2011年高考数学压轴题跟踪演练系列5DADWD
- 格式:doc
- 大小:796.50 KB
- 文档页数:10
2011年高考最新数学压轴题系列训练(五)1. 已知椭圆22122:1(0)x y C a b a b +=>>的离心率为3,直线l :2y x =+与以原点为圆心、以椭圆1C 的短半轴长为半径的圆相切. (I )求椭圆1C 的方程;(II )设椭圆1C 的左焦点为1F ,右焦点2F ,直线1l 过点1F 且垂直于椭圆的长轴,动直线2l 垂直1l 于点P ,线段2PF 垂直平分线交2l 于点M ,求点M 的轨迹2C 的方程;(III )设2C 与x 轴交于点Q ,不同的两点S R ,在2C 上,且满足0,QR RS ⋅=求QS 的取值范围.解:(Ⅰ)∵222222221,2333c a b e e a ba c -=∴===∴=,∵直线22202:b y x y x l =+=--与圆相切,∴2,2,222==∴=b b b ∴32=a ∵椭圆C1的方程是 12322=+y x(Ⅱ)∵MP=MF2,∴动点M 到定直线1:1-=x l 的距离等于它到定点F1(1,0)的距离, ∴动点M 的轨迹是C 为l1准线,F2为焦点的抛物线 ,∴点M 的轨迹C2的方程为x y 42=(Ⅲ)Q (0,0),设),4(),,4(222121y y S y y R ,∴),4(),,4(122122121y y y y y y --==∵0=⋅,∴0)(16)(121212221=-+-y y y y y y ,∵0,121≠≠y y y ,化简得∴)16(112y y y +-= ∴6432256232256212122=+≥++=y y y ,当且仅当 4,16,2561212121±===y y y y 时等号成立 ∵6464)8(41)4(||2222222222≥-+=+=y y y y QS ,又∴||58||8,64min 222y y ,故时,=±==的取值范围是),58[+∞2. 函数(),()ln ln ,x f x ae g x x a ==-其中a 为常数,且函数()y f x =和()y g x =的图像在其与坐标轴的交点处的切线互相平行(1)求函数()y g x =的解析式(2)若关于x 的不等式()x mg x ->m 的取值范围。
2011高考数学押题卷及答案 如皋中学4月一、填空题:本大题共14小题,每小题5分,共计70分.1.为了检查某超市货架上的奶粉是否含有三聚氰胺,要从编号依次为01到50的袋装奶粉中抽取5袋进行检验,现将50袋奶粉按编号顺序平均分成5组,用每组选取的号码间隔一样的系统抽样方法确定所选取的5袋奶粉的编号,若第4组抽出的号码为36,则第1组中用抽签的方法确定的号码是 ▲ .2.若复数1z mi =-(i 为虚数单位,m ∈R ),若22z i =-,则复数z 的虚部为 ▲ .3.若函数()2sin()(0)f x x =ω+ϕω>的图象的相邻两条对称轴的距离是π,则ω的值为 ▲ .4.若双曲线焦点为(5,0),渐近线方程为2x y =±,则此双曲线的标准方程为 ▲ .5.已知向量a → = (sin 55°,sin 35°),b → = (sin 25°,sin 65°),则向量 a → 与 b → 的夹角为 ▲ .6.已知a ,b ,c 是锐角△ABC 中∠A ,∠B ,∠C 的对边,若a = 3,b = 4,△ABC 的面积为33,则c = ▲ .7.作为对数运算法则:lg()lg lg (0,0)a b a b a b +=+>>是不正确的.但对一些专门值是成立的,例如:lg(22)lg 2lg 2+=+. 则关于所有使lg()lg lg a b a b +=+(0a >,0b >)成立的,a b 应满足函数()a f b =表达式为▲ .8.两游客坐火车旅行,期望座位连在一起,且有一个靠窗,已知火车内的座位的排法如图,则下列座位号码中符合要求的有 ▲ .①48,49 ②54,55 ③62,63④75,76 ⑤84,85 ⑥96,979.已知关于x 的不等式 x + 1x + a 2的解集为P ,若1P ,则实数a 的取值范畴为 ▲ .窗口 1 2过道 345窗口67 8 9 10 11 12 13 14 15 16 17 … … …10.已知集合(){}22,|2009x y x y Ω=+≤,若点),(y x P 、点),(y x P '''满足x x '≤且y y '≥,则称点P 优于P '. 如果集合Ω中的点Q 满足:不存在Ω中的其它点优于Q ,则所有如此的点Q 构成的集合为 ▲ .11.若实数x 、y 满足114422x y x y +++=+,则22x y S =+的取值范畴是 ▲ .12.已知集合P ={ x | x = 2n ,n ∈N},Q ={ x | x = 2n ,n ∈N},将集合P ∪Q 中的所有元素从小到大依次排列,构成一个数列{an},则数列{an}的前20项之和S20 = ▲ .13.记集合{}0,1,2,3,4,5,6=T ,3124234,1,2,3,47777⎧⎫=+++∈=⎨⎬⎩⎭i a a a a Ma T i ,将M中的元素按从大到小的顺序排列,则第2009个数是 ▲ .14.已知抛物线()y g x =通过点(0,0)O 、(,0)A m 与点(1,1)P m m ++,其中0>>n m ,a b <,设函数)()()(x g n x x f -=在a x =和b x =处取到极值,则n m b a ,,,的大小关系为 ▲ .二、解答题:本大题共6小题,共计90分.解承诺写出必要的文字讲明步骤.15.(本小题共14分)已知在等边三角形ABC 中,点P 为线段AB 上一点,且(01)AP AB =≤≤u u u r u u u rλλ.(1)若等边三角形边长为6,且13=λCP ;(2)若CP AB PA PB ⋅≥⋅u u u r u u u r u u u r u u u r,求实数λ的取值范畴.16.(本小题共14分)如图所示,在直三棱柱111C B A ABC -中,1AB BB =,1AC ⊥平面D BD A ,1为AC 的中点. (1)求证://1C B 平面BD A 1; (2)求证:⊥11C B 平面11A ABB ; (3)设E 是1CC 上一点,试确定E 的位置使平面⊥BD A 1平面BDE ,并讲明理由.17.(本小题共14分)椭圆C :12222=+by a x )0(>>b a 的一个焦点)0,2(1-F ,右准线方程8=x .(1)求椭圆C 的方程;(2)若M 为右准线上一点,A 为椭圆C 的左顶点,连结AM 交椭圆于点P ,求APPM的取值范畴; (3)设圆Q :22()1(4)x t y t -+=>与椭圆C 有且只有一个公共点,过椭圆C 上一点B 作圆Q 的切线BS 、BT ,切点为,S T ,求BS BT ⋅u u u r u u u r的最大值.A 1B 1C 1AB CD18.(本小题共16分)在金融危机中,某钢材公司积压了部分圆钢,经清理知共有2009根.现将它们堆放在一起.(1)若堆放成纵断面为正三角形(每一层的根数比上一层根数多1根),并使剩余的圆钢尽可能地少,则剩余了多少根圆钢?(2)若堆成纵断面为等腰梯形(每一层的根数比上一层根数多1根),且许多于七层,(Ⅰ)共有几种不同的方案?(Ⅱ)已知每根圆钢的直径为10cm ,为考虑安全隐患,堆放高度不得高于4m ,则选择哪个方案,最能节约堆放场地?19.(本小题共16分)已知函数21()ln (4)2f x x x a x =++-在(1,)+∞上是增函数.(1)求实数a 的取值范畴;(2)在(1)的结论下,设2()||,[0,ln 3]2xa g x e a x =-+∈,求函数)(x g 的最小值.20.(本小题共16分)已知数列{}n a ,{}n b 满足12a =,121n n n a a a +=+,1n n b a =-数列{}n b 的前n 项和为n S ,2n n n T S S =-.(1)求证:数列1n b ⎧⎫⎨⎬⎩⎭为等差数列,并求通项n b ;(2)求证:1n n T T +>;(3)求证:当2n ≥时,271112n n S +≥.数学附加题21.为了保证信息安全传输,设计一种密码系统,其加密、解密原理如下图:现在加密方式为:把发送的数字信息X ,写为“11211222a a a a ”的形式,先左乘矩阵1422A ⎡⎤=⎢⎥-⎣⎦,再左乘矩阵625514855B ⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦,得到密文Y ,现在已知接收方得到的密文是4,12,36,72,试破解该密码.22.以直角坐标系的原点O 为极点,x 轴的正半轴为极轴.已知点P 的直角坐标为(1,5)-,[来源:学科网]点M 的极坐标为(4,)2π.若直线l 过点P ,且倾斜角为3π,圆C 以M 为圆心、4为半径.(1)求直线l 的参数方程和圆C 的极坐标方程; (2)试判定直线l 和圆C 的位置关系.23.在2009年春运期间,一名大学生要从南京回到徐州老家有两种选择,即坐火车或汽车.已知该大学生先去买火车票的概率是先去买汽车票概率的3倍,汽车票随时都能买到.若先去买火车票,则买到火车票的概率为0.6,买不到火车票,再去买汽车票.(1)求这名大学生先去买火车票的概率;(2)若火车票的价格为120元,汽车票的价格为280元,设该大学生购买车票所花费钞票数为ξ,求ξ的数学期望值.24.已知抛物线223y x =,过其对称轴上一点(23,0)P 作一直线交抛物线于,A B 两点,若60OBA ∠=︒,求OB 的斜率.答案1、062、1-3、1 5.30° 6.137、(1)1ba b b =>- 8、“通过椭圆)0(12222>>=+b a by a x 中心的任意弦的两端点与椭圆上除这两个端点外的任意一点P 的连线的斜率之积为定值22b a-”.②⑤⑥9.[−1,0] 10、答案:(){}22,|2009,00且x y x y x y +=≤≥提示:P 优于P ',即P 位于P '的左上方,“不存在Ω中的其它点优于Q ”,即“点Q 的左上方不存在Ω中的点”.故满足条件的点集合为(){}22,|2009,00且x y xy x y +=≤≥.11、答案:24S <≤提示:设12122,2(0,0)x y t t t t ==>>,则22121222t t t t +=+,2121212()22()t t t t t t +-=+,∴2121212()2()20t t t t t t +-+=>,得112t t +>或120t t +<(舍去),又2212121212()2()222t t t t t t t t +⎛⎫+-+=≤ ⎪⎝⎭,得1204t t ≤+≤,∴1224t t <+≤.12. 343 13、答案:3922401[来源:学科网] 提示:3124234,1,2,3,47777⎧⎫=+++∈=⎨⎬⎩⎭i a a a a M a T i 中的元素为44444401237,,,,,77777⋅⋅⋅,故从大到小排列第2009个数是3922401. 14、答案:b n a m <<<提示:由抛物线通过点(0,0)O 、(,0)A m 设抛物线方程(),0y kx x m k =-≠, 又抛物线过点(1,1)P m m ++,则1(1)(1)m k m m m +=++-,得1k =, 则2()()y g x x x m x mx ==-=-,∴)()()(x g n x x f -=32()()()x x m x n x m n x mnx =--=-++,[来源:学&科&网] ∴/2()32()f x x m n x mn =-++,又函数()f x 在a x =和b x =处取到极值, 故//()0,()0f a f b ==,Q 0>>n m ,∴/22()32()()0f m m m n m mn m mn m m n =-++=-=->,/22()32()()0f n n m n n mn n mn n n m =-++=-=-<,又a b <,故b n a m <<<.15、解:(1)当13=λ时,13AP AB =u u u r u u u r ,2222221()262622282CP CA AP CA CA AP AP =+=+⋅+=-⨯⨯⨯+=u u u r u u u r u u u r u u u r u u u r u u u r u u u r.∴||7CP =u u u r……………………………………………………………………7分(2)设等边三角形的边长为a ,则221()()2CP AB CA AP AB CA AB AB a a ⋅=+⋅=+λ⋅=-+λu u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,222()()PA PB PA AB AP AB AB AB a a ⋅=⋅-=λ⋅-λ=-λ+λu u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r…………………12分即2222212a a a -+λ≥-λ,∴21202λ-λ+≤,∴222222≤λ≤. 又00≤λ≤,∴2212≤λ≤. ……………………………………………………14分16、解:(1)证明:连接1AB 与B A 1相交于M ,则M 为B A 1的中点,连结MD ,又D 为AC 的中点,∴1//B C MD ,又⊄C B 1平面BD A 1,∴1//B C 平面BD A 1.…………4分(2)∵1AB B B =,∴四边形11A ABB 为正方形,∴11A B AB ⊥,又∵1AC ⊥面BD A 1,∴11AC A B ⊥,∴1A B ⊥面11C AB ,∴111A B B C ⊥,又在直棱柱111C B A ABC -中111C B BB ⊥,∴11B C ⊥平面A ABB 1.………………8分(3)当点E 为C C 1的中点时,平面⊥BD A 1平面BDE ,D Θ、E 分不为AC 、C C 1的中点,∴1//DE AC ,1AC Θ平面BD A 1,∴DE ⊥平面BD A 1,又⊂DE 平面BDE ,∴平面⊥BD A 1平面BDE .…………14分17、解:(1)由题意得,2=c ,82=ca 得,216a =,212b =,∴所求椭圆方程为1121622=+y x .………………………………………………………4分 (2)设P 点横坐标为0x ,则141248000-+=+-=x x x AP PM , ∵440≤<-x ,∴21141248000≥-+=+-=x x x AP PM . ∴AP PM 的取值范畴是⎪⎭⎫⎢⎣⎡+∞,21 ………………………………………………………9分(3)由题意得,5t =,即圆心Q 为(5,0),设BQ x =,则||||cos BS BT BS BT SBT ⋅=⋅∠u u u r u u u r u u u r u u u r[来源:学科网] 2||||(12sin )BS BT SBQ =⋅-∠u u u r u u u r221(1)[12()]x x=--2223x x=+-,∵19BQ <≤,即19x <≤,∴2181x <≤,易得函数2y x x =+在(1,2)上单调递减,在(2,81]上单调递增,∴281x =时,max 6320()81BS BT ⋅=u u u r u u u r . …………………………………14分18、(1) 当62=n 时,使剩余的圆钢尽可能地少,现在剩余了56根圆钢;-----4分(2) 当纵断面为等腰梯形时,设共堆放n 层,则从上到下每层圆钢根数是以x 为首项、1为公差的等差数列,从而2009)1(21=-+n n nx ,即4177220092)12(⨯⨯⨯=⨯=-+n x n ,因1-n 与n 的奇偶性不同,因此12-+n x 与n 的奇偶性也不同,且12-+<n x n ,从而由上述等式得: ⎩⎨⎧=-+=574127n x n 或⎩⎨⎧=-+=2871214n x n 或⎩⎨⎧=-+=981241n x n 或⎩⎨⎧=-+=821249n x n ,因此共有4种方案可供选择。
