kx -y +2k =0.连结AQ ,则AQ ⊥MN .∵MN =219,∴AQ =20-19=1,则由AQ =|k -2|k 2+1=1, 得k =34,∴直线l :3x -4y +6=0. 故直线l 的方程为x =-2或3x -4y +6=0.2.已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当OP =OM 时,求证:△POM 的面积为定值.解:(1)圆C 的方程可化为x 2+(y -4)2=16,所以圆心为C (0,4),半径为4.设M (x ,y ),则CM ―→=(x ,y -4),MP ―→=(2-x,2-y ).由题设知CM ―→·MP ―→=0,故x (2-x )+(y -4)(2-y )=0,即(x -1)2+(y -3)2=2.由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2.(2)证明:由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆.由于OP =OM ,故O 在线段PM 的垂直平分线上,又P 在圆N 上,从而ON ⊥PM .因为ON 的斜率为3,所以PM 的斜率为-13, 故PM 的方程为y =-13x +83. 又OM =OP =22,O 到l 的距离d 为4105, 所以PM =2OP 2-d 2=4105, 所以△POM 的面积为S △POM =12PM ·d =165. 3.如图,已知位于y 轴左侧的圆C 与y 轴相切于点(0,1),且被x 轴分成的两段弧长之比为2∶1,过点H (0,t )的直线l 与圆C 相交于M ,N 两点,且以MN 为直径的圆恰好经过坐标原点O .(1)求圆C 的方程;(2)当t =1时,求直线l 的方程;(3)求直线OM 的斜率k 的取值范围.解:(1)因为位于y 轴左侧的圆C 与y 轴相切于点(0,1),所以圆心C 在直线y =1上. 又圆C 与x 轴的交点分别为A ,B ,由圆C 被x 轴分成的两段弧长之比为2∶1,得∠ACB =2π3. 所以CA =CB =2,圆心C 的坐标为(-2,1).所以圆C 的方程为(x +2)2+(y -1)2=4.(2)当t =1时,由题意知直线l 的斜率存在,设直线l 的方程为y =mx +1.由⎩⎪⎨⎪⎧ y =mx +1,x +22+y -12=4,消去y , 得(m 2+1)x 2+4x =0,解得⎩⎪⎨⎪⎧ x =0,y =1或⎩⎪⎨⎪⎧ x =-4m 2+1,y =m 2-4m +1m 2+1. 不妨令M ⎝ ⎛⎭⎪⎫-4m 2+1,m 2-4m +1m 2+1,N (0,1). 因为以MN 为直径的圆恰好经过O (0,0),所以OM ―→·ON ―→=⎝ ⎛⎭⎪⎫-4m 2+1,m 2-4m +1m 2+1·(0,1)=m 2-4m +1m 2+1=0,解得m =2±3, 故所求直线l 的方程为y =(2+3)x +1或y =(2-3)x +1.(3)设直线OM 的方程为y =kx , 由题意,知|-2k -1|1+k2≤2,解得k ≤34. 同理得-1k ≤34,解得k ≤-43或k >0. 由(2)知,k =0也满足题意.所以k 的取值范围是⎝⎛⎦⎥⎤-∞,-43∪⎣⎢⎡⎦⎥⎤0,34. 4.已知过点A (-1,0)的动直线l 与圆C :x 2+(y -3)2=4相交于P 、Q 两点,M 是PQ 中点,l 与直线m :x +3y +6=0相交于N .(1)求证:当l 与m 垂直时,l 必过圆心C ;(2)当PQ =23时,求直线l 的方程;(3)探索AM ―→·AN ―→是否与直线l 的倾斜角有关,若无关,请求出其值;若有关,请说明理由.解:(1)∵l 与m 垂直,且k m =-13,∴k l =3, 故直线l 方程为y =3(x +1),即3x -y +3=0.∵圆心坐标(0,3)满足直线l 方程,∴当l 与m 垂直时,l 必过圆心C .(2)①当直线l 与x 轴垂直时, 易知x =-1符合题意.②当直线l 与x 轴不垂直时,设直线l 的方程为y =k (x +1),即kx -y +k =0,∵PQ =23,∴CM =4-3=1,则由CM =|-k +3|k 2+1=1,得k =43, ∴直线l :4x -3y +4=0.故直线l 的方程为x =-1或4x -3y +4=0.(3)∵CM ⊥MN ,∴AM ―→·AN ―→=(AC ―→+CM ―→)·AN ―→=AC ―→·AN ―→+CM ―→·AN ―→=AC ―→·AN ―→.当l 与x 轴垂直时,易得N ⎝⎛⎭⎪⎫-1,-53, 则AN ―→=⎝⎛⎭⎪⎫0,-53,又AC ―→=(1,3), ∴AM ―→·AN ―→=AC ―→·AN ―→=-5.当l 的斜率存在时,设直线l 的方程为y =k (x +1),则由⎩⎪⎨⎪⎧ y =k x +1,x +3y +6=0,得N ⎝ ⎛⎭⎪⎫-3k -61+3k ,-5k 1+3k , 则AN ―→=⎝ ⎛⎭⎪⎫-51+3k ,-5k 1+3k , ∴AM ―→·AN ―→=AC ―→·AN ―→=-51+3k +-15k 1+3k=-5. 综上所述,AM ―→·AN ―→与直线l 的斜率无关,且AM ―→·AN ―→=-5.。
(江苏专版)高考数学一轮复习板块命题点专练(十一)直线与圆的方程文(含解析)苏教版板块命题点专练(十一) 直线与圆的方程命题点一 直线与方程、两条直线的位置关系1.(2017·北京高考)已知x ≥0,y ≥0,且x +y =1,则x 2+y 2的取值范围是________. 解析:依题意,x 2+y 2可视为原点到线段x +y -1=0(x ≥0,y ≥0)上的点的距离的平方,如图所示,故(x 2+y 2)min =⎝⎛⎭⎪⎫|-1|22=12,(x 2+y 2)max =|OA |2=|OB |2=1,故x 2+y 2∈⎣⎢⎡⎦⎥⎤12,1.答案:⎣⎢⎡⎦⎥⎤12,1 2.(2015·山东高考改编)一条光线从点(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为________.解析:由已知,得点(-2,-3)关于y 轴的对称点为(2,-3),由入射光线与反射光线的对称性,知反射光线一定过点(2,-3).设反射光线所在直线的斜率为k ,则反射光线所在直线的方程为y +3=k (x -2),即kx -y -2k -3=0.由反射光线与圆相切,则有d =|-3k -2-2k -3|k 2+1=1,解得k =-43或k =-34.答案:-43或-343.(2016·上海高考)已知平行直线l 1:2x +y -1=0,l 2:2x +y +1=0,则l 1与l 2的距离是________.解析:由两平行线间的距离公式得d =|-1-1|22+12=255. 答案:255命题点二 圆的方程、直线与圆的位置关系1.(2017·江苏高考)在平面直角坐标系xOy 中,A (-12,0),B (0,6),点P 在圆O :x 2+y 2=50上.若PA ―→·PB ―→≤20,则点P 的横坐标的取值范围是________.解析:设P (x ,y ),则PA ―→·PB ―→=(-12-x ,-y )·(-x,6-y )=x (x +12)+y (y -6)≤20.又x 2+y 2=50,所以2x -y +5≤0,所以点P 在直线2x -y +5=0的上方(包括直线上). 又点P 在圆x 2+y 2=50上,由⎩⎪⎨⎪⎧y =2x +5,x 2+y 2=50,解得x =-5或x =1,结合图象,可得-52≤x ≤1,故点P 的横坐标的取值范围是[-52,1]. 答案:[-52,1]2.(2018·全国卷Ⅲ改编)直线x +y +2=0分别与x 轴,y 轴交于A ,B 两点,点P 在圆(x -2)2+y 2=2上,则△ABP 面积的取值范围是________.解析:设圆(x -2)2+y 2=2的圆心为C ,半径为r ,点P 到直线x +y +2=0的距离为d , 则圆心C (2,0),r =2,所以圆心C 到直线x +y +2=0的距离为|2+2|2=22,可得d max =22+r =32,d min =22-r = 2. 由已知条件可得|AB |=22,所以△ABP 面积的最大值为12×|AB |×d max =6,△ABP 面积的最小值为12×|AB |×d min =2.综上,△ABP 面积的取值范围是[2,6]. 答案:[2,6]3.(2018·北京高考改编)在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线x -my -2=0的距离,当θ,m 变化时,d 的最大值为________.解析:由题知点P (cos θ,sin θ)是单位圆x 2+y 2=1上的动点,所以点P 到直线x -my -2=0的距离可转化为单位圆上的点到直线的距离.又直线x -my -2=0恒过点(2,0),所以当m 变化时,圆心(0,0)到直线x -my -2=0的距离21+m2的最大值为2,所以点P 到直线x -my -2=0的距离的最大值为3,即d 的最大值为3.答案:34.(2018·全国卷Ⅰ)直线y =x +1与圆x 2+y 2+2y -3=0交于A ,B 两点,则|AB |=________.解析:由x 2+y 2+2y -3=0,得x 2+(y +1)2=4.∴圆心C (0,-1),半径r =2.圆心C (0,-1)到直线x -y +1=0的距离d =|1+1|2=2,∴|AB |=2r 2-d 2=24-2=2 2. 答案:2 25.(2017·全国卷Ⅲ)在直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1),当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 解:(1)不能出现AC ⊥BC 的情况,理由如下: 设A (x 1,0),B (x 2,0),则x 1,x 2满足x 2+mx -2=0, 所以x 1x 2=-2. 又C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为-1x 1·-1x 2=-12,所以不能出现AC ⊥BC 的情况.(2)证明:由(1)知BC 的中点坐标为⎝ ⎛⎭⎪⎫x 22,12, 可得BC 的中垂线方程为y -12=x 2⎝ ⎛⎭⎪⎫x -x 22. 由(1)可得x 1+x 2=-m , 所以AB 的中垂线方程为x =-m2. 联立⎩⎪⎨⎪⎧x =-m 2,y -12=x 2⎝ ⎛⎭⎪⎫x -x 22,x 22+mx 2-2=0,可得⎩⎪⎨⎪⎧x =-m 2,y =-12.所以过A ,B ,C 三点的圆的圆心坐标为⎝ ⎛⎭⎪⎫-m 2,-12,半径r =m 2+92.故圆在y 轴上截得的弦长为2r 2-⎝ ⎛⎭⎪⎫m 22=3,即过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.6.(2016·江苏高考)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且BC =OA ,求直线l 的方程; (3)设点T (t,0)满足:存在圆M 上的两点P 和Q ,使得TA ―→+TP ―→=T Q ―→,求实数t 的取值范围.解:圆M 的标准方程为(x -6)2+(y -7)2=25, 所以圆心M (6,7),半径为5.(1)由圆心N 在直线x =6上,可设N (6,y 0). 因为圆N 与x 轴相切,与圆M 外切,所以0<y 0<7,圆N 的半径为y 0,从而7-y 0=5+y 0,解得y 0=1. 因此,圆N 的标准方程为(x -6)2+(y -1)2=1. (2)因为直线l ∥OA , 所以直线l 的斜率为4-02-0=2.设直线l 的方程为y =2x +m , 即2x -y +m =0, 则圆心M 到直线l 的距离d =|2×6-7+m |5=|m +5|5. 因为BC =OA =22+42=25, 而MC 2=d 2+⎝ ⎛⎭⎪⎫BC 22, 所以25=m +525+5,解得m =5或m =-15.故直线l 的方程为2x -y +5=0或2x -y -15=0. (3)设P (x 1,y 1),Q(x 2,y 2).因为A (2,4),T (t,0),TA ―→+TP ―→=T Q ―→,所以⎩⎪⎨⎪⎧x 2=x 1+2-t ,y 2=y 1+4.①因为点Q 在圆M 上,所以(x 2-6)2+(y 2-7)2=25.② 将①代入②,得(x 1-t -4)2+(y 1-3)2=25.于是点P (x 1,y 1)既在圆M 上,又在圆[x -(t +4)]2+(y -3)2=25上, 从而圆(x -6)2+(y -7)2=25与圆[x -(t +4)]2+(y -3)2=25有公共点, 所以5-5≤[t +4-6]2+3-72≤5+5,解得2-221≤t ≤2+221.因此,实数t的取值范围是[2-221,2+221 ].。