2011届高考数学考前抢分押题卷——山东卷:理5一、选择题:本大题共12小题;每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的,把正确选项的代号涂在答题卡上.1.已知R 是实数集,2{|1},{|M x N y y x===<,则R N C M ⋂=A.(1,2)B. [0,2]C.∅D. [1,2]2.幂函数y=f(x)的图象经过点(4,12),则f(14)的值为 A.1B.2C.3D.43.在平行四边形ABCD 中,AC 为一条对角线,(2,4),(1,3),AB AC BD ===则 A.(2,4)B.(3,5)C.(—3,—5)D.(—2,—4)4.如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA 1⊥面A 1B 1C 1,正视图是边长为2的正方形,俯视图为一个等边三角形,该三棱柱的左视图面积为A.C.D.45.设a ,b 为两条直线,,αβ为两个平面,则下列结论成立的是A.若,,a b αβ⊂⊂且,a b αβ则∥∥B.若,,,a b a b αβαβ⊂⊂⊥⊥且则C.若,,a b a b αα⊂则∥∥D.若,,a b a b αα⊥⊥则∥ 6.等比数列{a n }中,a 3=6,前三项和3304S xdx =⎰,则公比q 的值为A.1B.12-C.1或12-D.1-或12-7.函数y=ln(1-x)的图象大致为8.已知双曲线22221x y a b-=的一个焦点与抛物线24y x =的焦点重合,且双曲线的离心率,则该双曲线的方程为A.224515y x -= B.22154x y -= C.22154y x -= D.225514y x -= 9.设曲线11x y x +=-在点(3,2)处的切线与直线10ax y ++=垂直,则a = A.2 B.2- C.12- D.1210.函数π()sin()()2f x A x A ωω=+∅∅>0,>0,||<的部分图象如图所示,则,ωϕ的值分别为A.2,0B.2,π4C.2,-π3D.2,π611.设1250,,,a a a 是从-1,0,1这三个整数中取值的数列,若222212501509,(1)(1)(1)107a a a a a a +++=++++++=且,则1250,,,a a a 中数字0的个数为A.11B.12C.13D.1412.设函数()(,)y f x =-∞+∞在内有定义,对于给定的正数K ,定义函数:()K f x =(),(),,().f x f x K K f x K ⎧⎨⎩≤>取函数||()x f x a -=1(1).,a K a =当时函数>()K f x 在下列区间上单调递减的是A.(,0)-∞B.(,)a -+∞C.(,1)-∞-D.(1,)+∞二、填空题.本大题共有4个小题,每小题4分,共16分.把正确答案填在答题卡的相应位置.13.若1πsin(π),(,0),22ααα+=∈-则tan = 14.在等腰直角三角形ABC 中,D 是斜边BC 的中点,如果AB 的长为2,则()AB AC AD +⋅的值为15.设变量x,y 满足约束条件01,21x y x y x y -⎧⎪+⎨⎪+⎩≥≤≥则目标函数5z x y =+的最大值为16.椭圆22221(0)x y a b a b+=>>的左、右焦点分别是F 1,F 2,过F 2作倾斜角为120︒的直线与椭圆的一个交点为M ,若MF 1垂直于x 轴,则椭圆的离心率为三、解答题.本大题共6个小题,共74分.解答应写出文字说明、证明过程或推演步骤.17.(本小题满分12分)已知向量(,),(,),0a c b a c b a =+=--⋅=且m n m n ,其中A ,B ,C 是△ABC 的内角,a,b,c 分别是角A ,B ,C 的对边.(1)求角C 的大小;(2)求sin sin A B +的取值范围.18.(本小题满分12分)设数列{}n b 的前n 项和为n S ,且b n =2-2S n ;数列{a n }为等差数列,且a 5=14,a 7=20. (1)求数列{}n b 的通项公式;(2)若n n n c a b =⋅(n =1,2,3…),n T 为数列{}n c 的前n 项和.求n T .19.(本小题满分12分)如图,在底面为直角梯形的四棱锥P —ABCD 中,,90AD BC ABC ∠=︒∥,PA ⊥平面,3,2, 6.ABCD PA AD AB BC ====(1)求证:BD ⊥平面PAC ; (2)求二面角P BD A --的大小.20.(本小题满分12分)某商店预备在一个月内分批购入每张价值为20元的书桌共36台,每批都购入x 台(x 是正整数),且每批均需付运费4元,储存购入的书桌一个月所付的保管费与每批购入书桌的总价值(不含运费)成正比,若每批购入4台,则该月需用去运费和保管费共52元,现在全月只有48元资金可以用于支付运费和保管费.(1)求该月需用去的运费和保管费的总费用();f x(2)能否恰当地安排每批进货的数量,使资金够用?写出你的结论,并说明理由.21.(本小题满分12分)如图,平面上定点F 到定直线l 的距离|FM|=2,P 为该平面上的动点,过P 作直线l 的垂线,垂足为Q ,且()()0.PF PQ PF PQ +⋅-=(1)试建立适当的平面直角坐标系,求动点P 的轨迹C 的方程;(2)过点F 的直线交轨迹C 于A 、B 两点,交直线l 于点N ,已知1212,,:NA AF NB BF λλλλ==+求证为定值.22.(本小题满分14分)已知2()ln ,() 3.f x x x g x x ax ==-+- (1)求函数()[,2](0)f x t t t +在>上的最小值;(2)对一切(0,),2()()x f x g x ∈+∞≥恒成立,求实数a 的取值范围; (3)证明:对一切(0,)x ∈+∞,都有12ln x x e ex->成立.参考答案一、BBCAD CCDBD AD二、13. 3-14. 4 15. 5 16. 2 三、17.解:(1)由0⋅=m n 得222()()()0a c a c b b a a b c ab +-+-=⇒+-= ……2分由余弦定理得2221cos 222a b c ab C ab ab +-=== ………………………………………4分0πC << π3C ∴=……………………………………………………6分 (2)π3C = 2π3A B ∴+=2π2π2πsin sin sin sin()sin sin cos cos sin 333A B A A A A A ∴+=+-=+-31sin cos sin cos )2222A A A A =+=+π)6A =+ …………………………………………………9分2π03A <<ππ5π666A ∴<+< 1πsin()126A ∴<+≤π)26A <+≤即sin sin 2A B <+≤………………………………………………………12分 18.解:(1)由22n n b S =-,令1n =,则1122b S =-,又11S b =所以123b =…………………………………………………………………2分 当2n ≥时,由22n n b S =-,可得112()2n n n n n b b S S b ---=--=-即113n n b b -= …………………………………………………………………………4分 所以{}n b 是以123b =为首项,13为公比的等比数列,于是123n nb =⋅…………………………………………………………………6分 (2)数列{}n a 为等差数列,公差751()32d a a =-=,可得31n a n =- ………7分从而12(31)3n n n n c a b n =⋅=-⋅2311112258(31)3333n n T n ⎡⎤∴=⋅+⋅+⋅++-⋅⎢⎥⎣⎦, 23111111225(34)(31)33333n n n T n n +⎡⎤=⋅+⋅++-⋅+-⋅⎢⎥⎣⎦23121111122333(31)333333n n n T n +⎡⎤∴=⋅+⋅+⋅++⋅--⎢⎥⎣⎦…………11分 271312233n n nn T --=--⋅. …………………………………………………12分 19.解:(1)如图,建立坐标系,则(0,0,0),(23,0,0),(23,6,0),(0,2,0),(0,0,3)A B C D P ,(0,0,3),(23,6,0),(23,2,0)AP AC BD ∴===-, …………………………2分 0,0.BD AP BD AC ∴⋅=⋅= ,BD AP BD AC ∴⊥⊥, 又PAAC A =, BD PAC ∴⊥面. …………………………………6分(2)设平面ABD 的法向量为(0,0,1)=m , 设平面PBD 的法向量为(,,)x y z =n,则0,0BD BP ⋅=⋅=n n …………………8分 (BP =-2030y z ⎧-+=⎪∴⎨-+=⎪⎩解得,y z x ⎧=⎪⎨=⎪⎩令x ==n …………………………………………………10分1cos ,|||2⋅∴==<>m n m n m n ∴二面角P BD A --的大小为60. ……………12分 20.解:(1)设题中比例系数为k ,若每批购入x 台,则共需分36x批,每批价值为20x 元, 由题意 36()420f x k x x=⋅+⋅ ………………………………………………4分 由 4x =时,52y = 得 161805k == ………………………………………………6分*144()4(036,)f x x x x x∴=+<≤∈N ……………………………………………8分(2)由(1)知*144()4(036,)f x x x x x=+<≤∈N()48f x ∴≥=(元) ………………………………………………10分 当且仅当1444x x=,即6x =时,上式等号成立. 故只需每批购入6张书桌,可以使资金够用. …………………………………12分 21.解:(1)方法一:如图,以线段FM 的中点为原点O ,以线段FM所在的直线为y 轴建立直角坐标系xOy .则,(0,1)F .…………2分 设动点P 的坐标为(,)x y ,则动点Q 的坐标为(,1)x -(,1)PF x y =--,(0,1)PQ y =--, ……………3分由()PF PQ +·()0PF PQ -=,得24x y =. ………5分方法二:由()()0PF PQ PF PQ PQ PF +⋅-==得,. ………2分 所以,动点P 的轨迹C 是抛物线,以线段FM 的中点为原点O ,以线段FM 所在的直线为y 轴建立直角坐标系xOy ,可得轨迹C 的方程为: 24x y =. ……………………………………………………………………5分(2)方法一:如图,设直线AB 的方程为111,(,)y kx A x y =+,22(,)B x y , ……6分 则2(,1)N k--. ………………………………………………………………………………7分 联立方程组24,1,x y y kx ⎧=⎨=+⎩消去y 得,2440x kx --=,2(4)160k ∆=-+>, …………………………………………………8分故12124,4.x x k x x +=⎧⎨⋅=-⎩ ………………………………………………………………………9分由1NA AF λ=,2NB BF λ=得,1112x x k λ+=-,2222x x kλ+=-, ………………………………………………………10分 整理得,1121kx λ=--,2221kx λ=-- 121221122()2k x x kλλ+=--+=--·121224204x x k x x k +=--⋅=⋅-. ……………………12分方法二:由已知1NA AF λ=,2NB BF λ=,得12λλ⋅0<. …………………………7分于是,12NAAFNB BFλλ=-, ① ………………………………………………8分 如图,过A 、B 两点分别作准线l 的垂线,垂足分别为1A 、1B , 则有NA NB=11AA BB =AF BF, ② …………………………………………………10分由①、②得120λλ+=. ……………………………………………………………………12分 22.解:(1)()ln 1f x x '=+,……………………………………………………………1分 当1(0,),()0,()x f x f x e '∈<单调递减,当1(,),()0,()x f x f x e'∈+∞>单调递增 ……2分①102t t e <<+<,没有最小值; ………………………………………………………3分 ②102t t e <<<+,即10t e<<时,min 11()()f x f e e==-; …………………………………………………………4分③12t t e ≤<+,即1t e≥时,[](),2f x t t +在上单调递增,min ()()ln f x f t t t ==; 5分 所以min11,0.()1ln ,t e e f x t t t e ⎧-<<⎪⎪=⎨⎪≥⎪⎩…………………………………………………………6分(2)22ln 3x x x ax ≥-+-,则32ln a x x x≤++,………………………………7分 设3()2ln (0)h x x x x x =++>,则2(3)(1)()x x h x x+-'=, ① (0,1),()0,()x h x h x '∈<单调递减, ② (1,),()0,()x h x h x '∈+∞>单调递增, 所以min ()(1)4h x h ==,对一切(0,),2()()x f x g x ∈+∞≥恒成立,所以min ()4a h x ≤=;………………………………………………………10分(3)问题等价于证明2ln ((0,))xx x x x e e>-∈+∞, …………………………………11分 由(1)可知()ln ((0,))f x x x x =∈+∞的最小值是1e -,当且仅当1x e=时取到,设2()((0,))x x m x x e e =-∈+∞,则1()x xm x e-'=,易知max 1()(1)m x m e==-,当且仅当1x =时取到, ………………………………………13分从而对一切(0,)x ∈+∞,都有12ln x x e ex>- 成立 ………………………………14分。