第二章直线与圆的方程(压轴题专练)一、选择题1.已知m ∈R ,若过定点A 的动直线1l :20x my m -+-=和过定点B 的动直线2l :240mx y m ++-=交于点P (P 与A ,B 不重合),则以下说法错误的是()A .A 点的坐标为()2,1B .PA PB ⊥C .2225PA PB +=D .2PA PB +的最大值为5【答案】D【分析】根据定点判断方法、直线垂直关系、勾股定理、三角函数辅助角求最值即可得解.【详解】因为1:20l x my m -+-=可以转化为(1)20m y x -+-=,故直线恒过定点A ()2,1,故A 选项正确;又因为2l :240mx y m ++-=即()42y m x -=-+恒过定点B ()2,4-,由1:20l x my m -+-=和2:420l mx y m +-+=,满足()110m m ⨯+-⨯=,所以12l l ⊥,可得PA PB ⊥,故B 选项正确;所以()()22222221425PA PB AB +==++-=,故C 选项正确;因为PA PB ⊥,设,PAB ∠θθ=为锐角,则5cos ,5sin PA PB θθ==,所以()()252cos sin 5PA PB θθθϕ+=+=+,所以当()sin 1θϕ+=时,2PA PB +取最大值,故选项D 错误.故选:D.2.设m R ∈,过定点A 的动直线10x my ++=和过定点B 的动直线230mx y m --+=交于点(),P x y ,则PA PB +的最大值()A .B .C .3D .6【答案】D【分析】根据动直线方程求出定点,A B 的坐标,并判断两动直线互相垂直,进而可得22||||18PA PB +=,最后由基本不等式222||||||||22PA PB PA PB ++⎛⎫≥ ⎪⎝⎭即可求解.【详解】解:由题意,动直线10x my ++=过定点(1,0)A -,直线230mx y m --+=可化为(2)30x m y -+-=,令2030x y -=⎧⎨-=⎩,可得()2,3B ,又1(1)0m m ⨯+⨯-=,所以两动直线互相垂直,且交点为P ,所以()()22222||||||120318PA PB AB +==--+-=,因为222||||||||22PA PB PA PB ++⎛⎫≥ ⎪⎝⎭,所以6P A PB +≤,当且仅当||||3PA PB ==时取等号.故选:D.3.在平面直角坐标系内,设()11,M x y ,()22,N x y 为不同的两点,直线l 的方程为0ax by c ++=,1122ax by c ax by c δ++=++,下面四个命题中的假命题为()A .存在唯一的实数δ,使点N 在直线l 上B .若1δ=,则过M ,N 两点的直线与直线l 平行C .若1δ=-,则直线经过线段M ,N 的中点;D .若1δ>,则点M ,N 在直线l 的同侧,且直线l 与线段M ,N 的延长线相交;【答案】A【分析】根据题意对δ一一分析,逐一验证.【详解】解:对于A ,1122ax by c ax by cδ++=++化为:112222()0(0)ax by c ax by c ax by c δ++-++=++≠,即点2(N x ,2)y 不在直线l 上,因此A 不正确.对于B ,1δ=,则1212()()0a x x b y y -+-=,即过M ,N 两点的直线与直线l 的斜率相等,又点2(N x ,2)y 不在直线l 上,因此两条直线平行,故B 正确;对于C ,1δ=-,则1122()0ax by c ax by c +++++=,化为1212022x x y y a b c ++++=,因此直线l 经过线段MN 的中点,故C 正确;对于D ,1δ>,则2112222()()()0ax by c ax by c ax by c δ++⨯++=++>,则点M ,N 在直线l 的同侧,故D 正确;故选A【点睛】本题考查了直线系方程的应用、平行直线的判定、点与直线的位置关系,考查了推理能力与计算能力,属于难题.4.我国著名数学家华罗庚曾说“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休.”事转化为点(),x y 与点(),a b 之间的距离的几何问题.已知点()11,M x y 在直线1:2l y x =+,点()22,N x y 在直线2:l y x =上,且1MN l ⊥)A .2B .2C D .5【答案】D【分析】根据两点距离公式将目标函数转化为点()11,M x y 到点()0,4A 的距离与点()22,N x y 到点()5,0B 的距离和,过点A 作1AC l ⊥,垂足为C ,证明AM CN =,由CN NB CB +≥求目标函数最小值.表示点()11,M x y 到点()0,4A 的距离,表示点()22,N x y 到点()5,0B 的距离,MA NB +=+,过点A 作1AC l ⊥,垂足为C ,因为直线1l 的方程为20x y -+=,()0,4A ,所以AC ==又直线1:2l y x =+与直线2:l y x =平行,1MN l ⊥,所以MN =所以//,MN AC MN AC =,所以四边形AMNC 为平行四边形,所以AM CN =,CN NB +=+,又CN NB CB +≥,当且仅当,,C N B 三点共线时等号成立,所以当点N 为线段CB 与直线2l 的交点时,CB ,因为过点()0,4A 与直线1l 垂直的直线的方程为4y x =-+,联立42y x y x =-+⎧⎨=+⎩,可得13x y =⎧⎨=⎩,所以点C 的坐标为()1,3,所以CB =,5,故选:D.将问题转化为两点之间的距离问题.5.已知圆C 是以点(2,M 和点(6,N -为直径的圆,点P 为圆C 上的动点,若点()2,0A ,点()1,1B ,则2PA PB -的最大值为()A B .4C .8+D【答案】A【分析】由题设可知圆C :22(4)16x y -+=,在坐标系中找到(4,0)D -,应用三角线相似将2PA 转化到||PD ,再利用三角形的三边关系确定目标式的最大值即可.【详解】由题设,知:(4,0)C 且||8MN ==,即圆C 的半径为4,∴圆C :22(4)16x y -+=,如上图,坐标系中(4,0)D -则24OD AC CP OC ====,∴12AC PC CP DC ==,即△APC △PCD ,故12PA PD =,∴2||||PA PB PD PB -=-,在△PBD 中||||||PD PB BD -<,∴要使||||PD PB -最大,,,P B D 共线且最大值为||BD 的长度.∴||BD ==故选:A【点睛】关键点点睛:首先求出圆C 方程,找到定点D 使AC PC CP DC =,进而将2PA 转化到其它线段,结合三角形三边关系求目标式的最值.6.过点()8,4A -作抛物线28y x =的两条切线1l ,2l ,设1l ,2l 与y 轴分别交于点B ,C ,则ABC ∆的外接圆方程为()A .2264160x y x y ++--=B .226160x y x ++-=C .2256120x y x y ++--=D .224160x y y +--=【答案】A【解析】设切线方程为l :()84x t y +=-,与抛物线联立,表示线段AB 的中垂线方程,可求解圆心坐标和半径,表示圆的方程即可.【详解】设过点()8,4A -的抛物线2:8E y x =的切线方程为l :()84x t y +=-,即84x ty t =--(*),代入28y x =得288(48)0y ty t -++=,由0∆=得2240t t --=,(1)所以方程(1)有两个不相等的实数根1t ,2t ,且122t t +=,124t t =-,在(*)中令0x =得180,4B t ⎛⎫+ ⎪⎝⎭,280,4C t ⎛⎫+ ⎪⎝⎭,设ABC ∆的外接圆圆心为点()100,O x y ,则()0122B C y y y =+=,下求0x :线段AB 中点横标04x '=-,纵标0144y t '=+,线段AB 的中垂线方程为1144(4)y t x t --=-+,令2y =得211021424t t x t -++=,由(1)知21124t t +=,故03x =-,设ABC ∆的外接圆半径为R ,则229R =,所以ABC ∆的外接圆方程为22(3)(2)29x y ++-=,即2264160x y x y ++--=.故选:A【点睛】本题考查了直线和抛物线的位置关系,圆的方程,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.7.已知平面内两个定点A ,B 及动点P ,若PBPA λ=(0λ>且1λ≠),则点P 的轨迹是圆.后世把这种圆称为阿波罗尼斯圆.已知()0,0O,0,2Q ⎛ ⎝⎭,直线1:230l kx y k -++=,直线2:320l x ky k +++=,若P 为1l ,2l 的交点,则32PO PQ +的最小值为()A .B.6-C.9-D.3【答案】A【分析】由直线方程可得12l l ⊥,则点P 的轨迹是以CD 为直径的圆,除去D 点,得到P 的轨迹方程为()()22293x y y ++=≠-,即()22453x y x y ++=≠-,可得)332PQ y =+≠-,取5,02A ⎛⎫ ⎪⎝⎭,则32PQ PA =,结合AQ =()3222PO PQ PA PQ AQ +=+≥,进而求解.【详解】由已知1:230l kx y k -++=过定点()2,3C -,2:320l x ky k +++=过定点()2,3D --,因为1l k k =,21l k k=-,所以121l l k k ⋅=-,即12l l ⊥,所以点P 的轨迹是以CD 为直径的圆,除去D 点,故圆心为()2,0-,半径为3,则P 的轨迹方程为()()22293x y y ++=≠-,即()22453x y x y ++=≠-,易知O 、Q 在该圆内,又32PO =即)332PO y ==≠-,取5,02A ⎛⎫ ⎪⎝⎭,则32PO PA =,又2AQ =,所以()3322222PO PQ PO PQ PA PQ AQ ⎛⎫+=+=+≥= ⎪⎝⎭所以32PO PQ +的最小值为故选:A.8.