山 东 省2011年高考押题卷(二)数 学 试 题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
共150分,考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题;每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
) 1.集合{|2}x A y R y =∈=,,则下列结论正确的是 ( ) A .{0,1}A B = B .(0,)A B =+∞C .()(,0)R C A B =-∞D .(){1,0}R C A B =-2.复数Z =Z 对应的点在 ( )A .第一象限或第三象限B .第二象限或第四象限C .x 轴正半轴上D .y 轴负半轴上3.(理)已知二项式2(n x (n N +∈)展开式中,前三项的二项式系数和是56,则展开式中的常数项为 ( )A .45256B .47256 C .49256 D .51256(文)2log 3,3log 5,23-的大小关系是 ( ) A .223log 3log 53->> B .223log 33log 5->> C .232log 5log 33->>D .2323log 5log 3->>4.(理)设随机变量(1,1)N ξ ,(2),(0)P p p ξ>=>,则(01)P ξ<<的值为 ( )A .12p -B .1p -C .122p -D .12p -(文)抛物线216y x =的准线与双曲线22221(0,0)x y a b a b-=>>的一条渐近线交点的纵坐标为4,双曲线22221(0,0)x y a b a b-=>>的离心率为 ( )A B C .2D5.已知()f x 是定义在R 上的奇函数,且0x >时,()(2)(3)0.02f x x x =--+,则关于()y f x =在R 上零点的说法正确的是 ( ) A .有4个零点其中只有一个零点在(-3,-2)内B .有4个零点,其中两个零点在(-3,-2)内,两个在(2,3)内C .有5个零点都不在(0,2)内D .有5个零点,正零点有一个在(0,2)内,一个在(3,+∞)内 6.已知实数x 、y满足⎪⎩⎪⎨⎧≤≤--≥-+301,094y y x y x ,则x -3y 的最大值是 ( )A .-1B .0C .1D .2 7.下图所示的算法被称为“趋1数字器”,它输出的数字都是分数,且随着运算次数的增加,输出的分数会越来越接近于1.该程序若想输出的结果为45,则判断框中应填入的条件是( ) A .i<4?B . i<5?C . s<2?D .s<3?8.已知正项等比数列{}n a 满足:2012201120102a a a =+14a =,则116m n ⎛⎫+ ⎪⎝⎭的最小值为( ) A .23B .2C .4D .69.若定义行列式a b ad bc c d=-,则125620092010347820112012+++= ( )A .1006B .-1006C .2012D .-201210.对于命题p :5412ππα<<;命题q :tan ()log f x x α=在(0,)+∞内是增函数,则q 是p 的 ( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件11.曲线C :211ln 22y x x =++上斜率最小的一条切线与圆221x y +=的位置关系为 ( ) A .相切 B .相交但不过圆 C .相交且过圆心 D .相离 12.(理)任意连接正方体6个面的中心构成15条直线,对于其中两条直线垂直,我们则称它们构成“钻角”.若甲从这15条直线中任选一条,乙再从剩下的14条直线中任选一条,试问他们所选直线构成“钻角”的概率为 ( ) A .935B .1135C .1335D .1735(文)近日,一种化学名为“尼美舒利”的儿童退热药,被推上药品安全性疑虑的风口浪尖.国家药监局调查了这种药的100个相关数据,绘制成如图所示的频率分布直方图,再对落在[6,11),[21,26)两组内的数据按分层抽样方法抽取8个数据,然后再从这8个数据中抽取2个,则最后所得这两个数据来自两组的概率是 ( )A .12B .1528C .47D .1728第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题4分,共16分。
2011年高考数学压轴题(三)1.(本小题满分13分)如图,已知双曲线C :x a y ba b 2222100-=>>(),的右准线l 1与一条渐近线l 2交于点M ,F 是双曲线C 的右焦点,O 为坐标原点.(I )求证:OM MF →⊥→;(II )若||MF →=1且双曲线C 的离心率e =62,求双曲线C 的方程;(III )在(II )的条件下,直线l 3过点A (0,1)与双曲线C 右支交于不同的两点P 、Q 且P 在A 、Q 之间,满足AP AQ →=→λ,试判断λ的范围,并用代数方法给出证明.解:(I )Θ右准线l 12:x a c =,渐近线l 2:y b ax =∴=+M a c ab c F c c a b ()()22220,,,,Θ,∴→=OM a c ab c ()2, MF c a c ab c b c abc→=--=-()()22,, ΘOM MF a b c a b c OM MF →⋅→=-=∴→⊥→2222220 ……3分 (II )Θe b a e a b =∴=-=∴=621222222,, Θ||()MF b c a b c b b a c b a →=∴+=∴+=∴==1111142222222222,,, ∴双曲线C 的方程为:x y 2221-= ……7分 (III )由题意可得01<<λ ……8分 证明:设l 31:y kx =+,点P x y Q x y ()()1122,,,由x y y kx 22221-==+⎧⎨⎩得()1244022--+=k x kxΘl 3与双曲线C 右支交于不同的两点P 、Q∴-≠=+->+=->=-->⎧⎨⎪⎪⎪⎩⎪⎪⎪∴≠±<<-<⎧⎨⎪⎪⎪⎩⎪⎪⎪120161612041204120221012022212212222k k k x x k k x x k k k k k ∆() ∴-<<-122k……11分ΘAP AQ x y x y →=→∴-=-λλ,,,()()112211,得x x 12=λ∴+=-=--∴+=--=-=+-()()()1412412116412421222122222222222λλλλx k k x k k k k k k ,Θ-<<-∴<-<∴+>12202111422k k ,,()λλ ∴+>∴-+>()1421022λλλλ ∴λ的取值范围是(0,1) ……13分2.(本小题满分13分)已知函数f x x n x n f n n x n n N ()()[()]()(*)=≤--+--<≤∈⎧⎨⎩00111,,数列{}a n 满足a f n n N n =∈()(*) (I )求数列{}a n 的通项公式;(II )设x 轴、直线x a =与函数y f x =()的图象所围成的封闭图形的面积为S a a ()()≥0,求S n S n n N ()()(*)--∈1;(III )在集合M N N k k Z ==∈{|2,,且10001500≤<k }中,是否存在正整数N ,使得不等式a S n S n n ->--10051()()对一切n N >恒成立?若存在,则这样的正整数N 共有多少个?并求出满足条件的最小的正整数N ;若不存在,请说明理由.(IV )请构造一个与{}a n 有关的数列{}b n ,使得lim()n n b b b →∞+++12Λ存在,并求出这个极限值.解:(I )Θn N ∈*∴=--+-=+-f n n n n f n n f n ()[()]()()111 ∴--=f n f n n ()()1……1分∴-=-=-=f f f f f f ()()()()()()101212323……f n f n n ()()--=1 将这n 个式子相加,得 f n f n n n ()()()-=++++=+012312ΛΘf f n n n ()()()0012=∴=+∴=+∈a n n n N n ()(*)12……3分 (II )S n S n ()()--1为一直角梯形(n =1时为直角三角形)的面积,该梯形的两底边的长分别为f n f n ()()-1,,高为1∴--=-+⨯=+-S n S n f n f n a a n n ()()()()112121=-++=12121222[()()]n n n n n ……6分(III )设满足条件的正整数N 存在,则n n n nn ()+->⇔>⇔>12100522100520102 又M ={}200020022008201020122998,,,,,,,ΛΛ ∴=N 201020122998,,……,均满足条件它们构成首项为2010,公差为2的等差数列.设共有m 个满足条件的正整数N ,则2010212998+-=()m ,解得m =495 ∴M 中满足条件的正整数N 存在,共有495个,N min =2010 ……9分(IV )设b a n n =1,即b n n n n n =+=-+212111()()则b b b n n n n 122112121313*********+++=-+-+-++-+=-+ΛΛ[()()()()]() 显然,其极限存在,并且lim()lim[]n n n b b b n →∞→∞+++=-+=122112Λ ……10分注:b ca n n=(c 为非零常数),b b q q n a n n a n n n ==<<++()(||)12012121,等都能使lim()n n b b b →∞+++12Λ存在.19. (本小题满分14分)设双曲线y ax 22231-=的两个焦点分别为F F 12、,离心率为2. (I )求此双曲线的渐近线l l 12、的方程;(II )若A 、B 分别为l l 12、上的点,且2512||||AB F F =,求线段AB 的中点M 的轨迹方程,并说明轨迹是什么曲线;(III )过点N ()10,能否作出直线l ,使l 与双曲线交于P 、Q 两点,且OP OQ →→=·0.若存在,求出直线l 的方程;若不存在,说明理由. 解:(I )Θe c a =∴=2422, Θc a a c 22312=+∴==,,∴-=双曲线方程为y x 2231,渐近线方程为y x =±33 4分(II )设A x y B x y ()()1122,,,,AB 的中点()M x y ,[]Θ2552522101033332233333331012121221221122121212121212122122||||||||()()()()()()AB F F AB F F c x x y y y x y x x x x y y y y y x x y y x x y y x x =∴==⨯=∴-+-===-=+=+∴+=--=+∴+++⎡⎣⎢⎤⎦⎥=又,,,, ∴+=+=321321007532512222()()y x x y ,即则M 的轨迹是中心在原点,焦点在x 轴上,长轴长为103,短轴长为1033的椭圆.(9分) (III )假设存在满足条件的直线l设l y k x l P x y Q x y :,与双曲线交于,、,=-()()()11122[]ΘOP OQ x x y y x x k x x x x k x x x x i →→=∴+=∴+--=∴+-++=·0110101212122121221212()()()()由得则,y k x y x k x k x k x x k k x x k k ii =--=⎧⎨⎪⎩⎪--+-=+=-=--()()()13131633063133312222212221222由(i )(ii )得k 230+=∴k 不存在,即不存在满足条件的直线l . 14分3. (本小题满分13分)已知数列{}a n 的前n 项和为S n N n ()*∈,且S m ma n n =+-()1对任意自然数都成立,其中m 为常数,且m <-1.(I )求证数列{}a n 是等比数列;(II )设数列{}a n 的公比q f m =(),数列{}b n 满足:b a b f b n n 11113==-,() ()*n n N ≥∈2,,试问当m 为何值时,lim (lg )lim (n b a n b b b b b b n n →∞=→∞+++3122334…+-b b n n 1)成立? 解:(I )由已知S m ma n n ++=+-1111()() S m ma n n =+-()1 (2)由()()12-得:a ma ma n n n ++=-11,即()m a ma n n +=+11对任意n N ∈*都成立{}Θm m a a m m a n n n 为常数,且即为等比数列分<-∴=++1151(II )当n =1时,a m ma 111=+-()∴====+∴==+≥∈---a b I q f m mm b f b bb n n N n n n n 11111113112,从而由()知,()()()*∴=+-=∴⎧⎨⎩⎫⎬⎭∴=+-=+=+∈--1111111131212911b b b b b b n n b n n N n n n n n n n ,即为等差数列,分()()*Θa m m n n =+⎛⎝ ⎫⎭⎪-11∴→∞=→∞-++=+→∞+++=→∞-+-+++-+⎛⎝ ⎫⎭⎪=-lim (lg )lim lg lg lim ()lim n b a n n n m m mm n b b b b b b n n n n n n n 121133131414151112112231·……由题意知lgm m +=11,∴+=∴=-m m m 110109, 13分4.