已知点P 为直线l :20x y +-=上的动点,过点P 作圆C :2220x x y ++=的切线PA ,PB ,切点为,A B ,当PC AB ⋅最小时,直线AB 的方程为()A .3310x y ++=B .3310x y +-=C .2210x y ++=D .2210x y +-=【答案】A【分析】先利用圆切线的性质推得,,,A P B C 四点共圆,AB CP ⊥,从而将PC AB ⋅转化为2PA ,进而确定PC l ⊥时PC AB ⋅取得最小值,再求得以PC 为直径的圆的方程,由此利用两圆相交弦方程的求法即可得解.【详解】因为圆C :2220x x y ++=可化为()2211x y ++=,所以圆心()1,0C -,半径为1r =,因为PA ,PB 是圆C 的两条切线,则,PA AC PB BC ⊥⊥,由圆的知识可知,,,,A P B C 四点共圆,且AB CP ⊥,PA PB =,所以14422PAC PC AB S PA AC PA ⋅==⨯⨯⨯= ,又PA =所以当PC 最小,即PC l ⊥时,PC AB ⋅取得最小值,此时PC 的方程为1y x =+,联立120y x x y =+⎧⎨+-=⎩,解得13,22x y ==,即13,22P ⎛⎫ ⎪⎝⎭,故以PC 为直径的圆的方程为13(1)022x x y y ⎛⎫⎛⎫-++-= ⎪ ⎪⎝⎭⎝⎭,即,221031222x x y y +-+=-,又圆22:20C x x y ++=,两圆的方程相减即为直线AB 的方程:3310x y ++=.故选:A.【点睛】关键点睛:本题解决的关键是将PC AB ⋅转化为2PA ,从而确定PC AB ⋅最小时P 的坐标,从而利用两圆相减可得相交弦方程的技巧得解.9.(多选)已知O 为坐标原点,()3,1A ,P 为x 轴上一动点,Q 为直线l :y x =上一动点,则()A .APQ △周长的最小值为B .AP AQ +的最小值为1C .AP PQ +的最小值为D OP +的最小值为4【答案】BCD【分析】设A 关于直线l :y x =的对称点为()11,3A ,A 关于x 轴的对称点为()23,1A -,对于A :根据对称性可得1212PQ QA PA PQ QA PA A A ++=++≥,进而可得结果;对于B :根据点到直线的距离分析判断;对于C :因为2AP PQ A P PQ +=+,结合点到直线的距离分析判断;对于D :根据题意分析可得)2OP A P CP+=+,结合点到直线的距离分析判断.【详解】设()3,1A关于直线l:y x=的对称点为()11,3A,()3,1A关于x轴的对称点为()23,1A-,可知12,QA QA PA PA==,对于选项A:可得APQ△周长1212PQ QA PA PQ QA PA A A++=++≥=当且仅当12,,,A P Q A四点共线时,等号成立,所以APQ△周长的最小值为A错误;对于选项B:设()3,1A到x轴,直线l:0x y-=的距离分别为12,d d,则121,d d==,可得121AP AQ d d+≥+=,所以AP AQ+的最小值为1B正确;对于选项C:因为2AP PQ A P PQ+=+,设()23,1A-到直线l:0x y-=的距离为3d=可得23A P PQ d +≥=所以AP PQ +的最小值为C 正确;对于选项D :作PC l ⊥,垂足为C ,因为直线l 的斜率1k =,则45COP ∠=︒,可得CP =,则23AP CP A P CP d +=+≥=,)2234OP A P OP A P CP d ⎫++=⎪⎪⎭,OP +的最小值为4,故D 正确;故选:BCD.二、填空题10.设R m ∈,过定点A 的动直线10x my ++=和过定点B 的动直线230mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值.【答案】9【分析】根据直线方程求出定点,然后根据直线垂直,结合基本不等式求解即可;【详解】由题意,动直线10x my ++=过定点(1,0)A -,直线230mx y m --+=可化为(2)30x m y -+-=,令2030x y -=⎧⎨-=⎩,可得()2,3B ,又1(1)0m m ⨯+⨯-=,所以两动直线互相垂直,且交点为P ,所以22222||||||(12)(03)18PA PB AB +==--+-=,因为2218||2PA PB PA PB =+≥⋅,所以9PA PB ⋅≤,当且仅当||||3PA PB ==时取等号.【点睛】根据直线方程求定点,判断直线垂直,将问题转化为基本不等式是本题的难点和突破点.11.若恰有三组不全为0的实数对(a ,)b满足关系式|1||431|a b a b t ++=-+=t 的所有可能的值为.【答案】52或75t ==,然后对t 进行分类讨论即可求解.【详解】由已知得0t >t ==,看成有且仅有三条直线满足(1,1)A 和(4,3)B -到直线:10l ax by ++=(不过原点)的距离t 相等,又5AB ==,(1)当||522AB t ==,此时易得符合题意的直线l 为线段AB 的垂直平分线68230x y --=以及与直线AB 平行的两条直线86110x y ++=和86390x y +-=;(2)当||522AB t <=时,有4条直线l 会使得点(1,1)A 和(4,3)B -到它们的距离相等,注意到l 不过原点,所以当其中一条直线过原点时,会作为增根被舍去.设点A 到l 的距离为d ,①作为增根被舍去的直线l ,过原点和A ,B 的中点5(,1)2M -,其方程为250x y +=,此时52t d ==,符合;②作为增根被舍去的直线l ,过原点且与AB 平行,其方程为430x y +=,此时7552t d ==<,符合;综上,满足题意的实数t 为52或75故答案为:52或75t ==,将问题转化为有且仅有三条直线满足(1,1)A 和(4,3)B -到直线:10l ax by ++=(不过原点)的距离t 相等,然后分类讨论即得.12.已知P 、Q 分别在直线1:10l x y -+=与直线2:10l x y --=上,且1PQ l ⊥,点()4,4A -,()4,0B ,则AP PQ QB ++的最小值为.【分析】利用线段的等量关系进行转化,找到AP QB +最小值即为所求.【详解】由直线1l 与2l PQ =()4,0B 作直线l 垂直于1:10l x y -+=,如图,则直线l 的方程为:4y x =-+,将()4,0B 沿着直线l B '点,有()3,1B ',连接AB '交直线1l 于点P ,过P 作2⊥PQ l 于Q ,连接BQ ,有//,||||BB PQ BB PQ ''=,即四边形BB PQ '为平行四边形,则||||PB BQ '=,即有||AP QB AP PB AB ''+=+=,显然AB '是直线1l 上的点与点,A B '距离和的最小值,因此AP QB +的最小值,即AP PB '+的最小值AB ',而AB '==,所以AP PQ QB ++的最小值为AB PQ '+【点睛】思路点睛:(1)合理的利用假设可以探究取值的范围,严谨的思维是验证的必要过程.(2)转化与划归思想是解决距离最值问题中一种有效的途径.(3)数形结合使得问题更加具体和形象,从而使得方法清晰与明朗.13.在平面直角坐标互中,给定()()1,2,3,4M N 两点,点P 在x 轴的正半轴上移动,当MPN ∠最大值时,点P 的横坐标为【答案】3【分析】根据条件结合圆的性质,转化为求圆的半径最小,利用数形结合,即可求解.【详解】过点,,M N P 三点的圆的圆心在线段MN 的中垂线5y x =-上,其中MPN ∠为弦MN 所对的圆周角,所以当圆的半径最小时,MPN ∠最大,设圆心坐标为(,5)E a a -,又由点P 在x 轴上移动,当圆和x 轴相切时,MPN ∠取得最大值,设切点为(,0)P a ,圆的半径为5a -,所以圆的方程为222()(5)(5)x a y a a -++-=-,代入点(1,2)M 代入圆的方程,可得222(1)(25)(5)a a a -++-=-,整理得2250a a +-=,解得3a =或5a =-(舍去),所以点P 的横坐标的为3.故答案为:3.14.在平面直角坐标系xOy 中,已知圆()()221:2C x a y a -+-+=,点(0,2)A ,若圆C 上的点M 均满足2210MA MO +>,则实数a 的取值范围是.【答案】a<0或3a >【分析】将条件2210MA MO +>坐标化,先转化为22(1)4x y +->恒成立,即圆C 上所有动点到定点(0,1)B 距离的最小值大于2,再转化为(0,1)B 与圆心C 距离的不等关系求解可得.【详解】设(,)M x y ,由点(0,2)A ,2210MA MO +> 222222(2)2(22)10x y x y x y y ∴+-++=+-+>即点M 满足22(1)4x y +->2,设点(0,1)B ,即2MB >恒成立则min 2MB >,圆上所有点到定点(0,1)B 最小值大于2,又圆(,2)C a a -,半径为1,圆上所有点到定点(0,1)B 最小值即为:1BC -.12BC ∴->.即3BC =,化简得230a a ->,解得a<0或3a >.故答案为:a<0或3a >.15.已知P 为直线60x y ++=上一动点,过点P 作圆22:66140C x y x y +--+=的切线,切点分别为A ,B ,则当四边形PACB 面积最小时,直线AB 的方程为.【答案】6=0x y +【分析】求得四边形PACB 面积最小时P 点的坐标,再根据圆与圆的位置关系求得直线AB 的方程.【详解】圆22:66140C x y x y +--+=,即()()22233=2x y -+-,所以圆心为()3,3C ,半径2r =,1=2=22PACB S PA r PA ⎛⎫⨯⨯ ⎪⎝⎭所以当CP 最小,也即CP 垂直60x y ++=时,四边形PACB 面积最小,直线60x y ++=的斜率为1-,则此时直线CP 的斜率为1,则直线CP 的方程为y x =,由60y xx y =⎧⎪⎨++=⎪⎩,解得3x y ==-即(3P --,对应PC ,=PA PB以P 为圆心,半径为((2233=12x y -++-+,即()()226622x y x y ++++-,由()()2222661406622x y x yx y x y ⎧+--+=⎪⎨++++-⎪⎩,两式相减并化简得26=0x y ++-,也即直线AB 的方程为26=0x y ++-.故答案为:26=0x y ++-【点睛】研究直线和圆的位置关系问题,主要思路是数形结合的数学思想方法,直线和圆有关的相切问题,连接圆心和切点的直线,与切线相互垂直.与四边形面积的最值有关问题,可先求得面积的表达式,再根据表达式来求最值.16.设直线l 的方程为(a +1)x +y -2-a =0(a ∈R ).(1)若直线l 在两坐标轴上的截距相等,则直线l 的方程为;(2)若a >-1,直线l 与x 、y 轴分别交于M 、N 两点,O 为坐标原点,则△OMN 的面积取最小值时,直线l 对应的方程为.【答案】x -y =0或x +y -2=0x +y -2=0【详解】(1)①当直线l 经过坐标原点时,可得a +2=0,解得a =-2.所以直线l 的方程为-x +y =0,即x -y =0;②当直线l 不经过坐标原点,即a ≠-2且a ≠-1时,由条件得221a a a +=++,解得a =0,所以直线l 的方程为x +y -2=0.