(本小题满分12分)设椭圆)0(12222>>=+b a by a x 的左焦点为F ,上顶点为A ,过点A 与AF 垂直的直线分别交椭圆和x 轴正半轴于P ,Q 两点,且P 分向量所成的比为8∶5.(1)求椭圆的离心率;(2)若过F Q A ,,三点的圆恰好与直线l :033=++y x 相切,求椭圆方程.解:(1)设点),0,(),0,(0c F x Q -其中),0(,22b A b a c -=. 由P 分AQ 所成的比为8∶5,得)135,138(0b x P , 2分∴a x a x 231)135()138(022202=⇒=+.①, 4分 而b x b c ⊥-==),,(),,(0,∴0=⋅AQ FA .cb x b cx 2020,0==-∴.②, 5分由①②知0232,32222=-+∴=a ac c ac b .∴21.02322=∴=-+e e e . 6分(2)满足条件的圆心为)0,2(22cc b O -', )0,(,2222222c O c cc c a c c b '∴=--=-, 8分 圆半径a ca cb r ==+=22222. 10分 由圆与直线l :033=++y x 相切得,a c =+2|3|,又3,2,1,2===∴=b a c c a .∴椭圆方程为13422=+y x . 12分 5.(本小题满分14分)(理)给定正整数n 和正数b ,对于满足条件b a a n ≥-+211的所有无穷等差数列{}n a ,试求1221++++++=n n n a a a y Λ的最大值,并求出y 取最大值时{}n a 的首项和公差.(文)给定正整数n 和正数b ,对于满足条件b a a n =-+211的所有无穷等差数列{}n a ,试求1221++++++=n n n a a a y Λ的最大值,并求出y 取最大值时{}n a 的首项和公差.(理)解:设{}n a 公差为d ,则1111,a a nd nd a a n n -=+=++. 3分dn a n nd a d a a a a a y n n n n n n n )21()1()()(11111221+++++=+++++=+++=+++++++ΛΛΛd n n a n n 2)1()1(1+++=+ 4分)2)(1()2)(1(1111a a a n nda n n n n -++=++=+++)3(2111a a n n -+=+. 7分又211211,++--≤-∴≥-n n a b a b a a .∴449449)23(332112111b b a b a a a a n n n n -≤-+--=-+-≤-++++,当且仅当231=+n a 时,等号成立. 11分∴8)49)(1()3(2111b n a a n y n -+≤-+=+. 13分 当数列{}n a 首项491+=b a ,公差n b d 434+-=时,8)49)(1(b n y -+=,∴y 的最大值为8)49)(1(b n -+. 14分(文)解:设{}n a 公差为d ,则1111,a a nd nd a a n n -=+=++. 3分 )2)(1(2)1()1()21()1()()(1111111221nda n d n n a n d n a n nd a d a a a a a y n n n n n n n n n ++=+++=+++++=++++=+++=+++++++++ΛΛΛ)3(21)2)(1(11111a a n a a a n n n n -+=-++=+++, 6分又211211,++--=-∴=-n n a b a b a a .∴449449)23(332112111b b a b a a a a n n n n -≤-+--=-+-=-++++. 当且仅当231=+n a 时,等号成立. 11分∴8)49)(1()3(2111b n a a n y n -+=-+=+. 13分 当数列{}n a 首项491+=b a ,公差n b d 434+-=时,8)49)(1(b n y -+=.∴y 的最大值为8)49)(1(b n -+. 14分6.(本小题满分12分)垂直于x 轴的直线交双曲线2222=-y x 于M 、N 不同两点,A 1、A 2分别为双曲线的左顶点和右顶点,设直线A 1M 与A 2N 交于点P (x 0,y 0)(Ⅰ)证明:;22020为定值y x +(Ⅱ)过P 作斜率为02y x -的直线l ,原点到直线l 的距离为d ,求d 的最小值. 解(Ⅰ)证明:)0,2(),0,2(),,(),,(211111A A y x N y x M ---Θ则设)2(2111++=∴x x y y M A 的方程为直线 ①直线A 2N 的方程为)2(211---=x x y y ②……4分①×②,得)2(2221212---=x x y y分为定值的交点与是直线即822),(22),2(21,222020210022222121ΛΛΘΘ=+∴=+--=∴=-y x N A M A y x P y x x y y x(Ⅱ)02222),(20020200000=-+=+--=-y y x x y x x x y x y y l 整理得结合的方程为2220201222242y y y x d +=+=+=于是……10分 11221122220202020≥+=∴≤+∴≤∴=+y d y y y x Θ当1,1,1200取最小值时d y y =±=……12分7.(本小题满分14分)已知函数x x x f sin )(-= (Ⅰ)若;)(],,0[的值域试求函数x f x π∈(Ⅱ)若);32(3)()(2:),,0(],,0[xf x f f x +≥+∈∈θθπθπ求证(Ⅲ)若)32(3)()(2,),)1(,(],)1(,[xf x f f Z k k k k k x ++∈+∈+∈θθππθππ与猜想的大小关系(不必写出比较过程).解:(Ⅰ)为增函数时当)(,0cos 1)(,),0(x f x x f x ∴>-='∈π分的值域为即求得所以上连续在区间又4],0[)()(0),()()0(],0[)(ΛΛππππx f x f f x f f x f ≤≤≤≤(Ⅱ)设)32(3)()(2)(x f x f f x g +-+-=θθ,32sin3sin )(2)(xx f x g +++-=θθ即 )32cos cos (31)(xx x g ++-='θ……6分θπθπθπ=='∈+∴∈∈x x g x x 得由,0)(),0(32),0(],,0[Θ.)(,0)(,),0(为减函数时当x g x g x <'∈∴θ分为增函数时当8)(,0)(,),(ΛΛx g x g x >'∈πθ 分因而有对的最小值为则上连续在区间10)32(3)()(20)()(],0[)()(],0[)(ΛΘx f x f f g x g x x g g x g +≥+=≥∈θθθπθπ (Ⅲ)在题设条件下,当k 为偶数时)32(3)()(2xf x f f +≥+θθ当k 为奇数时)32(3)()(2xf x f f +≤+θθ……14分。
2011年高考数学最后压轴大题系列-解析几何1. 已知三点P (5,2)、1F (-6,0)、2F (6,0). (Ⅰ)求以1F 、2F 为焦点且过点P 的椭圆的标准方程;(Ⅱ)设点P 、1F 、2F 关于直线y =x 的对称点分别为P '、'1F 、'2F ,求以'1F 、'2F 为焦点且过点P '的双曲线的标准方程.解:(I )由题意,可设所求椭圆的标准方程为22a x +122=by )0(>>b a ,其半焦距6=c 。
||||221PF PF a +=56212112222=+++=, ∴=a 53,93645222=-=-=c a b ,故所求椭圆的标准方程为452x +192=y ; (II )点P (5,2)、1F (-6,0)、2F (6,0)关于直线y =x 的对称点分别为:)5,2(P '、'1F (0,-6)、'2F (0,6)设所求双曲线的标准方程为212a x -1212=b y )0,0(11>>b a ,由题意知半焦距61=c ,|''||''|2211F P F P a -=54212112222=+-+=, ∴=1a 52,162036212121=-=-=a c b ,故所求双曲线的标准方程为202y -1162=x 。
2. 直线12:1:22=-+=y x C kx y l 与双曲线的右支交于不同的两点A 、B. (Ⅰ)求实数k 的取值范围;(Ⅱ)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由.解:(Ⅰ)将直线整理得后的方程代入双曲线的方程,12122=-+=y x C kx y l.022)2(22=++-kx x k ……①依题意,直线l 与双曲线C 的右支交于不同两点,故.22.02222,0)2(8)2(,0222222-<<-⎪⎪⎪⎩⎪⎪⎪⎨⎧>->-->--=∆≠-k k k k k k k k 的取值范围是解得(Ⅱ)设A 、B 两点的坐标分别为),(11y x 、),(22y x ,则由①式得⎪⎪⎩⎪⎪⎨⎧-=⋅-=+.22,22222221k x x kk x x ……② 假设存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F (c,0). 则由FA ⊥FB 得:.0)1)(1())((.0))((21212121=+++--=+--kx kx c x c x y y c x c x 即整理得.01))(()1(221212=+++-++c x x c k x x k ……③把②式及26=c 代入③式化简得 .566).)(2,2(566566.066252的右焦点为直径的圆经过双曲线使得以可知舍去或解得C AB k k k k k +-=--∉-=+-==-+3. 设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125PB PA =求a 的值. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率).,2()2,26(226,120.11122+∞≠>∴≠<<+=+= 的取值范围为即离心率且且e e e a a aaa e(II )设)1,0(),,(),,(2211P y x B y x A.125).1,(125)1,(,125212211x x y x y x PB PA =-=-∴=由此得由于x 1+x 2都是方程①的根,且1-a 2≠0,1317,06028912,,.12125.1212172222222222=>=----=--=a a a a x a a x a a x 所以由得消去所以4. 已知)0,1(,)0,1(21F F -为椭圆C 的两焦点,P 为C 上任意一点,且向量21PF PF 与向量的夹角余弦的最小值为31.(Ⅰ)求椭圆C 的方程;(Ⅱ)过1F 的直线l 与椭圆C 交于M 、N 两点,求OMN ∆(O 为原点)的面积的最大值及相应的直线l 的方程. 解:(Ⅰ)设椭圆的长轴为2a ,a 2=22==c21222124cos PF PF PF PF ⋅-+=θ=2121221242)(PF PF PF PF PF PF ⋅-⋅-+=1244212-⋅-PF PF a又212PF PF ⋅≥∴221a PF PF ≤⋅即31211244cos 222=-=--≥aa a θ ∴32=a ∴椭圆方程为12322=+y x (Ⅱ) 由题意可知NM 不可能过原点,则可设直线NM 的方程为:my x =+1 设),(11y x M ),(22y x N()1111212OMN F OM F ON S S S OF y y ∆∆∆=+=+=2121y y -221,321.x y x my ⎧+=⎪⎨⎪=-⎩063)1(222=-+-y my即 044)32(22=--+my y m .由韦达定理得: 324221+=+m m y y 324221+-=⋅m y y ∴212212214)(y y y y y y -+=-= 3216)32(162222+++m m m =222)32()1(48++m m 令12+=m t , 则1≥t∴221y y -=4448)12(482++=+tt t t . 又令tt t f 14)(+=, 易知)(t f 在[1,+∞)上是增函数,所以当1=t ,即0=m 时)(t f 有最小值5.∴221y y -有最大值316 ∴OMN S ∆ 的面积有最大值332. 直线l 的方程为1-=x .5. 椭圆E 的中心在原点O ,焦点在x 轴上,离心率eC (-1,0)的直线l 交椭圆于A 、B 两点,且满足:CA =BC λ (2λ≥).(Ⅰ)若λ为常数,试用直线l 的斜率k (k ≠0)表示三角形OAB 的面积. (Ⅱ)若λ为常数,当三角形OAB 的面积取得最大值时,求椭圆E 的方程.(Ⅲ)若λ变化,且λ= k 2+1,试问:实数λ和直线l 的斜率()k k ∈R 分别为何值时,椭圆E 的短半轴长取得最大值?并求出此时的椭圆方程.解:设椭圆方程为22221+=x y a b(a >b >0),由e =c aa 2=b 2+c 2得a 2=3 b 2, 故椭圆方程为x 2+3y 2= 3b 2. ① (Ⅰ)∵直线l :y = k (x +1)交椭圆于A (x 1,y 1),B (x 2,y 2)两点,并且CA =BC λ (λ≥2), ∴(x 1+1,y 1) =λ(-1-x 2,-y 2), 即12121(1)x x y y λλ+=-+⎧⎨=-⎩ ② 把y = k (x +1)代入椭圆方程,得(3k 2+1)x 2+6k 2x +3k 2-3b 2= 0, 且 k 2 (3b 2-1)+b 2>0 (*),∴x 1+x 2= -22631k k +, ③x 1x 2=2223331k b k -+, ④∴O AB S ∆=12|y 1-y 2| =12|λ+1|·| y 2| =|1|2λ+·| k |·| x 2+1|.