综上可得直线l 的方程为x -y =0或x +y -2=0.(2)在(a +1)x +y -2-a =0(a >-1)中,令0x =,得2y a =+;令0y =,得21a x a +=+.所以2(,0),(0,2)1a M N a a +++.由于1a >-,得210a a +>+>.所以22121(2)1(1)2(1)1(2)212121OMNa a a a S a a a a ∆++++++=⋅⋅+=⋅=⋅+++111[(1)2][22]2212a a =+++≥=+.当且仅当111a a +=+,即a =0时等号成立.此时直线l 的方程为x +y -2=0.答案:(1)x -y =0或x +y -2=0(2)x +y -2=0【点睛】用基本不等式求最值时,首先要判断是否满足了使用基本不等式的条件,若满足则可直接利用基本不等式求出最值;若不满足,则需要对代数式进行适当的变形,此时要特别注意“拆”、“拼”、“凑”等变形的技巧,通过变形使得代数式满足基本不等式中“正”、“定”、“等”的条件.三、解答题17.现有一组互不相同且从小到大排列的数据:012345,,,,,a a a a a a ,其中00a =.为提取反映数据间差异程度的某种指标,今对其进行如下加工:记()015011,,5n n n n T a a a x y a a a T=+++==+++ ,作函数()y f x =,使其图像为逐点依次连接点(),(0,1,2,,5)n n n P x y n = 的折线.(1)求(0)f 和(1)f 的值;(2)设1n n P P -的斜率为(1,2,3,4,5)n k n =,判断12345,,,,k k k k k 的大小关系;(3)证明:当(0,1)x ∈时,()f x x <;(4)求由函数y x =与()y f x =的图像所围成图形的面积.(用12345,,,,a a a a a 表示)【答案】(1)(0)0f =,(1)1f =(2)12345k k k k k <<<<(3)见解析(4)124512345225()a a a a a a a a a --++++++【分析】(1)运用代入法进行求解即可;(2)根据斜率公式,结合已知进行判断即可;(3)要证明()f x x <,(0,1)x ∈,只需要证明(),(1,2,3,4)n n f x x n <=,根据已知定义,结合放缩法进行证明即可.(4)设1S 为[]0,1上折线()f x 与x 轴及直线1x =所围成图形的面积,求出1S ,再由112S S =-求解即可.【详解】(1)0015(0)0a f a a a ==+++ ,015015(1)1a a a f a a a +++==+++ ;(2)[]01011111()()5155n n n n n n n n a a a a a a y y T k a n n x x T ---+++-+++-===--- (1,2,,5)n = ,因为12345a a a a a <<<<,所以12345k k k k k <<<<;(3)由于()f x 的图像是连接各点(),(0,1,2,,5)n n n P x y n = 的折线要证明()f x x <,(0,1)x ∈,只需要证明(),(1,2,3,4)n n f x x n <=事实上,当1(,)n n x x x -∈时,1111()()()()()n n n n n n f x f x f x x x f x x x -----=-+-11111111()()n n n n n n n n n n n n n n n n x x x x x x x x f x f x x x xx x x x x x x x ------------=+<+=----下面证明(),(1,2,3,4)n n f x x n <=对任何n (1,2,3,4)n =,15()n a a ++ 1[(5)]()n n n a a =+-++ 11()(5)()n n n a a n a a =+++-++ 1()(5)n n n a a n na ≤+++- []1()(5)n n n a a n a =+++-< 115()n n n a a a a nT++++++= 所以1()5n n n a a nf x x T ++=<= ,综上,(),(1,2,3,4)n n f x x n <=(4)设1S 为[]0,1上折线()f x 与x 轴及直线1x =所围成图形的面积则1011012212332111()()()()()()222S y y x x y y x x y y x x =+-++-++-3443455411()()()()22y y x x y y x x ++-++-123451(2222)10y y y y y =++++[]112123123411()()()510a a a a a a a a a a T =++++++++++123411(432)105a a a a T=++++直线y x =与()y f x =的图像所围成图形的面积为1245112345221.25()a a a a S S a a a a a --++=-=++++【点睛】关键点睛:在证明()f x x <,(0,1)x ∈时,关键在于将其转化为证明(),(1,2,3,4)n n f x x n <=,结合题设定义进行证明.18.已知曲线():,0T F x y =,对坐标平面上任意一点(),P x y ,定义[](),=F P F x y ,若两点P ,Q ,满足[][]0F P F Q ⋅>,称点P ,Q 在曲线T 同侧;[][]0F P F Q ⋅<,称点P ,Q 在曲线T 两侧.(1)直线l 过原点,线段AB 上所有点都在直线l 同侧,其中()1,1A -,()2,3B ,求直线l 的倾斜角的取值范围;(2)已知曲线()(,3450F x y x y =+-=,O 为坐标原点,求点集[][]{}0S P F P F O =⋅>的面积;(3)记到点()0,1与到x 轴距离和为5的点的轨迹为曲线C ,曲线()22:,0=+--=T F x y x y y a ,若曲线C 上总存在两点M ,N 在曲线T 两侧,求曲线C 的方程与实数a 的取值范围.【答案】(1)33[0,arctan (,)24ππ ;(2)83S π=(3)()()222480:24120y x x C y x x ⎧=-≥⎪⎨=+<⎪⎩,52⎡⎢⎣⎦.【分析】(1)由题意设出直线方程为y kx =,通过新定义,得到[][](1)(23)0⋅=--->F A F B k k ,求出斜率范围,进而可求出倾斜角范围;(2)先由题意得到点集S 为圆224x y +=在直线3450x y +-=下方内部,设直线与圆的交点为A B 、,求出23AOB π∠=,进而可求出结果;(3)先设曲线C 上的动点为(,)x y5=y ,化简整理,即可得出轨迹方程;再由新定义,将[][]0⋅<F M F N 化为(6)(24)0--<a a ,进而可得出结果.【详解】(1)由题意,显然直线l 斜率存在,设方程为y kx =,则(),0=-=F x y kx y ,因为()1,1A -,()2,3B ,线段AB 上所有点都在直线l 同侧,则[][](1)(23)0⋅=--->F A F B k k ,解得312-<<k ;故倾斜角的范围是33[0,arctan (,)24ππ ;(2)因为[]0<F O ,所以[](345)0=+-F P x y ,故2234504x y x y +-<⎧⎨+<⎩,点集S 为圆224x y +=在直线3450x y +-=下方内部,设直线与圆的交点为A B 、,则O 到AB 的距离为1,故23AOB π∠=,因此,所求面积为:2214182223223ππ=⋅⋅+⋅=S(3)设曲线C 上的动点为(,)x y 5=y ,化简得曲线C 的方程为:228(3),0312(2),20x y y x y y ⎧=-≤≤⎨=+-≤≤⎩,其轨迹为两段抛物线弧;当03≤≤y 时,[]2(,)9246,24=-+-∈--F x y y y a a a ;当20-≤≤y 时,[]2(,)11246,24=++-∈--F x y y y a a a ,故若有[][]0⋅<F M F N ,则(6)(24)0--<a a ,解得624<<a .【点睛】本题主要考查新定义下直线与圆的综合,熟记直线与圆位置关系,以及直线斜率与倾斜角的概念等即可,属于常考题型.19.如图,已知A ,(0,0)B,(12,0)C ,直线:(20l k x y k --=.(1)证明直线l 经过某一定点,并求此定点坐标;(2)若直线l 等分ABC 的面积,求直线l 的一般式方程;(3)若P ,李老师站在点P 用激光笔照出一束光线,依次由BC (反射点为K )、AC (反射点为I )反射后,光斑落在P 点,求入射光线PK 的直线方程.【答案】(1)证明见解析,定点坐标为(2,;170y +-=;(3)2100x +-=.【分析】(1)整理得到(2))0k x y -+-=,从而得到方程组,求出定点坐标;(2)求出定点P 在直线AB 上,且||8AM =,由12AMD ABC S S = 得到3||||94AD AC ==,设出00(,)D x y ,由向量比例关系得到D(3)作出辅助线,确定P 关于BC 和AC 的对称点1,P 2P ,得到123P P k =,由对称性得3PK k =-,写成直线方程.【详解】(1)直线:(20l k x y k --=可化为(2))0k x y -+-=,令200xy -=⎧⎪-=,解得2x y =⎧⎪⎨=⎪⎩l 经过的定点坐标为(2,;(2)因为A ,(0,0)B ,(12,0)C ,所以||||||12AB AC BC ===,由题意得直线AB 方程为y =,故直线l 经过的定点M 在直线AB 上,所以||8AM =,设直线l 与AC 交于点D ,所以12AMD ABC S S =,即111||||sin ||||sin 222AM AD A AB AC A =⨯⨯,所以3||||94AD AC ==,设00(,)D x y ,所以34AD AC =,即003(6,(6,4x y --=-,所以0212x =,0y =21(2D ,将D 点坐标代入直线l的方程,解得k =所以直线l170y +-=;(3)设P 关于BC的对称点1(2,P -,关于AC 的对称点2(,)P m n ,直线AC12612x -=-,即)12y x =-,直线AC的方程为12)y x =-,所以(1221222n m n m ⎧-⋅=-⎪-⎪⎨++⎫⎪=-⎪⎪⎭⎩,解得14,m n ==2P ,由题意得12,,,P K I P四点共线,123P P k =,由对称性得3PK k =-,所以入射光线PK的直线方程为2)y x ---,即2100x -=.20.在平面直角坐标系xOy 中,已知圆M 过坐标原点O 且圆心在曲线y x =上.(1)设直线l :43y x =+与圆M 交于C ,D 两点,且OC OD =,求圆M 的方程;(2)设直线y =与(1)中所求圆M 交于E ,F 两点,点P 为直线5x =上的动点,直线PE ,PF 与圆M 的另一个交点分别为G ,H ,且G ,H 在直线EF 两侧,求证:直线GH 过定点,并求出定点坐标.【答案】(1)22(1)(4x y -+=(2)证明见解析【分析】(1)由||||OC OD =,知OM l ⊥,运用两直线垂直的条件:斜率之积为1-,解方程可得t ,讨论t 的取值,求得圆心到直线的距离,即可得到所求圆的方程;(2)设0(5,)P y ,11(,)G x y ,22(,)H x y ,求得E ,F 的坐标,PE 和PF 的方程,联立圆的方程,运用韦达定理,3PE PF k k =.