联立②、③得x 2+1=22(1)(31)k λ-+,∴O AB S ∆=11λλ+-·2||31k k + (k ≠0). (Ⅱ)OAB S ∆=11λλ+-·2||31k k +=11λλ+-·113||||k k +≤11λλ+-(λ≥2). 当且仅当3| k | =1||k ,即k=OAB S ∆取得最大值,此时x 1+x 2= -1. 又∵x 1+1= -λ( x 2+1),∴x 1=11λ-,x 2= -1λλ-,代入④得3b 2=221(1)λλ+-.此时3b 2≥5,,k b 的值符合(*) 故此时椭圆的方程为x 2+3y 2=221(1)λλ+-(λ≥2). (Ⅲ)由②、③联立得:x 1=22(1)(31)k λλ--+-1,x 2=22(1)(31)k λ-+-1, 将x 1,x 2代入④,得23b =224(1)(31)k λλ-++1. 由k 2=λ-1得23b =24(1)(32)λλλ--+1=432212(1)(1)(32)λλλ⎡⎤+⎢⎥---⎣⎦+1.易知,当2λ≥时,3b 2是λ的减函数,故当2λ=时,23b 取得最大值3. 所以,当2λ=,k =±1(符合(*))时,椭圆短半轴长取得最大值,此时椭圆方程为x 2 + 3y 2 = 3.6. 已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,+与)1,3(-=共线. (I )求椭圆的离心率;(II )设M 为椭圆上任意一点,且(,)OM OA OB λμλμ=+∈R ,证明22μλ+为定值.解:(I )设椭圆方程为),0,(),0(12222c F b a by a x >>=+则直线AB 的方程为1,2222=+-=by a x c x y 代入.化简得02)(22222222=-+-+b a c a cx a x b a . 令),,(),,(2211y x B y x A则 .,22222222122221ba b a c a x x b a c a x x +-=+=+),,(2121y y x x ++=+由与+-=),1,3(共线,得.0)()(32121=+++x x y y.36,36.3,232.23,0)()2(3,,22222222121212211===-=∴==+=+∴=++-+∴-=-=a c e ab ac b a c ba c a cx x x x c x x c x y c x y 故离心率所以即又 (II )证明:由(I )知223b a =,所以椭圆12222=+by a x 可化为22233b y x =+.),,(),(),(),,(2211y x y x y x y x μλ+==由已知得设⎩⎨⎧+=+=∴.,2121y y y x x x μλμλ ),(y x M 在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ 即 .3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ ①由(I )知.21,23,23222221c b c a c x x ===+222221222121212123.833()()a c ab x xc a b x x y y x x x c x c -∴==+∴+=+-- .0329233)(3422222121=+-=++-=c c c c c x x x x 又222222212133,33b y x b y x =+=+又,代入①得 .122=+μλ 故22μλ+为定值,定值为1.7. 已知椭圆2212x y +=的左焦点为F ,O 为坐标原点. (I )求过点O 、F ,并且与椭圆的左准线l 相切的圆的方程;(II )设过点F 且不与坐标轴垂直的直线交椭圆于A 、B 两点,线段AB 的垂直平分线与x轴交于点G ,求点G 横坐标的取值范围. 解:(I )222,1,1,(1,0),: 2.a b c F l x ==∴=-=- 圆过点O 、F , ∴圆心M 在直线12x =-上。
2011届高考数学仿真押题卷——全国卷(理6)一、选择题:本大题共l2小题,每小题5分,共60分.在每小题给出的四个选项中。
只有一项是符合题目要求的.1.设集合A {1,2,3,5,7},B {Z |16},x x ==∈<≤全集,U A B = 则U C =A B A .{1,4,6,7} B .{2,3,7} C .{1, 7} D .{1}2.2121lim11x x x →--(-)=A .-1B .12-C .12 D .1[3.等差数列}{n a 的前n 项和为n S ,若27915,a a a ++=则11S 的值为 A .552B .50C .55D .110 4.将函数sin()y x ϕ=+的图象F 向左平移6π个单位长度后得到图象F ',若F '的一个对称中心为(4π,0),则ϕ的一个可能取值是 A .12π B .6π C .56π D .712π5.设m 、n 是两条不同的直线,αβ、是两个不同的平面,下列命题正确的是 A .,,m n m n αβαβ⊥⊂⊥⇒⊥ B .//,,//m n m n αβαβ⊥⇒⊥ C .,,//m n m n αβαβ⊥⊥⇒⊥ D .,,m n m n αβαββ⊥=⊥⇒⊥6.在6(2展开式中,不含..3x 项的所有列的系数和为 A .-1 B .2 C .1 D . 07.设{(,)|()()0},D x y x y x y =-+≤记“平面区域D 夹在直线1y =与([1,1])y t t =∈-之间的部分的面积”为S ,则函数()S f t =的图象的大致形状为8.对于非零向量m ,n ,定义运算“*”: ||||sin ,m n m n θ*=⋅其中θ为m , n 的夹角,有两两不共线的三个向量a b c 、、,下列结论正确的是 A .若,a b a c *=*则b c = B .()a b a b *=-* C .()()a b c a b c *=* D .()a b c a c b c +*=*+*9.将5名同学分到甲、乙、丙3个小组,若甲组至少两人,乙、丙组至少各一人,则不同的分配方案的种数为A .80B .120C .140D . 5010.若函数()f x 对定义域R 内的任意x 都有()f x =(2)f x -,且当1x ≠时其导函数()f x '满足()(),xf x f x ''>若12,a <<则A .2(2)(2)(log )a f f f a <<B .2(2)(log )(2)a f f a f <<C .2(log )(2)(2)a f a f f <<D .2(log )(2)(2)a f a f f <<11.直线3440x y -+=与抛物线24x y =和圆22(1)1x y +-=从左到右的交点依次为,A B C D 、、、则||||AB CD 的值为 A .16 B .116 C .4 D .1412.两球1O 和2O 在棱长为1的正方体1111ABCD A BC D -的内部,且互相外切,若球1O 与过点A 的正方体的三个面相切,球2O 与过点1C 的正方体的三个面相切,则球1O 和2O 的表面积之和的最小值为A.(6π- B.(8π- C.(6π+ D.(8π+ 二、填空题:本大题共4小题,每小题5分;共20分.13. 已知tan()2,12πα-=则tan()3πα+的值为 .14.若函数()f x =2log (42)x +,则不等式11()2f x -≤的解集为 .15.以等腰直角∆ABC 的两个顶点为焦点,且经过第三个顶点的双曲线的离心率为 .16.已知数列}{n a 满足11,()22,()n n n n n a a a a n a +⎧⎪=⎨⎪-⎩为偶数为奇数,若31,a =则1a 的所有可能的取值为 .三、解答题:本大题共6小题,共70分.解答应写出文宇说明,证明过程或演算步骤. 17.(本小题满分l0分) 已知函数2()cos()cos (R)3f x x m x m π=--∈的图象经过点3(0,).2P - (I)求函数()f x 的最小正周期;(Ⅱ) ∆ABC 内角A B C 、、的对边长分别为a b c 、、,若(),1,3,2f B b c =-==且,a b >试判断∆ABC 的形状,并说明理由.18.(本小题满分12分)小白鼠被注射某种药物后,只会表现为以下三种..症状中的一种:兴奋、无变化(药物没有发生作用)、迟钝.若出现三种症状的概率依次为111,236、、现对三只小白鼠注射这种药物.(I )求这三只小白鼠表现症状互不相同的概率;(II )用ξ表示三只小白鼠共表现症状的种数..,求ξ的颁布列及数学期望.19.(本小题满分12分)如图,在四棱锥S ABCD -中,底面ABCD 为平行四边形,SA ⊥平面ABCD ,2,1,AB AD ==SB =,120,BAD E ∠= 在棱SD 上.(I )当3SE ED =时,求证SD ⊥平面;AEC(II )当二面角S AC E --的大小为30时,求直线AE 与平面CDE 所成角的大小.20.(本小题满分l2分)已知函数2()(21)(R xf x ax x e a -=-+⋅∈,e 为自然对数的底数). (I) 当时,求函数()f x 的极值;(Ⅱ) 若函数()f x 在[-1,1]上单调递减,求a 的取值范围.21.(本小题满分l2分)已知椭圆的中心在坐标原点O ,焦点在x 轴上,离心率为12,点P (2,3)、A B 、在该椭圆上,线段AB 的中点T 在直线OP 上,且A O B 、、三点不共线. (I)求椭圆的方程及直线AB 的斜率; (Ⅱ)求PAB ∆面积的最大值.22.(本小题满分l2分) 已知数列}{n a 满足,11,2a =11113()11n n n n n na a a a a a ++++--=++,且10n n a a +⋅<.(∈n N *) (I )求数列}{n a 的通项公式;(II )若}{n b =221,n n a a +-试问数列}{n b 中是否存在三项能按某种顺序构成等差数列?若存在,求出满足条件的等差数列,若不存在;说明理由.参考答案一、选择题:本大题共12个小题,每小题5分,共60分. 1-5 CBCDB 6-10 DCBAC 11-12 BA二、填空题: 本大题共4个小题,每小题5分,共20分 13.1314. {|12}x x <≤ 15.16. 4,7,10三、解答题:本大题共6小题,共70分.解答应写文字说明,证明过程或演算步骤. 17.(本小题满分10分) 解:(Ⅰ)∵()13022f m =--=-,∴1m =.…………………2分 ∴()2π3πcos cos cos 323f x x x x x x ⎛⎫⎛⎫=--=-=- ⎪ ⎪⎝⎭⎝⎭. 故函数()f x 的最小正周期为2π.…………………………5分 (Ⅱ)解法一:()π3f B B ⎛⎫=-= ⎪⎝⎭,∴π1sin 32B ⎛⎫-=- ⎪⎝⎭.∵0πB <<,∴ππ2π333B -<-<,∴ππ36B -=-,即π6B =.……………………7分 由余弦定理得:2222c o s b a c a c B =+-,∴2132a a =+-⨯,即2320a a -+=,故1a =(不合题意,舍)或2a =.……………………………9分又222134b c a +=+==,所以∆ABC 为直角三角形.………………………10分 解法二:()π32f B B ⎛⎫=-=- ⎪⎝⎭,∴π1sin 32B ⎛⎫-=- ⎪⎝⎭. ∵0πB <<,∴ππ2π333B -<-<,∴ππ36B -=-,即π6B =.……………………7分由正弦定理得:1πsin sin 6a A ==,∴sin 2C =, ∵0πC <<,∴π3C =或2π3. 当π3C =时,π2A =;当2π3C =时,π6A =.(不合题意,舍)……………………9分所以∆ABC 为直角三角形.…………………10分 18.(本小题满分12分)解:(Ⅰ)用(12,3)i A i =,表示第一只小白鼠注射药物后表现症状为兴奋、无变化、及迟钝,用(12,3)i B i =,表示第二只小白鼠注射药物后表现症状为兴奋、无变化、及迟钝, 用(12,3)i C i =,表示第三只小白鼠注射药物后表现症状为兴奋、无变化、及迟钝. 三只小白鼠反应互不相同的概率为33123()P A P AB C = …………………3分111162366=⨯⨯⨯= ………………………5分(Ⅱ)ξ可能的取值为321,,. 3331112223331111(1)()2366P P A B C A B C A B C ξ⎛⎫⎛⎫⎛⎫==++=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,61)3(==ξP ,………………………………………8分 3261611)3()1(1)2(=--==-=-==ξξξP P P .或2311211322122333133222232222(2)()1111(2326111111112)363262633P C P A B C A B C A B C A B C A B C A B C C ξ==⋅+++++⎛⎫⎛⎫=⨯+⨯⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫+⨯+⨯+⨯+⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.……………………10分所以,ξ的分布列是所以,2213322611=⨯+⨯+⨯=ξE .…………12分 19.(本小题满分12分)解:(Ⅰ)在平行四边形ABCD 中,由1AD =,2CD =,120BAD ∠=︒,易知CA AD ⊥,…………………2分又SA⊥平面ABCD ,所以CA ⊥平面SAD , ∴SD AC ⊥,在直角三角形SAB 中,易得SA =在直角三角形SAD 中,60=∠ADE ,2SD =,又3SE ED =,∴21=DE , 可得AE ===. ∴SD AE ⊥,……………………5分又∵A AE AC = ,∴SD ⊥平面AEC .……………6分(Ⅱ)由(Ⅰ)可知,CA SA ⊥,CA AE ⊥, 可知EAS ∠为二面角E AC S --的平面角,30EAS ∠= ,此时E 为SD 的中点. ……………8分过A 作AF CD ⊥,连结SF ,则平面SAF ⊥平面SCD , 作AG SF ⊥,则AG ⊥平面SCD ,连结EG , 可得AEG ∠为直线AE 与平面SCD 所成的角.因为2AF =,SA =所以AG ==.……………10分 在Rt AGE ∆中,tan 5AG AEG AE ∠==, 直线AE 与平面CDE所成角的大小为.……………………12分 解法二:依题意易知CA AD ⊥,SA ⊥平面ACD .以A 为坐标原点,AC 、AD 、SA 分别为,,x y z 轴建立空间直角坐标系,则易得())()(0,0,0,,0,1,0,A CD S ,(Ⅰ)由:3SE ED =有30,,44E ⎛⎫⎪ ⎪⎝⎭,……………3分易得00S D AC SD AE ⎧⋅=⎪⎨⋅=⎪⎩,从而SD ⊥平面ACE .……………………6分(Ⅱ)由AC ⊥平面SAD ,二面角E AC S--的平面角30EAS ∠=︒.又30ASD ∠=︒,则 E 为SD 的中点,即10,2E ⎛⎝⎭,………………8分 设平面SCD 的法向量为(),,x y z =n则0,0.DC y SD y ⎧⋅=-=⎪⎨⋅=-=⎪⎩n n ,令1z =,得()=n ,…………10分从而011cos,5||||AEAEAE⋅⋅<>===nnn,所以AE与平面SCD所成角大小为.………………12分20. (本小题满分12分)解:(I)当1=a时,xexxxf-⋅+-=)12()(2,xxx exxexxexxf---⋅---=⋅+--⋅-=')3)(1()12()22()(2………………2分当x变化时,)(xf,)(xf'的变化情况如下表:所以,当1=a时,函数)(xf的极小值为0)1(=f,极大值为34)3(-=ef.……………5分(II)]322[)12()22()(22+---=⋅+--⋅-='---xaxaxeexaxeaxxf xxx令3)1(2)(2++-=xaaxxg①若0=a,则32)(+-=xxg,在)11(,-内,0)(>xg,即0)(<'xf,函数)(xf在区间]11[,-上单调递减.………………7分②若0>a,则3)1(2)(2++-=xaaxxg,其图象是开口向上的抛物线,对称轴为11>+=aax,当且仅当0)1(≥g,即10≤<a时,在)11(,-内0)(>xg,0)(<'xf,函数)(xf在区间]11[,-上单调递减.………………9分③若0<a,则3)1(2)(2++-=xaaxxg,其图象是开口向下的抛物线,当且仅当⎩⎨⎧≥≥-0)1(0)1(g g ,即035<≤-a 时,在)11(,-内0)(>x g ,0)(<'x f , 函数)(x f 在区间]11[,-上单调递减.………………………11分 综上所述,函数)(x f 在区间]11[,-上单调递减时,a 的取值范围是135≤≤-a .……………12分21. (本小题满分12分)解:(I )设椭圆的方程为22221(0)x y a b a b+=>>,则2212491a a b =⎪⎨⎪+=⎪⎩,得216a =,212b =. 所以椭圆的方程为2211612x y +=.…………………3分 设直线AB 的方程为y kx t =+(依题意可知直线的斜率存在),设1122(,),(,)A x y B x y ,则由2211612x y y kx t ⎧+=⎪⎨⎪=+⎩,得()2223484480k xktx t +++-=,由∆>,得221216b k <+,122212283444834kt x x k t x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩,设()00,T x y 002243,3434kt tx y k k =-=++,易知00x ≠,由OT 与OP 斜率相等可得0032y x =,即12k =-,所以椭圆的方程为2211612x y +=,直线AB 的斜率为12-.……………………6分 (II )设直线AB 的方程为12y x t =-+,即220x y t +-=,由2212 1.1612y x t x y ⎧=-+⎪⎪⎨⎪+=⎪⎩, 得22120x tx t -+-=,224(12)0t t ∆=-->,44t -<<.………………8分12212,12.x x t x x t +=⎧⎨⋅=-⎩.||AB === 点P 到直线AB的距离为d =于是PAB ∆的面积为122PAB S ∆==……………………10分 设3()(4)(123)f t t t =-+,2'()12(4)(2)f t t t =--+,其中44t -<<.在区间(2,4)-内,'()0f t <,()f t 是减函数;在区间(4,2)--内,'()0f t >,()f t 是增函数.所以()f t 的最大值为4(2)6f -=.于是PAB S ∆的最大值为18.…………………12分22. (本小题满分12分) 解:(I )由211=a ,01<⋅+n n a a 知, 当n 为偶数时,0<n a ;当n 为奇数时,0>n a ;……………2分 由nn n n n n a a a a a a +-=+-++++111111)(3,得212211)(3++-=-n n n a a a ,即134221=-+n n a a ,所以)1(3)1(4221-=-+n n a a , 即数列}1{2-n a 是以43121-=-a 为首项,43为公比的等比数列 所以,nn na ⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛-=--434343112,nn a ⎪⎭⎫ ⎝⎛-=4312,故nn n a ⎪⎭⎫⎝⎛--=-431)1(1(∈n N *)…………………5分(II )由(I )知221n n n a a b -=+n n n ⎪⎭⎫ ⎝⎛⋅=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-=+43414314311, 则对于任意的N n *∈,1n n b b +>.………………7分假设数列}{n b 中存在三项t s r b b b ,,(t s r <<)成等差数列, 则t s r b b b >>,即只能有t r s b b b +=2成立, 所以t r s ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⋅4341434143412,t r s ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⋅4343432………………9分 所以,t r t r s t s 343432+⋅=⋅⋅--,因为t s r <<,所以00>->-r t s t ,,所以s t s -⋅⋅432是偶数,t r t r 343+⋅-是奇数,而偶数与奇数不可能相等, 因此数列}{n b 中任意三项不可能成等差数列.…………………12分。
2011届高考数学考前抢分押题卷——全国卷:文理合卷11第Ⅰ卷(选择题,共60分)一、本题共12小题,每小题5分,共60分,在每小题给出的四个选项中只有一个选项是符合题目要求的.1.(理)全集设为U ,P 、S 、T 均为U 的子集,若 P (T U)=(T U)S 则( )A .S S T P =B .P =T =SC .T =UD .P S U=T(文)设集合}0|{≥+=m x x M ,}082|{2<--=x x x N ,若U =R ,且∅=N M U,则实数m 的取值范围是( )A .m <2B .m ≥2C .m ≤2D .m ≤2或m ≤-42.(理)复数=+-+ii i 34)43()55(3( ) A .510i 510-- B .i 510510+ C .i 510510- D .i 510510+-(文)点M (8,-10),按a 平移后的对应点M '的坐标是(-7,4),则a =( ) A .(1,-6) B .(-15,14) C .(-15,-14) D .(15,-14)3.已知数列}{n a 前n 项和为)34()1(2117139511--++-+-+-=-n S n n ,则312215S S S -+的值是( )A .13B .-76C .46D .76 4.若函数)()(3x x a x f --=的递减区间为(33-,33),则a 的取值范围是( ) A .a >0 B .-1<a <0C .a >1D .0<a <15.与命题“若M a ∈则M b ∉”的等价的命题是( ) A .若M a ∉,则M b ∉ B .若M b ∉,则M a ∈C .若M a ∉,则M b ∈D .若M b ∈,则M a ∉6.(理)在正方体1111D C B A ABCD -中,M ,N 分别为棱1AA 和1BB 之中点,则sin (,D 1)的值为( )A .91 B .554 C .592D .32(文)已知三棱锥S -ABC 中,SA ,SB ,SC 两两互相垂直,底面ABC 上一点P 到三个面SAB ,SAC ,SBC 的距离分别为2,1,6,则PS 的长度为( ) A .9 B .5 C .7 D .37.在含有30个个体的总体中,抽取一个容量为5的样本,则个体a 被抽到的概率为( ) A .301B .61C .51D .658.(理)已知抛物线C :22++=mx x y 与经过A (0,1),B (2,3)两点的线段AB 有公共点,则m 的取值范围是( )A .-∞(,]1- [3,)∞+B .[3,)∞+C .-∞(,]1-D .[-1,3](文)设R ∈x ,则函数)1|)(|1()(x x x f +-=的图像在x 轴上方的充要条件是( ) A .-1<x <1 B .x <-1或x >1C .x <1D .-1<x <1或x <-19.若直线y =kx +2与双曲线622=-y x 的右支交于不同的两点,则k 的取值范围是( )A .315(-,)315 B .0(,)315C .315(-,)0 D .315(-,)1- 10.a ,b ,c ∈(0,+∞)且表示线段长度,则a ,b ,c 能构成锐角三角形的充要条件是( )A .222c b a <+ B .222||c b a <-C .||||b a c b a +<<-D .22222||b a c b a +<<- 11.今有命题p 、q ,若命题S 为“p 且q ”则“或”是“”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 12.(理)函数x x y 3154-+-=的值域是( )A .[1,2]B .[0,2]C .(0,]3D .1[,]3(文)函数)(x f 与x x g )67()(-=图像关于直线x -y =0对称,则)4(2x f -的单调增区间是( ) A .(0,2) B .(-2,0) C .(0,+∞) D .(-∞,0)第Ⅱ卷(非选择题,共90分)二、填空题:本题共4小题,共16分,把答案填在题中的横线上13.等比数列}{n a 的前n 项和为n S ,且某连续三项正好为等差数列}{n b 中的第1,5,6项,则=+∞→12limna S n n ________.14.若1)1(lim 2=-++--∞→k x x x n ,则k =________.15.有30个顶点的凸多面体,它的各面多边形内角总和是________.16.长为l (0<l <1)的线段AB 的两个端点在抛物线2x y =上滑动,则线段AB 中点M 到x 轴距离的最小值是________.三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. 17.(12分)从一批含有13只正品,2只次品的产品中不放回地抽取3次,每次抽取一只,设抽得次品数为ξ. (1)求ξ的分布列;(2)求E (5ξ-1).18.(12分)如图,在正三棱柱111C B A ABC -中,M ,N 分别为11B A ,BC 之中点.(1)试求ABAA 1,使011=⋅B A .(2)在(1)条件下,求二面角M AC N --1的大小.19.(12分)某森林出现火灾,火势正以每分钟2m 100的速度顺风蔓延,消防站接到警报立即派消防队员前去,在火灾发生后五分钟到达救火现场,已知消防队员在现场平均每人每分钟灭火2m 50,所消耗的灭火材料、劳务津贴等费用为每人每分钟125元,另附加每次救火所耗损的车辆、器械和装备等费用平均每人100元,而烧毁一平方米森林损失费为60元.问应该派多少消防队员前去救火,才能使总损失最少?20.(12分)线段4||=BC ,BC 中点为M ,点A 与B ,C 两点的距离之和为6,设y AM =||,x AB =||.(1)求)(x f y =的函数表达式及函数的定义域;(2)(理)设1-+=x y d ,试求d 的取值范围;(文)求y 的取值范围.21.(12分)定义在(-1,1)上的函数)(x f ,(i )对任意x ,∈y (-1,1)都有: )1()()(xyyx f y f x f ++=+;(ii )当∈x (-1,0)时,0)(>x f ,回答下列问题. (1)判断)(x f 在(-1,1)上的奇偶性,并说明理由.(2)判断函数)(x f 在(0,1)上的单调性,并说明理由.(3)(理)若21)51(=f ,试求)191()111()21(f f f --的值.22.(14分)(理)已知O为△ABC 所在平面外一点,且=a ,=b ,=c ,OA ,OB ,OC 两两互相垂直,H 为△ABC 的垂心,试用a ,b ,c 表示OH . (文)直线l ∶y =ax +1与双曲线C ∶1322=-y x 相交于A ,B 两点. (1)a 为何值时,以AB 为直径的圆过原点;(2)是否存在这样的实数a ,使A ,B 关于直线x -2y =0对称,若存在,求a 的值,若不存在,说明理由.参考答案1.(理)A (文)B 2.(理)B (文)B 3.B 4.A 5.D 6.(理)B (文)D 7.B 8.(理)C (文)D 9.D 10.D 11.C12.(理)A (文)A 13.1或0 14.21 15.10080° 16.42l17.解析:(1)ξ的分布如下(2)由(1)知535352351350==⨯+⨯+⨯=ξE .∴ 1152515)15(=-⨯=-=-ξξE E .18.解析:(1)以1C 点为坐标原点,11A C 所在直线为x 轴,C C 1所在直线为z 轴,建立空间直角坐标系,设b B A =11,a AA =1(a ,∈b (0,+∞).