设PE k m =,则3PF k m =.设直线GH 的方程为y kx b =+,代入圆的方程,运用韦达定理,可得k ,b 的关系,即可得到所求定点.(1)圆M 过坐标原点O 且圆心在曲线y x =上,设M t ⎛ ⎝⎭由||||OC OD =,知OM l ⊥.所以2OM k t =1t =±.当1t =时,圆心M 到直线:4l y =+的距离1)d =小于半径,符合题意;当1t =-时,圆心(1,M -到直线:4l y =+的距离1)d =大于半径,不符合题意.所以,所求圆M 的方程为22(1)(4x y -+-=.(2)设0(5,)P y ,11(,)G x y ,22(,)H x y ,又知(E -,F ,所以06PE y k =,02PF y k =.显然3PE PF k k =,设PE k m =,则3PF k m =.从而直线PE 方程为:(1)y m x +,与圆M 的方程22(1)(4x y -+=联立,消去y ,可得:2222(1)(22)30m x m x m ++-+-=,所以212311m x m --⨯=+,即21231m x m -=+;同理直线PF 方程为:3(3)y m x -,与圆M 的方程22(1)(4x y -+=联立,消去y ,可得:2222(19)(542)8130m x m x m +-++-=,所以222813319m x m -⨯=+,即22227119m x m -=+.所以22212224232713221199101m m m x x m m m m --+=+=+++++;222122242327111231199101m m m x x m m m m --=⋅=-+++⋅++.消去参数m 整理得121227()200x x x x -++=.①设直线GH 的方程为y kx b =+,代入22(1)(4x y -+=,整理得222(1)(22)0k x kb x b ++--+-=.所以122221kb x x k --+=-+,21221b x x k -⋅=+.代入①式,并整理得22(71030b k b k +-+-+=,即(250b k b k ++-=,解得2b k =或5b k -.当2b k =时,直线GH 的方程为(2)y k x =-;当5b k =时,直线GH 的方程为(5)y k x =-,过定点第二种情况不合题意(因为G ,H 在直径EF 的异侧),舍去.所以,直线GH 过定点.21.如图所示,已知圆222:()0O x y r r +=>上点(1,)a 处切线的斜率为圆O 与y 轴的交点分别为A B 、,与x 轴正半轴的交点为D ,P 为圆O 的第一象限内的任意一点,直线BD 与AP 相交于点M ,直线DP 与y 轴相交于点N .(1)求圆O 的方程;(2)试问:直线MN 是否经过定点?若经过定点,求出此定点坐标;若不经过,请说明理由.【答案】(1)224x y +=;(2)(2,2).【分析】(1)根据切线斜率得切点与圆心连线斜率,解得a,再代入圆方程得r,即得结果,(2)先设直线AP 方程,分别解得P 坐标,M 坐标,以及N 坐标,再求出直线MN 方程,最后根据方程求定点.【详解】(1)由题意得2211413a a r ⋅=-∴==+=∴22:4O x y += (2)设:2(10)AP y kx k =+-<<()222221404y kx k x kx x y =+⎧⇒++=⎨+=⎩222422,11k k P k k ⎛⎫-+⇒- ⎪++⎝⎭()()0,2,2,0B D - ∴直线:2BD y x =-2422,211y x k M y kx k k =-⎧---⎛⎫⇒⎨ ⎪=+--⎝⎭⎩由,,D P N 三点共线得:2222222002222140221121N N k y k k k y k k k k k -+---+-++=⇒==--+++-+∴21MN kk k =+直线MN 为:22211k k y x k k -+=+++即:()()2220y x k y -++-=由2022202y x y x y -==⎧⎧⇒⎨⎨-+==⎩⎩∴直线MN 过定点()2,2.【点睛】定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的.定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.22.已知圆C 经过()0,1A ,()()4,0B a a >两点.(1)如果AB 是圆C 的直径,证明:无论a 取何正实数,圆C 恒经过除A 外的另一个定点,求出这个定点坐标.(2)已知点A 关于直线3y x =-的对称点A '也在圆C 上,且过点B 的直线l 与两坐标轴分别交于不同两点M 和N ,当圆C 的面积最小时,试求BM BN ⋅的最小值.【答案】(1)证明见解析,定点为()4,1(2)min 8BM BN ⋅=【分析】(1)设点(),P x y 是圆C 上任意一点,由AB 是圆C 的直径,得0AP BP ⋅= ,从而可求出圆C 的方程,即可得出结论;(2)根据题意可得点C 在直线3y x =-上,要使圆C 的面积最小,则圆C 是以AA '为直径的圆,从而可求出圆C 的方程,进而可求得B 点的坐标,设出直线l 的方程,分别求出,M N 的坐标,再根据两点间距离公式结合基本不等式即可得解.【详解】(1)设点(),P x y 是圆C 上任意一点,因为AB 是圆C 的直径,所以0AP BP ⋅= ,即()()()()(),14,410x y x y a x x y y a -⋅--=-+--=,所以圆C 的方程为:()()()410x x y y a -+--=,则4x =,1y =时等式恒成立,故定点为()4,1,所以无论a 取何正实数,圆C 恒经过除A 外的另一个定点,定点坐标为()4,1;(2)因点A 关于直线3y x =-的对称点A '也在圆C 上,所以点C 在直线3y x =-上,又圆C 的面积最小,所以圆C 是以AA '直径的圆,设过点A 与直线3y x =-垂直的直线方程为1y x =-+,由方程组31y x y x =-⎧⎨=-+⎩得()2,1C -,则AC =所以圆C 的方程为()()22218x y -++=,当4x =时,1a =或3a =-,又0a >,所以1a =,即()4,1B ,由题意知直线l 斜率存在且不为零,设直线l 的方程为()14y k x -=-,当0x =时14y k =-,当0y =,时14x k =-,所以||||448BM BN ⋅=,(当且仅当221k k =,即1k =±时取等号)则当1k =±时,min 8BM BN ⋅=。
第10讲直线与圆1.(2018泰州中学高三月考)若圆C经过坐标原点和点(4,0),且与直线y=1相切,则圆C的方程是. 2。
(2018如东高级中学高三上学期期中)若圆C:x2+y2+2x+2y—7=0关于直线ax+by+4=0对称,由点P(a,b)向圆C作切线,切点为A,则线段PA的最小值为.3.(2017兴化第一中学高三月考)已知直线l:mx+y+3m+√3=0与圆x2+y2=12交于A,B两点.若AB=2√3,则实数m的值为。
4.(2018南通中学高三考前冲刺练习)在平面直角坐标系xOy中,直线ax+y—2a=0与圆x2+y2=1交于A,B两点,若弦AB中点的横坐标为25,则实数a的取值集合为。
5.(2018高考数学模拟(2))在平面直角坐标系xOy中,若直线l:x+2y=0与圆C:(x-a)2+(y-b)2=5相切,且圆心C在直线l的上方,则ab的最大值为.6。
(2018徐州铜山高三第三次模拟)已知圆O:x2+y2=r2(r〉0)及圆上的点A(—r,0),过点A的直线l交y 轴于点B(0,1),交圆于另一点C.若AB=2BC,则直线l的斜率为.7。
(2018扬州中学高三下学期开学考试)在平面直角坐标系xOy中,过点P(-2,0)的直线与圆x2+y2=1相切于点T,与圆(x—a)2+(y—√3)2=3相交于点R,S,且PT=RS,则正数a的值为.8.(2018海安高级中学高三月考)已知A,B是圆C:x2+y2=1上的动点,AB=√2,P是直线x+y—2=0上的动点,则|PP⃗⃗⃗⃗⃗⃗⃗⃗⃗ +PP⃗⃗⃗⃗⃗⃗⃗⃗⃗ |的最小值为。
9。
(2018南通高考数学冲刺小练(36))若半径为r的圆C:x2+y2+Dx+Ey+F=0的圆心C到直线l:Dx+Ey+F=0的距离为d,其中D2+E2=F2,且F〉0。
(1)求F的取值范围;(2)求证:d2—r2为定值;(3)是否存在定圆M,使得圆M既与直线l相切又与圆C相离?若存在,请求出定圆M的方程,并给出证明;若不存在,请说明理由。
中档大题规范练——直线与圆1.已知圆O:x2+y2=4和点M(1,a).(1)若过点M有且只有一条直线与圆O相切,求实数a的值,并求出切线方程.(2)若a=2,过点M的圆的两条弦AC,BD互相垂直,求AC+BD的最大值.解(1)由条件知点M在圆O上,所以1+a2=4,则a=± 3.当a=3时,点M为(1,3),kOM=3,k切=-33,此时切线方程为y-3=-33(x-1).即x+3y-4=0,当a=-3时,点M为(1,-3),kOM=-3,k切=3 3.此时切线方程为y+3=33(x-1).即x-3y-4=0.所以所求的切线方程为x+3y-4=0或x-3y-4=0.(2)设O到直线AC,BD的距离分别为d1,d2(d1,d2≥0),则d21+d22=OM2=3.又有AC=24-d21,BD=24-d22,所以AC+BD=24-d21+24-d22.则(AC+BD)2=4×(4-d21+4-d22+24-d21·4-d22)=4×[5+216-4?d21+d22?+d21d22]=4×(5+24+d21d22).因为2d1d2≤d 21+d22=3,所以d21d22≤94, 当且仅当d1=d2=62时取等号,所以4+d21d22≤52, 所以(AC +BD)2≤4×(5+2×52)=40. 所以AC +BD≤210,即AC +BD 的最大值为210.2.已知圆C :(x +1)2+y2=8.(1)设点Q(x ,y)是圆C 上一点,求x +y 的取值范围;(2)在直线x +y -7=0上找一点P(m ,n),使得过该点所作圆C 的切线段最短.解 (1)设x +y =t ,因为Q(x ,y)是圆上的任意一点,所以该直线与圆相交或相切, 即|-1+0-t|2≤22,解得-5≤t≤3, 即x +y 的取值范围是[-5,3].(2)因为圆心C 到直线x +y -7=0的距离d =|-1+0-7|2=42>22=r , 所以直线与圆相离,因为切线、圆心与切点的连线、切线上的点与圆心的连线,组成一直角三角形且半径为定值;所以只有当过圆心向直线x +y -7=0作垂线,过其垂足作的切线段最短,其垂足即为所求.设过圆心作直线x +y -7=0的垂线为x -y +c =0.又因为该线过圆心(-1,0),所以-1-0+c =0,即c =1,而x +y -7=0与x -y +1=0的交点为(3,4),即点P 坐标为(3,4).3.已知点P(0,5)及圆C :x2+y2+4x -12y +24=0.(1)若直线l 过点P 且被圆C 截得的线段长为43,求l 的方程;(2)求过P 点的圆C 的弦的中点的轨迹方程.解 (1)如图所示,AB =43,将圆C 方程化为标准方程为(x +2)2+(y -6)2=16,∴圆C 的圆心坐标为(-2,6),半径r =4,设D 是线段AB 的中点,则CD ⊥AB ,又AD =23,AC =4.