∵ 三棱柱111C B A ABC -为正三棱柱,则1A ,B ,1B ,C 的坐标分别为:(b ,0,0),b 21(,b 23,)a ,b 21(,b 23,)0,(0,0,a ). ∴ A 1b 21(-=,b 23,)a ,B 1b 21(-=,b 23-,⎪⎭⎪⎬⎫=-=⇒⋅⋅.01121)2211C B B A b a B A a 又,2221==⇒=⇒b a AB A A a b . (2)在(1)条件下,不妨设b =2,则2=a ,又A ,M ,N 坐标分别为(b ,0,a ),(b 43,b 43,0),(b 41,b 43,a ). ∴ 332||==bAN ,3||1=N C . ∴ 3||||1==N C AN 同理 ||||1M C AM =.∴ △N AC 1与△M AC 1均为以1AC 为底边的等腰三角形,取1AC 中点为P ,则1AC NP ⊥,NPM AC MP ∠⇒⊥1为二面角M AC N --1的平面角,而点P 坐标为(1,0,22), ∴ 21(-=,23,)22. 同理 PM 21(=,23,)22-. ∴ PN PM ⋅⇒=-+-=0214341PN PM ⊥. ∴ ∠NPM =90°⇒二面角M AC N --1的大小等于90°.19.解析:设派x 名消防员前去救火,用t 分钟将火扑灭,总损失为y ,则210100501005-=-⨯=x x t y =灭火劳务津贴+车辆、器械装备费+森林损失费 =125tx +100x +60(500+100t )=26000030000100210125-+++-⋅⋅x x x x =2600030000)22(1002221250-+++-+-+-⋅x x x x =262500)2(10031450-+-+x x3645062500100231450=⨯+≥ 当且仅当262500)2(100-=-x x ,即x =27时,y 有最小值36450. 故应该派27名消防员前去救火,才能使总损失最少,最少损失为36450元.20.解析:(1)当A 、B 、C 三点不共线时,由三角形中线性质知)|||(|222AM BM +⎭⎬⎫≥-+=⇒-+=+⇒+=0)3(5)6()2(2||||22222222y x y x x y AC AB 又⇒5)3(2+-=x y ;当A ,B ,C 三点共线时,由A BC AC AB ⇒=>=+4||6||||在线段BC 外侧,由14|6|=⇒=--x x x 或x =5,因此,当x =1或x =5时,有6||||=+AC AB ,同时也满足:2222||||)|||(|2AC AB AM BM +=+.当A 、B 、C 不共线时,4||||||||=<-BC AC AB5)3()(512+-==⇒<<⇒x x f y x 定义域为[1,5].(2)(理)∵ 5)3(2+-=x y . ∴ d =y +x -1=15)3(2-++-x x . 令 t =x -3,由2[51-∈⇒≤≤t x ,25]22+++=⇒t t d , 两边对t 求导得:d t d t ⇒>-+≥++=09215112关于t 在[-2,2]上单调增.∴ 当t =2时,min d =3,此时x =1. 当t =2时,max d =7.此时x =5.故d 的取值范围为[3,7].(文)由5)3(2+-=x y 且1[∈x ,]5,∴ 当x =3时,5min =y .当x =1或5时,3522max =+=y .∴ y 的取值范围为[5,3].21.解析:(1)令0)0(0=⇒==f y x ,令y =-x ,则)(0)()(x f x f x f -⇒=-+)()(x f x f ⇒-=在(-1,1)上是奇函数.(2)设1021<<<x x ,则)1()()()()(21212121x x x x f x f x f x f x f --=-+=-,而021<-x x ,0)1(01102121212121>--⇒<--⇒<<x x xx f x x x x x x .即 当21x x <时,)()(21x f x f >.∴ f (x )在(0,1)上单调递减.(3)(理)由于)31()52115121()51()21()51()21(f f f f f f =⨯--=-+=-, )41()111()31(f f f =-,)51()191()41(f f f =-,∴ 1212)51(2)191()111()21(=⨯==--f f f f .22.解析:(理)由⊥⇒⎭⎬⎫⊥⊥OA OC OA OB OA ,平面BC OA OBC ⊥⇒,连AH 并延长并BC于M .则 由H 为△ABC 的垂心. ∴ AM ⊥BC .于是 BC ⊥平面OAH ⇒OH ⊥BC . 同理可证:⊥⇒⎭⎬⎫=⊥OH C BC AC ACOH 又平面ABC .又 ,,是空间中三个不共面的向量,由向量基本定理知,存在三个实数1k ,2k ,3k 使得OH =1k a +2k b +3k c .由 0=⋅OH 且b a ⋅=c a ⋅=0⇒2k b 2=3k c 2, 同理2221b a k k =. ∴ 0232221≠===m k k k c b a . ①又 AH ⊥OH ,∴ )()1(0321321c b a c b a k k k k k k OH AH ++++-⇒=⋅⋅=0211)1(a -⇒k k0223222=++c b k k ②联立①及②,得100)1(321321=++⇒⎭⎬⎫≠=++-k k k m mk mk k m , ③又由①,得 21a m k =,22b m k =,23c mk =,代入③得: ∆=⇒++=⋅⋅⋅⋅⋅⋅221222222222c b a c c b b a c b a k m ,∆=⋅222a c k ,∆=⋅223b a k ,其中222222a c cb b a⋅⋅⋅++=∆,于是OH∆=1)(222222c b a b a c a c b ⋅⋅⋅⋅⋅⋅++. (文)(1)联立方程ax +1=y 与1322=-y x ,消去y 得:022)3(22=---ax x a (*) 又直线与双曲线相交于A ,B 两点, ∴660<<-⇒>∆a .又依题 OA ⊥OB ,令A ,B 两点坐标分别为(1x ,1y ),(2x ,2y ),则 2121x x y y -=. 且 212121221211)()1)(1(x x x x a x x a ax ax y y -=+++=++=1221()1(x a a x x ++⇒)2x +01=+,而由方程(*)知:22132a a x x -=+,32221-=a x x 代入上式得1101323)1(222221±=⇒=⇒=+-+-+-a a aa a a .满足条件. (2)假设这样的点A ,B 存在,则l :y =ax +1斜率a =-2.又AB 中点2(21x x +,)221y y +在x y 21=上,则)(212121x x y y +=+,又 2)(2121++=+x x a y y ,代入上式知 6324)(22212121=⇒⎪⎭⎪⎬⎫-=++=++a a a x x x x x x a 又这与2-=a 矛盾.故这样的实数a 不存在.。
2011年全国高考数学试题压轴题(1)、(2011年全国卷)已知O 为坐标原点,F 为椭圆22:12y C x +=在y 轴正半轴上的焦点,过F且斜率为的直线l 与C 交与A 、B 两点,点P 满足0.OA OB OP ++=(Ⅰ)证明:点P 在C 上;(Ⅱ)设点P 关于点O 的对称点为Q ,证明:A 、P 、B 、Q 四点在同一圆上.(2)、(2011年全国卷)(Ⅰ)设函数2()ln(1)2xf x x x =+-+,证明:当0x >时,()0f x >;(Ⅱ)从编号1到100的100张卡片中每次随即抽取一张,然后放回,用这种方式连续抽取20次,设抽得的20个号码互不相同的概率为p .证明:19291()10p e <<(3)、(2011年新课标卷)在平面直角坐标系xOy 中,已知点A(0,-1),B 点在直线y = -3上,M 点满足MB//OA , MA •AB = MB •BA ,M 点的轨迹为曲线C 。
(Ⅰ)求C 的方程;(Ⅱ)P 为C 上的动点,l 为C 在P 点处得切线,求O 点到l 距离的最小值。
(4)、(2011年新课标卷)已知函数ln ()1a x bf x x x =++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。
(Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x >+-,求k 的取值范围。
(5)、(2011年北京卷)已知函数2()()xkf x x k e =-。
(Ⅰ)求()f x 的单调区间;(Ⅱ)若对于任意的(0,)x ∈+∞,都有()f x ≤1e ,求k 的取值范围。
(6)、(2011年北京卷)已知椭圆22:14x G y +=.过点(m,0)作圆221x y +=的切线交椭圆G 于A ,B 两点.(I )求椭圆G 的焦点坐标和离心率; (II )将AB表示为m 的函数,并求AB的最大值.(7)、(2011年北京卷)若数列12,,...,(2)n n A a a a n =≥满足111(1,2, (1)n a a k n +-==-,数列n A 为E 数列,记()n S A =12...n a a a +++.(Ⅰ)写出一个满足10s a a ==,且()s S A 〉0的E 数列n A ;(Ⅱ)若112a =,n=2000,证明:E 数列n A 是递增数列的充要条件是n a =2011;(Ⅲ)对任意给定的整数n (n≥2),是否存在首项为0的E 数列n A ,使得()n S A =0?如果存在,写出一个满足条件的E 数列n A ;如果不存在,说明理由。
江西高考网 提供更多高考资讯,资源下载 2011年高考数学压轴题系列训练含答案及解析详解1.(12分)已知抛物线、椭圆和双曲线都经过点()1,2M ,它们在x 轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.(Ⅰ)求这三条曲线的方程;(Ⅱ)已知动直线l 过点()3,0P ,交抛物线于,A B 两点,是否存在垂直于x 轴的直线l '被以AP 为直径的圆截得的弦长为定值?若存在,求出l '的方程;若不存在,说明理由.解:(Ⅰ)设抛物线方程为()220y px p =>,将()1,2M 代入方程得2p =24y x ∴= 抛物线方程为: ………………………………………………(1分)由题意知椭圆、双曲线的焦点为()()211,0,1,0,F F -∴ c=1…………………(2分) 对于椭圆,1222a M F M F =+=+(222222211321a ab ac ∴=+∴=+=+∴=-=+∴+= 椭圆方程为:………………………………(4分)对于双曲线,1222a M F M F '=-=2222221321a abc a '∴='∴=-'''∴=-=∴= 双曲线方程为:………………………………(6分)(Ⅱ)设AP 的中点为C ,l '的方程为:x a =,以AP 为直径的圆交l '于,D E 两点,D E 中点为H 令()11113,,,22x y A x y +⎛⎫∴⎪⎝⎭C ………………………………………………(7分)()1112312322D C AP x C H a xa ∴==+=-=-+()()()2222221112121132344-23246222D HD CC Hx y x a a x a aa D HD E D H l x ⎡⎤⎡⎤∴=-=-+--+⎣⎦⎣⎦=-+==-+=∴=='= 当时,为定值;定值此时的方程为: …………(12分)2.(14分)已知正项数列{}n a 中,16a =,点(n n A a 在抛物线21y x =+上;数列{}n b 中,点(),n n B n b 在过点()0,1,以方向向量为()1,2的直线上.(Ⅰ)求数列{}{},n n a b 的通项公式; (Ⅱ)若()()()n n a f n b ⎧⎪=⎨⎪⎩, n 为奇数, n 为偶数,问是否存在k N ∈,使()()274f k f k +=成立,若存在,求出k值;若不存在,说明理由; (Ⅲ)对任意正整数n,不等式1120111111n nn ab b b +-≤⎛⎫⎛⎫⎛⎫+++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 成立,求正数a 的取值范围.解:(Ⅰ)将点(n n A a 代入21y x =+中得()11111115:21,21n n n n n n a a a a d a a n n l y x b n ++=+∴-==∴=+-⋅=+=+∴=+ 直线 …………………………………………(4分)(Ⅱ)()()()521n f n n ⎧+⎪=⎨+⎪⎩, n 为奇数, n 为偶数………………………………(5分)()()()()()()27274275421,42735227145,24k k f k f k k k k k k k k k k ++=∴++=+∴=+∴++=+∴== 当为偶数时,为奇数, 当为奇数时,为偶数, 舍去综上,存在唯一的符合条件。