在Rt △ACD 中,可得CD =2.设所求直线l 的斜率为k ,则直线l 的方程为y -5=kx ,即kx -y +5=0.由点C 到直线l 的距离公式:|-2k -6+5|k2+?-1?2=2, 得k =34. 故直线l 的方程为3x -4y +20=0.又直线l 的斜率不存在时,也满足题意,此时方程为x =0. ∴所求直线l 的方程为x =0或3x -4y +20=0.(2)设过P 点的圆C 的弦的中点为D(x ,y),则CD ⊥PD ,即CD →·PD→=0, ∴(x +2,y -6)·(x,y -5)=0,化简得所求轨迹方程为x2+y2+2x -11y +30=0.4.a 为何值时,(1)直线l1:x +2ay -1=0与直线l2:(3a -1)x -ay -1=0平行?(2)直线l3:2x +ay =2与直线l4:ax +2y =1垂直?解 (1)①当a =0时,两直线的斜率不存在,直线l1:x -1=0,直线l2:x +1=0,此时,l1∥l2.②当a≠0时,l1:y =-12a x +12a ,l2:y =3a -1a x -1a ,直线l1的斜率为k1=-12a ,直线l2的斜率为k2=3a -1a ,要使两直线平行,必须⎩⎪⎨⎪⎧ -12a =3a -1a ,12a ≠-1a ,解得a =16.综合①②可得当a =0或a =16时,两直线平行.(2)方法一 ①当a =0时,直线l3的斜率不存在,直线l3:x -1=0,直线l4:y -12=0,此时,l3⊥l4. ②当a≠0时,直线l3:y =-2a x +2a 与直线l4:y =-a 2x +12,直线l3的斜率为k3=-2a ,直线l4的斜率为k4=-a 2,要使两直线垂直,必须k3·k4=-1,即-2a ·⎝ ⎛⎭⎪⎫-a 2=-1,不存在实数a 使得方程成立. 综合①②可得当a =0时,两直线垂直.方法二 要使直线l3:2x +ay =2和直线l4:ax +2y =1垂直,根据两直线垂直的充要条件,必须A1A2+B1B2=0,即2a +2a =0,解得a =0,所以,当a =0时,两直线垂直.5.已知圆C 的方程为x2+y2+ax +2y +a2=0,一定点为A(1,2),且过定点A(1,2)作圆的切线有两条,求a 的取值范围.解 将圆C 的方程配方有(x +a 2)2+(y +1)2=4-3a24, ∴4-3a24>0,① ∴圆心C 的坐标为(-a 2,-1),半径r =4-3a22. 当点A 在圆外时,过点A 可作圆的两条切线,∴AC>r ,即 ?1+a 2?2+?2+1?2>4-3a22, 化简得a2+a +9>0.②由①②得-233<a<233, ∴a 的取值范围是-233<a<233. 6.已知以点C(t ,2t)(t ∈R ,t≠0)为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B ,其中O 为原点.(1)求证:△AOB 的面积为定值;(2)设直线2x +y -4=0与圆C 交于点M 、N ,若OM =ON ,求圆C 的方程;(3)在(2)的条件下,设P 、Q 分别是直线l :x +y +2=0和圆C 上的动点,求PB +PQ 的最小值及此时点P 的坐标.(1)证明 由题设知,圆C 的方程为(x -t)2+(y -2t )2=t2+4t2, 化简得x2-2tx +y2-4ty =0, 当y =0时,x =0或2t ,则A(2t,0);当x =0时,y =0或4t ,则B(0,4t), 所以S △AOB =12OA·OB =12|2t|·|4t|=4为定值. 即△AOB 的面积为定值.(2)解 ∵OM =ON ,则原点O 在MN 的中垂线上,设MN 的中点为H ,则CH ⊥MN ,∴C 、H 、O 三点共线,则直线OC 的斜率k =2t t =2t2=12,∴t =2或t =-2. ∴圆心为C(2,1)或C(-2,-1),∴圆C 的方程为(x -2)2+(y -1)2=5或(x +2)2+(y +1)2=5.由于当圆方程为(x +2)2+(y +1)2=5时,圆心到直线2x +y -4=0的距离d>r ,此时不满足直线与圆相交,故舍去,∴圆C 的方程为(x -2)2+(y -1)2=5.(3)解 点B(0,2)关于直线x +y +2=0的对称点B′(-4,-2), 则PB +PQ =PB′+PQ≥B′Q,又B′到圆上点Q 的最短距离为B′C-r =?-6?2+?-3?2- 5=35-5=2 5.所以PB +PQ 的最小值为25,直线B′C 的方程为y =12x ,则直线B′C 与直线x +y +2=0的交点P 的坐标为(-43,-23).。
题型01.01--直线与圆的综合应用一、问题概述直线与圆的综合问题是江苏高考常考的题型,曾在2008,2009,2013,2016年作为解答题而设置命题点,此部分内容通常考查三方面内容:一是直线、圆的方程的求解问题,求直线的方程时,常用待定系数法,若用到直线的斜率,则需要对直线的斜率是否存在进行讨论;求圆的方程时,有两种方法:(1)待定系数法,即通过设出圆的标准方程或一般方程,利用条件建立方程组,求出相关参数,进而得到圆的方程;(2)几何法,即根据几何图形的特征确定圆心与半径的值(例1).二是直线与圆的位置关系问题,有两种基本题型,即直线与圆相交、直线与圆相切,解决此类问题的基本方法有代数法和几何法,其中几何法即将问题转化为圆心到直线的距离来加以研究,而代数法将直线方程与圆的方程联立成方程组来加以解决(例3).三是圆与圆的位置关系问题,通过利用圆心距与两圆的半径之和或差的大小关系来加以解决(例2).此外,高考中,直线与圆的综合问题还经常与存在性问题、定点问题、定值问题、参数的范围问题、隐形轨迹问题等相结合,来综合考查学生分析问题、解决问题的能力.二、释疑拓展1.【苏北四市2014届高三第一学期期末调研.18题】已知ABC∆的三个顶点(1,0)C,其外接圆为H.B,(3,2)A-,(1,0)(1)若直线l过点C,且被H截得的弦长为2,求直线l的方程;(2)对于线段BH上的任意一点P,若在以C为圆心的圆上都存在不同的两点,M N,使得点M是线段PN的中点,求C的半径r的取值范围.2.【江苏2016高考.18题】如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:221214600+--+=x y x y及其上一点()A.2,4(1)设圆N与x轴相切,与圆M外切,且圆心N在直线6x=上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于,B C两点,且BC OA=,求直线l的方程;(3)设点(),0T t满足:存在圆M上的两点P和Q,使得TA TP TQ+=,求实数t的取值范围.+y截得的弦长为,求直线三、专题反思(你学到了什么?还想继续研究什么?)四、巩固训练1.【苏北四市(淮安、宿迁、连云港、徐州)2017届高三上学期期中】如图,在平面直角坐标系xOy 中,已知圆22:40C x y x +-=及点(1,0)A -,(1,2)B .(1)若直线l 平行于AB ,与圆C 相交于M ,N 两点,MN AB =,求直线l 的方程; (2)在圆C 上是否存在点P ,使得2212PA PB +=?若存在,求点P 的个数;若不存在,说明理由.2.【连云港、徐州、淮安、宿迁四市2015届高三第一次调研.17题】在平面直角坐标系xOy 中,已知点(3,4)A -,(9,0)B ,若C ,D 分别为线段OA ,OB 上的动点,且满足AC BD =.(1)若4AC =,求直线CD 的方程;(2)证明:△OCD 的外接圆恒过定点(异于原点O ).3.【苏锡常镇四市2012届高三教学情况调研(二).18题】在平面直角坐标系xOy 中,已知圆64:22=+y x O ,圆1O 与圆O 相交,圆心为)0,9(1O ,且圆1O 上的点与圆O 上的点之间的最大距离为21. (1)求圆1O 的标准方程;(2)过定点),(b a P 作动直线l 与圆O ,圆1O 都相交,且直线l 被圆O ,圆1O 截得的弦长分别为d ,1d .若d 与1d 的比值总等于同一常数λ,求点P 的坐标及λ的值.参考答案 二、释疑拓展1.【解】(1)线段AB 的垂直平分线方程为0x =,线段BC 的垂直平分线方程为30x y +-=,所以ABC ∆外接圆圆心(0,3)H , 圆H 的方程为22(3)10x y +-=.设圆心H 到直线l 的距离为d ,因为直线l 被圆H 截得的弦长为2,所以3d ==.当直线l 垂直于x 轴时,显然符合题意,即3x =为所求; 当直线l 不垂直于x 轴时,设直线方程为2(3)y k x -=-,则3=,解得43k =, 综上,直线l 的方程为3x =或4360x y --=.(2)直线BH 的方程为330x y +-=,设(,)(01),(,)P m n m N x y ≤≤,因为点M 是线段PN 的中点,所以(,)22m x n yM ++,又,M N 都在半径为r 的圆C 上, 所以222222(3)(2),(3)(2).22x y r m x n y r ⎧-+-=⎪⎨++-+-=⎪⎩即222222(3)(2),(6)(4)4.x y r x m y n r ⎧-+-=⎪⎨+-++-=⎪⎩ 因为该关于,x y 的方程组有解,即以(3,2)为圆心,r 为半径的圆与以(6,4)m n --为圆心,2r 为半径的圆有公共点,所以2222(2)(36)(24)(2)r r m n r r --++-++≤≤,又330m n +=-,所以2221012109r m m r +-≤≤对[01]m ∀∈,]成立. 而()2101210f m m m =+-在[0,1]上的值域为[325,10],所以2325r ≤且2r 10≤9.又线段BH 与圆C 无公共点,所以222(3)(332)m m r -+-->对[01]m ∀∈,成立,即2325r <. 故圆C 的半径r的取值范围为. 2、【解】(1)因为N 在直线6x =上,设()6,N n ,因为与x 轴相切,则圆N 为()()2226x y n n -+-=,0n >又圆N 与圆M 外切,圆M :()()226725x x -+-=,则75n n -=+,解得1n =,即圆N 的标准方程为()()22611x y -+-=; (2)由题意得OA =2OA k = 设:2l y x b =+,则圆心M 到直线l的距离d ==,则BC =BC =解得5b =或15b =-,即l :25y x =+或215y x =-; (3)TA TP TQ +=,即TA TQ TP PQ =-=,即TA PQ =, (TA t =-又10PQ ≤,10,解得2t ⎡∈-+⎣,对于任意2t ⎡∈-+⎣,欲使TA PQ =,此时10TA ≤,只需要作直线TA 2TA必然与圆交于P Q 、两点,此时TA PQ =,即TA PQ =,因此对于任意2t ⎡∈-+⎣,均满足题意,综上2t ⎡∈-+⎣.3、【解】(1)设过点C 1(-1,0)的直线l 方程:y =k (x +1),化成一般式kx -y +k =0∵直线l 被圆C 2截得的弦长为由此可得直线l 的方程为4x -3y +4=0或3x -4y +3=0. (2)①设圆心C (x ,y ),由题意,得CC 1=CC 2,化简得x +y -3=0,即动圆的圆心C 在定直线得x +y -3=0上运动,于是动圆C 的方程为2222)3()1(1)3()(m m m y m x -+++=+-+- 整理得0)1(22622=+----+y x m y y x四、巩固训练1.【解】(1)圆C 的标准方程为22(2)4x y-+=,所以圆心(2,0)C ,半径为2.因为l AB ∥,(1,0)A -,(1,2)B ,所以直线l 的斜率为2011(1)-=--,设直线l 的方程为0x y m -+=, ……………………………………………2分则圆心C 到直线l 的距离为d =.…………………………4分因为MN AB ==而222()2MN CM d =+,所以2(2)422m +=+, ……………………………6分 解得0m =或4m =-,故直线l 的方程为0x y -=或40x y --=.…………………………………8分 (2)假设圆C 上存在点P ,设(,)P x y ,则22(2)4x y -+=,222222(1)(0)(1)(2)12PA PB x y x y +=++-+-+-=,即22230x y y +--=,即22(1)4x y +-=, ………………………………10分 因为|22|22-<+,……………………………………12分 所以圆22(2)4x y -+=与圆22(1)4x y +-=相交,所以点P 的个数为2.…………………………………………………………14分2.【解】(1)因为(3,4)A -,所以5OA ==又因为4AC =,所以1OC =,所以34(,)55C -,由4BD =,得(5,0)D ,所以直线CD 的斜率40153755-=-⎛⎫-- ⎪⎝⎭,所以直线CD 的方程为1(5)7y x =--,即750x y +-=. (2)设(3,4)(01)C m m m -<≤,则5OC m =.则55AC OA OC m =-=-,因为AC BD =,所以5+4OD OB BD m =-=, 所以D 点的坐标为(5+4,0)m ,又设△OCD 的外接圆的方程为22+0x y Dx Ey F +++=,则有()()2220,916340,54540.F m m mD mE F m m D F ⎧=⎪⎪+-++=⎨⎪++++=⎪⎩解之得(54),0D m F =-+=,103E m =--,所以△OCD 的外接圆的方程为22(54)(103)0x y m x m y +-+-+=, 整理得22435(2)0x y x y m x y +---+=,令2243=0,+2=0x y x y x y ⎧+--⎨⎩,所以0,0.x y =⎧⎨=⎩(舍)或2,1.x y =⎧⎨=-⎩ 所以△OCD 的外接圆恒过定点为(2,1)-.。
2015届苏州市高三数学过关题——解析几何(一)直线和圆一.填空题【考点一】直线方程1. (必修2第128页复习第19题改编)已知点(2,3),(4,2)A B -,直线l 斜率存在且过点(0,2)P -,若l 与线段AB 相交,则l 的斜率k 的取值范围是 . 【答案】5(,][1,)2-∞-+∞[解析] 51,2PB PA k k ==-,由斜率和倾斜角的关系可得.2. 课本原题(必修2第128页复习第16题)过点P (1,2)作直线l ,使直线l 与点M (2, 3)和点N (4,-5)距离相等,则直线l 的方程为________________. 【答案】3x +2y -7=0或4x +y -6=0[解析] 法一:斜率不存在不满足题意,可设直线方程为2(1)y k x -=-,=137k k -=+或137k k -=--,则32k =-或4k =-法二:直线l 为与MN 平行或经过MN 的中点的直线,当l 与MN 平行时,斜率为-4,故直线方程为y -2=-4(x -1),即4x +y -6=0;当l 经过MN 的中点时,MN 的中点为(3,-1),直线l 的斜率为-32,故直线方程为y -2=-32(x -1),即3x +2y -7=03.课本原题(必修2第128页复习第5题)已知直线l 过点(5,4)P --,且与两坐标轴围成的三角形的面积为5,求直线l 的方程.改编:过点(2,1)P 作直线l 分别交x 、y 正半轴于A 、B 两点,(1)当AOB ∆面积最小时,直线l 的方程为____________; (2)当PA PB 最小时,直线l 的方程为____________. 【答案】(1)240x y +-= (2)30x y +-=[解析] 法一:由题意斜率存在,可设直线方程为1(2)(0)y k x k -=-< 令0,12x y k ==-;令10,2y x k ==-.所以1111(12)(2)(44)422AOB S k k k k∆=--=--≥, 当且仅当12k =-时取等号,此时直线方程为240x y +-=. 法二:由题意截距不为0,可设直线方程为1(,0)x ya b a b+=>,过点(2,1)P ,有211a b+=,所以211a b =+≥,解得8ab ≥, 所以142AOB S ab ∆=≥,此时2112a b ==,即4,2a b ==【考点二】圆的方程4.经过点(2,4)A --,且与直线:3260l x y +-=相切于点(8,6)B 的圆的方程是______.【答案】22113125()()222x y -++=[解析] 法一:设圆心为(,)a b ,则有2222(2)(4)(8)(6)638a b a b b a ⎧+++=-+-⎪⎨-=⎪-⎩,解得11232a b ⎧=⎪⎪⎨⎪=-⎪⎩,又可得21252r =. 法二:AB 中垂线方程为40x y +-=,过点B 且与直线l 垂直的直线方程为3180x y --=, 它们的交点即为圆心.【考点三】直线和圆的位置关系5.过定点(1,0)一定可以作两条直线与圆2222290x y x ky k +++-+=相切,则k 的取值范围为 .【答案】(23,2)--[解析] 点(1,0)在圆2222290x y x ky k +++-+=外,还要注意构成圆的条件. 6. 已知直线20ax y +-=与圆心为C 的圆22(1)()4x y a -+-=相交于,A B 两点,且ABC ∆为等边三角形,则实数a =________.【答案】4±[解析]由题设圆心到直线20ax y +-=4a =7.若曲线y =1+4-x 2与直线y =k (x -2)+4有两个不同交点,则实数k 的取值范围是____.【答案】512<k ≤34[解析]半圆x 2+(y -1)2=4(y ≥1)与过P (2,4)点,斜率为k 的直线有两个交点,如图:A (-2,1),k PA =34,过P 与半圆相切时,k =512,∴512<k ≤34.【考点四】圆和圆的位置关系8.如果圆()()224x a y a -+-=上总存在两个点到原点的距离为1,则实数a 的取值范围____________.【答案】2((,222- [解析]由题设圆()()224x a y a -+-=与圆221x y +=有两个交点,则13. 【考点五】圆中的最值问题9.已知圆22:4C x y +=分别交x 轴正半轴及y 轴负半轴于M 、N 两点,点P 为圆C 上任意一点,则PM PN ⋅的最大值为__________.【答案】4+[解析](2,0),(0,2)M N -,设(,)P x y ,则2222PM PN x x y y ⋅=-++,法一:222222(1)(1)2PM PN x x y y x y ⋅=-++=-++-,22(1)(1)x y -++可理解为点P 到(1,1)-距离的平方,则22(1)(1)x y -++的最大值为2(2+,所以PM PN ⋅的最大值为4+法二:222242()PM PN x x y y y x ⋅=-++=+-,令2cos ,2sin x y θθ==,可得. 10. 在平面直角坐标系xOy 中,圆C 的方程为2240x y x +-=.若直线(1)y k x =+上存在点P,使过P 所作的圆的两条切线相互垂直,则实数k 的取值范围是. 【答案】[-[解析]由题设可得,直线上存在点P ,使得PC =即可,则m in PC≤,则≤k -≤二.解答题11.如图,平面直角坐标系xOy 中,AOB ∆和COD ∆为两等腰直角三角形,(2,0)A -,C (a ,0)(a >0).设AOB ∆和COD ∆的外接圆圆心分别为M ,N . (1)若⊙M 与直线CD 相切,求直线CD 的方程;(2)若直线AB 截⊙N 所得弦长为4,求⊙N 的标准方程; (3)是否存在这样的⊙N ,使得⊙N AB N 说明理由.[解析](1)圆心(1,1)M -.∴圆M 方程为22(1)(1)x y ++-=直线CD 方程为0x y a =+-. ∵⊙M 与直线CD 相切,∴圆心M 到直线CD 的距离d=化简得: 2a =±(舍去负值).∴直线CD 的方程为20x y =+-.(2)直线AB 方程为:20x y -+=,圆心N (,)22a a.∴圆心N到直线AB=∵直线AB 截⊙N 的所得弦长为4,∴22222a +=.∴a =±(舍去负值) . ∴⊙N 的标准方程为22((6x y +=. (3)存在.由(2)知,圆心N 到直线AB 定值),且AB ⊥CD 始终成立,∴当且仅当圆N=即a =4时,⊙N 上有且只有三个点到直线AB此时, ⊙N 的标准方程为22(2)(2)8x y -+-=.12.课本原题(必修2第112页习题2.2第12题):已知点(,)M x y 与两个定点(0,0),(3,0)O A 的距离之比为12,那么点M 的坐标应满足什么关系?画出满足条件的点M 所构成的曲线.改编1:(2008高考江苏卷第13题)满足条件2,AB AC ==的三角形ABC 的面积的最大值为 . 解析:法一(原解法):本小题考查三角面积公式、余弦定理及函数思想。
2022年-2022年江苏省高考数学试题分类解析汇编专题8:圆、圆锥曲线一、选择填空题1(江苏2022年5分)如果函数2y ax bx a =++的图象与轴有两个交点,则点(,)a b aOb 在平面上的区域(不 包含边界)为【】【答案】C 。
【考点】二元一次不等式(组)与平面区域。
【分析】由2y ax bx a =++的图象与轴有两上交点,知△>0;进一步整理为a 、b 的二元一次不等式组,再画出其表示的平面区域即可:∵函数2y ax bx a =++的图象与轴有两个交点,∴△=224b a ->0,即()()22b a b a +->0,即2020b a >b a >+⎧⎨-⎩>0或2020b a <b a <+⎧⎨-⎩。
则其表示的平面区域为选项C 。
故选C 。
2(江苏2022年5分)抛物线2ax y =的准线方程是2=y ,则a 的值为【】A .81 B .-81 C .8 D .-8【答案】B 。
【考点】抛物线的定义。
【分析】先把抛物线方程转化为标准方程2x my =的形式,再根据其准线方程为4my =-即可求之:aA .B .C .D .∵抛物线2ax y =的标准方程是21x y a =,则其准线方程为124y a=-=, ∴18a =-。
故选B 。
3(江苏2022年5分)已知双曲线中心在原点且一个焦点为F (,0),直线1-=x y 与其相交于M 、N 两点,MN 中点的横坐标为32-,则此双曲线的方程是【】 A .14322=-y x B .13422=-y xC .12522=-y xD .15222=-y x【答案】D 。
【考点】双曲线的标准方程。
【分析】设双曲线方程为22221x y a b-=, 将1-=x y 代入22221x y a b-=并整理得()222222220b a x a x a a b -+--=。
由韦达定理得12222ax x b a +=--。
中档大题规范练——直线与圆
1.已知圆O:x2+y2=4和点M(1,a).
(1)若过点M有且只有一条直线与圆O相切,求实数a的值,并求出切线方程.
(2)若a=2,过点M的圆的两条弦AC,BD互相垂直,求AC+BD的最大值.解(1)由条件知点M在圆O上,
所以1+a2=4,则a=± 3.
当a=3时,点M为(1,3),kOM=3,k切=-
3
3
,
此时切线方程为y-3=-
3
3
(x-1).
即x+3y-4=0,
当a=-3时,点M为(1,-3),kOM=-3,k切=
3
3
.
此时切线方程为y+3=
3
3
(x-1).即x-3y-4=0.
所以所求的切线方程为x+3y-4=0或x-3y-4=0.
(2)设O到直线AC,BD的距离分别为d1,d2(d1,d2≥0),则d21+d22=OM2=3.
又有AC=24-d21,BD=24-d22,
所以AC+BD=24-d21+24-d22.
则(AC+BD)2=4×(4-d21+4-d22+24-d21·4-d22)
=4×[5+216-4?d21+d22?+d21d22]
=4×(5+24+d21d22).
因为2d1d2≤d21+d22=3,所以d21d22≤9 4,
当且仅当d1=d2=
6
2
时取等号,所以4+d21d22≤
5
2
,
所以(AC+BD)2≤4×(5+2×5
2
)=40.
所以AC+BD≤210,
即AC+BD的最大值为210.
2.已知圆C:(x+1)2+y2=8.
(1)设点Q(x,y)是圆C上一点,求x+y的取值范围;
(2)在直线x+y-7=0上找一点P(m,n),使得过该点所作圆C的切线段最短.解(1)设x+y=t,因为Q(x,y)是圆上的任意一点,所以该直线与圆相交或相切,
即|-1+0-t|
2
≤22,解得-5≤t≤3,
即x+y的取值范围是[-5,3].
(2)因为圆心C到直线x+y-7=0的距离
d=|-1+0-7|
2
=42>22=r,
所以直线与圆相离,因为切线、圆心与切点的连线、切线上的点与圆心的连线,组成一直角三角形且半径为定值;所以只有当过圆心向直线x+y-7=0作垂线,过其垂足作的切线段最短,其垂足即为所求.
设过圆心作直线x+y-7=0的垂线为x-y+c=0.
又因为该线过圆心(-1,0),
所以-1-0+c=0,即c=1,
而x+y-7=0与x-y+1=0的交点为(3,4),
即点P坐标为(3,4).
3.已知点P(0,5)及圆C:x2+y2+4x-12y+24=0.
(1)若直线l过点P且被圆C截得的线段长为43,求l的方程;
(2)求过P点的圆C的弦的中点的轨迹方程.
解(1)如图所示,AB=43,将圆C方程化为标准方程为(x+2)2+(y-6)2=16,∴圆C的圆心坐标为(-2,6),半径r=4,设D是线段AB的中点,则CD⊥AB,
又AD=23,AC=4.
在Rt△ACD中,可得CD=2.
设所求直线l的斜率为k,则直线l的方程为y-5=kx,即kx-y+5=0.
由点C到直线l的距离公式:|-2k-6+5|
k2+?-1?2
=2,
得k=3 4 .
故直线l的方程为3x-4y+20=0.
又直线l的斜率不存在时,也满足题意,此时方程为x=0.
∴所求直线l的方程为x=0或3x-4y+20=0.
(2)设过P点的圆C的弦的中点为D(x,y),
则CD⊥PD,即CD→·PD
→=0,
∴(x+2,y-6)·(x,y-5)=0,
化简得所求轨迹方程为x2+y2+2x-11y+30=0.
4.a为何值时,(1)直线l1:x+2ay-1=0与直线l2:(3a-1)x-ay-1=0平行?
(2)直线l3:2x+ay=2与直线l4:ax+2y=1垂直?
解(1)①当a=0时,两直线的斜率不存在,
直线l1:x -1=0,直线l2:x +1=0,此时,l1∥l2.
②当a≠0时,l1:y =-
12a x +12a
, l2:y =3a -1a x -1a
, 直线l1的斜率为k1=-12a , 直线l2的斜率为k2=3a -1a
, 要使两直线平行,必须⎩⎨⎧
-
12a =3a -1a ,12a ≠-1a ,
解得a =16. 综合①②可得当a =0或a =16
时,两直线平行. (2)方法一 ①当a =0时,直线l3的斜率不存在,
直线l3:x -1=0,直线l4:y -12
=0,此时,l3⊥l4. ②当a≠0时,直线l3:y =-2a x +2a 与直线l4:y =-a 2x +12
,直线l3的斜率为k3=-2a ,直线l4的斜率为k4=-a 2
,要使两直线垂直,必须k3·k4=-1, 即-2a ·⎝ ⎛⎭
⎪⎫-a 2=-1,不存在实数a 使得方程成立. 综合①②可得当a =0时,两直线垂直.
方法二 要使直线l3:2x +ay =2和直线l4:ax +2y =1垂直,根据两直线垂直
的充要条件,必须A1A2+B1B2=0,即2a +2a =0,解得a =0,所以,当a =0时,两直线垂直.
5.已知圆C 的方程为x2+y2+ax +2y +a2=0,一定点为A(1,2),且过定点A(1,2)作圆的切线有两条,求a 的取值范围.
解 将圆C 的方程配方有(x +a 2)2+(y +1)2=4-3a24
, ∴4-3a24
>0,① ∴圆心C 的坐标为(-a 2,-1),半径r =4-3a22
. 当点A 在圆外时,过点A 可作圆的两条切线,
∴AC>r ,
即 ?1+a 2?2+?2+1?2>4-3a22
, 化简得a2+a +9>0.② 由①②得-233<a<233
, ∴a 的取值范围是-233<a<233
. 6.已知以点C(t ,2t
)(t ∈R ,t≠0)为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B ,其中O 为原点.
(1)求证:△AOB 的面积为定值;
(2)设直线2x +y -4=0与圆C 交于点M 、N ,若OM =ON ,求圆C 的方程;
(3)在(2)的条件下,设P 、Q 分别是直线l :x +y +2=0和圆C 上的动点,求PB +PQ 的最小值及此时点P 的坐标.
(1)证明由题设知,圆C的方程为(x-t)2+(y-2
t
)2=t2+
4
t2
,
化简得x2-2tx+y2-4
t
y=0,
当y=0时,x=0或2t,则A(2t,0);
当x=0时,y=0或4
t
,则B(0,
4
t
),
所以S△AOB=1
2 OA·OB
=1
2|2t|·|
4
t
|=4为定值.
即△AOB的面积为定值.
(2)解∵OM=ON,则原点O在MN的中垂线上,设MN的中点为H,则CH⊥MN,
∴C、H、O三点共线,则直线OC的斜率
k=2
t
t
=
2
t2
=
1
2
,∴t=2或t=-2.
∴圆心为C(2,1)或C(-2,-1),
∴圆C的方程为(x-2)2+(y-1)2=5或(x+2)2+(y+1)2=5.
由于当圆方程为(x+2)2+(y+1)2=5时,圆心到直线2x+y-4=0的距离d>r,此时不满足直线与圆相交,故舍去,
∴圆C的方程为(x-2)2+(y-1)2=5.
(3)解点B(0,2)关于直线x+y+2=0的对称点B′(-4,-2),
则PB+PQ=PB′+PQ≥B′Q,
又B′到圆上点Q的最短距离为
B′C-r=?-6?2+?-3?2- 5 =35-5=2 5.
所以PB+PQ的最小值为25,直线B′C的方程为y=1
2
x,则直线B′C与直线x
+y+2=0的交点P的坐标为(-4
3
,-
2
3
).。