(2011高考备战冲刺指导)备战2011高考数学――压轴题跟踪演练系列51.(本小题满分14分)已知椭圆)0(12222>>=+b a by ax 的左、右焦点分别是F 1(-c ,0)、F 2(c ,0),Q 是椭圆外的动点,满足.2||1a Q F =点P 是线段F 1Q 与该椭圆的交点,点T 在线段F 2Q 上,并且满足.0||,022≠=⋅TF TF PT (Ⅰ)设x 为点P 的横坐标,证明x ac a P F +=||1;(Ⅱ)求点T 的轨迹C 的方程;(Ⅲ)试问:在点T 的轨迹C 上,是否存在点M , 使△F 1MF 2的面积S=.2b 若存在,求∠F 1MF 2的正切值;若不存在,请说明理由.本小题主要考查平面向量的概率,椭圆的定义、标准方程和有关性质,轨迹的求法和应用,以及综合运用数学知识解决问题的能力.满分14分. (Ⅰ)证法一:设点P 的坐标为).,(y x由P ),(y x 在椭圆上,得.)()()(||222222221x ac a xab bc x y c x P F +=-++=++=由0,>+-≥+≥a c x ac a a x 知,所以 .||1x ac a P F +=………………………3分证法二:设点P 的坐标为).,(y x 记,||,||2211r P F r P F ==则.)(,)(222221y c x r y c x r ++=++=由.||,4,211222121x a c a r P F cx r r a r r +===-=+得 证法三:设点P 的坐标为).,(y x 椭圆的左准线方程为.0=+x a c a由椭圆第二定义得ac cax P F =+||||21,即.||||||21x a c a cax ac P F +=+=由0,>+-≥+-≥a c x ac a a x 知,所以.||1x ac a P F +=…………………………3分(Ⅱ)解法一:设点T 的坐标为).,(y x当0||=PT 时,点(a ,0)和点(-a ,0)在轨迹上.当|0||0|2≠≠TF PT 且时,由0||||2=⋅TF PT ,得2TF PT ⊥. 又||||2PF PQ =,所以T 为线段F 2Q 的中点. 在△QF 1F 2中,a Q F OT ==||21||1,所以有.222a yx =+综上所述,点T 的轨迹C 的方程是.222a y x =+…………………………7分解法二:设点T 的坐标为).,(y x 当0||=PT 时,点(a ,0)和点(-a ,0)在轨迹上. 当|0||0|2≠≠TF PT 且时,由02=⋅TF PT ,得2TF PT ⊥.又||||2PF PQ =,所以T 为线段F 2Q 的中点.设点Q 的坐标为(y x '',),则⎪⎪⎩⎪⎪⎨⎧'=+'=.2,2y y c x x因此⎩⎨⎧='-='.2,2y y c x x ①由a Q F 2||1=得.4)(222a y c x ='++' ② 将①代入②,可得.222a y x =+综上所述,点T 的轨迹C 的方程是.222a y x =+……………………7分(Ⅲ)解法一:C 上存在点M (00,y x )使S=2b 的充要条件是⎪⎩⎪⎨⎧=⋅=+.||221,2022020b y c a y x 由③得a y ≤||0,由④得.||20cby ≤ 所以,当cba 2≥时,存在点M ,使S=2b ;当cba2<时,不存在满足条件的点M.………………………11分当cb a 2≥时,),(),,(002001y x c MF y x c MF --=---=,由2222022021b c a y c x MF MF =-=+-=⋅, 212121cos ||||MF F MF MF MF MF ∠⋅=⋅,22121sin ||||21b MF F MF MF S =∠⋅=,得.2tan 21=∠MF F③ ④解法二:C 上存在点M (00,y x )使S=2b 的充要条件是⎪⎩⎪⎨⎧=⋅=+.||221,2022020b y c a y x 由④得.||20cby ≤ 上式代入③得.0))((2224220≥+-=-=cba cba cb a x于是,当cba 2≥时,存在点M ,使S=2b ;当cba2<时,不存在满足条件的点M.………………………11分当cba 2≥时,记cx y k k cx y k k M F M F -==+==00200121,,由,2||21a F F <知︒<∠9021MF F ,所以.2|1|tan212121=+-=∠k k k k MF F (14)分2.(本小题满分12分)函数)(x f y =在区间(0,+∞)内可导,导函数)(x f '是减函数,且.0)(>'x f 设m kx y x +=+∞∈),,0(0是曲线)(x f y =在点()(,00x f x )得的切线方程,并设函数.)(m kx x g +=(Ⅰ)用0x 、)(0x f 、)(0x f '表示m ; (Ⅱ)证明:当)()(,),0(0x f x g x ≥+∞∈时;(Ⅲ)若关于x 的不等式),0[231322+∞≥+≥+在x b ax x 上恒成立,其中a 、b 为实数,求b 的取值范围及a 与b 所满足的关系.本小题考查导数概念的几何意义,函数极值、最值的判定以及灵活运用数形结合的思想判断函数之间的大小关系.考查学生的学习能力、抽象思维能力及综合运用数学基本关系解决问题的能力.满分12分 (Ⅰ)解:).()(000x f x x f m '-=…………………………………………2分 (Ⅱ)证明:令.0)(),()()(),()()(00=''-'='-=x h x f x f x h x f x g x h 则 因为)(x f '递减,所以)(x h '递增,因此,当0)(,0>'>x h x x 时;当0)(,0<'<x h x x 时.所以0x 是)(x h 唯一的极值点,且是极小值点,可知)(x h 的最小值为0,因此,0)(≥x h 即).()(x f x g ≥…………………………6分(Ⅲ)解法一:10≤≤b ,0>a 是不等式成立的必要条件,以下讨论设此条件成立. 0)1(,122≥-+-+≥+b ax x b ax x 即对任意),0[+∞∈x 成立的充要条件是③ ④.)1(221b a -≤另一方面,由于3223)(x x f =满足前述题设中关于函数)(x f y =的条件,利用(II )的结果可知,3223x b ax =+的充要条件是:过点(0,b )与曲线3223x y=相切的直线的斜率大于a ,该切线的方程为.)2(21b x b y +=-于是3223x b ax≥+的充要条件是.)2(21b a ≥…………………………10分综上,不等式322231x b ax x ≥+≥+对任意),0[+∞∈x 成立的充要条件是.)1(2)2(2121b a b -≤≤- ①显然,存在a 、b 使①式成立的充要条件是:不等式.)1(2)2(2121b b -≤- ②有解、解不等式②得.422422+≤≤-b ③因此,③式即为b 的取值范围,①式即为实数在a 与b 所满足的关系.…………12分(Ⅲ)解法二:0,10>≤≤a b 是不等式成立的必要条件,以下讨论设此条件成立. 0)1(,122≥-+-+≥+b ax x b ax x 即对任意),0[+∞∈x 成立的充要条件是.)1(221b a -≤………………………………………………………………8分令3223)(x b ax x -+=φ,于是3223x b ax ≥+对任意),0[+∞∈x 成立的充要条件是.0)(≥x φ 由.0)(331--==-='ax x a x 得φ当30-<<ax 时;0)(<'x φ当3->ax 时,0)(>'x φ,所以,当3-=ax 时,)(x φ取最小值.因此0)(≥x φ成立的充要条件是0)(3≥-a φ,即.)2(21-≥b a ………………10分综上,不等式322231x b ax x≥+≥+对任意),0[+∞∈x 成立的充要条件是.)1(2)2(2121b a b -≤≤- ①显然,存在a 、b 使①式成立的充要条件是:不等式2121)1(2)2(b b -≤- ②有解、解不等式②得.422422+≤≤-b因此,③式即为b 的取值范围,①式即为实数在a 与b 所满足的关系.…………12分3.(本小题满分12分)已知数列{}n a 的首项15,a =前n 项和为n S ,且*15()n n S S n n N +=++∈(I )证明数列{}1n a +是等比数列;(II )令212()n n f x a x a x a x =+++ ,求函数()f x 在点1x =处的导数(1)f '并比较2(1)f '与22313n n -的大小.解:由已知*15()n n S S n n N +=++∈可得12,24n n n S S n -≥=++两式相减得()1121n n n n S S S S +--=-+即121n n a a +=+从而()1121n n a a ++=+当1n =时21215S S =++所以21126a a a +=+又15a =所以211a =从而()21121a a +=+ 故总有112(1)n n a a ++=+,*n N ∈又115,10a a =+≠从而1121n n a a ++=+即数列{}1n a +是等比数列;(II )由(I )知321n n a =⨯-因为212()n n f x a x a x a x =+++ 所以112()2n n f x a a x na x -'=+++ 从而12(1)2n f a a na '=+++ =()()23212321(321)n n ⨯-+⨯-++⨯- =()232222n n +⨯++⨯ -()12n +++ =()1(1)31262n n n n ++-⋅-+由上()()22(1)23131212n f n n n '--=-⋅-()21221n n --=()()1212121(21)nn n n -⋅--+=12(1)2(21)nn n ⎡⎤--+⎣⎦① 当1n =时,①式=0所以22(1)2313f n n '=-;当2n =时,①式=-120<所以22(1)2313f n n '<-当3n ≥时,10n ->又()011211nnn nn n nn C C C C -=+=++++ ≥2221n n +>+所以()()12210nn n ⎡⎤--+>⎣⎦即①0>从而2(1)f '>22313n n -4.(本小题满分14分) 已知动圆过定点,02p⎛⎫⎪⎝⎭,且与直线2p x =-相切,其中0p >.(I )求动圆圆心C 的轨迹的方程;(II )设A 、B 是轨迹C 上异于原点O 的两个不同点,直线O A 和O B 的倾斜角分别为α和β,当,αβ变化且αβ+为定值(0)θθπ<<时,证明直线A B 恒过定点,并求出该定点的坐标.yA xoB,02p F ⎛⎫⎪⎝⎭MN2p x =-解:(I )如图,设M 为动圆圆心,,02p⎛⎫⎪⎝⎭为记为F ,过点M 作直线2p x =-的垂线,垂足为N ,由题意知:M F M N =即动点M 到定点F 与定直线2p x =-的距离相等,由抛物线的定义知,点M 的轨迹为抛物线,其中,02pF ⎛⎫⎪⎝⎭为焦点,2p x =-为准线,所以轨迹方程为22(0)y px P =>;(II )如图,设()()1122,,,A x y B x y ,由题意得12x x ≠(否则αβπ+=)且12,0x x ≠所以直线A B 的斜率存在,设其方程为y kx b =+,显然221212,22y y x x pp==,将y kx b =+与22(0)y px P =>联立消去x ,得2220ky py pb -+=由韦达定理知121222,p pb y y y y kk+=⋅=①(1)当2πθ=时,即2παβ+=时,tan tan 1αβ⋅=所以121212121,0y y x x y y x x ⋅=-=,221212204y y y y p-=所以2124y y p =由①知:224pb p k=所以2.b pk =因此直线A B 的方程可表示为2y k x P k =+,即(2)0k x P y +-=所以直线A B 恒过定点()2,0p - (2)当2πθ≠时,由αβθ+=,得tan tan()θαβ=+=tan tan 1tan tan αβαβ+-=122122()4p y y y y p+-将①式代入上式整理化简可得:2tan 2p b pkθ=-,所以22tan p b pk θ=+,此时,直线A B 的方程可表示为y kx =+22tan ppk θ+即2(2)0tan p k x p y θ⎛⎫+--= ⎪⎝⎭ 所以直线A B 恒过定点22,tan p p θ⎛⎫- ⎪⎝⎭所以由(1)(2)知,当2πθ=时,直线A B 恒过定点()2,0p -,当2πθ≠时直线A B 恒过定点22,tan p p θ⎛⎫- ⎪⎝⎭. 5.(本小题满分12分)已知椭圆C 1的方程为1422=+yx,双曲线C 2的左、右焦点分别为C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点. (Ⅰ)求双曲线C 2的方程;(Ⅱ)若直线2:+=kx y l 与椭圆C 1及双曲线C 2都恒有两个不同的交点,且l 与C 2的两个交点A和B 满足6<⋅OB OA (其中O 为原点),求k 的取值范围.解:(Ⅰ)设双曲线C 2的方程为12222=-by a x ,则.1,31422222==+=-=b c b a a 得再由故C 2的方程为.1322=-yx(II )将.0428)41(1422222=+++=++=kx x k yxkx y 得代入由直线l 与椭圆C 1恒有两个不同的交点得,0)14(16)41(16)28(22221>-=+-=∆kk k即 .412>k ①0926)31(1322222=---=-+=kx x k yxkx y 得代入将.由直线l 与双曲线C 2恒有两个不同的交点A ,B 得.131.0)1(36)31(36)26(,0312222222<≠⎪⎩⎪⎨⎧>-=-+-=∆≠-k k k k k k 且即)2)(2(,66319,3126),,(),,(22+++=+<+<⋅--=⋅-=+B A B A B A B A B A B A B A B A B B A A kx kx x x y y x x y y x x OB OA kx x kk x x y x B y x A 而得由则设.1373231262319)1(2)(2)1(222222-+=+-⋅+--⋅+=++++=kk kk k kk x x k x x kB A B A.0131315,613732222>--<-+kk kk 即于是解此不等式得.31151322<>k k或 ③由①、②、③得.11513314122<<<<kk或故k 的取值范围为)1,1513()33,21()21,33()1513,1( ----6.(本小题满分12分)数列{a n }满足)1(21)11(1211≥+++==+n a nn a a nn n 且.(Ⅰ)用数学归纳法证明:)2(2≥≥n a n ;(Ⅱ)已知不等式)1(:,0)1ln(2≥<><+n e a x x x n 证明成立对,其中无理数e=2.71828…. (Ⅰ)证明:(1)当n=2时,222≥=a ,不等式成立. (2)假设当)2(≥=k k n 时不等式成立,即),2(2≥≥k a k那么221))1(11(1≥+++=+kk k a k k a . 这就是说,当1+=k n 时不等式成立.根据(1)、(2)可知:22≥≥n a k 对所有成立. (Ⅱ)证法一:由递推公式及(Ⅰ)的结论有 )1.()2111(21)11(221≥+++≤+++=+n a nn a nn a n nnn n两边取对数并利用已知不等式得 n nn a nn a ln )2111ln(ln 21++++≤+.211ln 2nn nn a +++≤ 故nn n n n a a 21)1(1ln ln 1++≤-+ ).1(≥n上式从1到1-n 求和可得 121212121)1(1321211ln ln -++++-++⨯+⨯≤-n n nn a a.22111121121121111)3121(211<-+-=--⋅+--++-+-=nnn nn即).1(,2ln 2≥<<n ea a n n 故(Ⅱ)证法二:由数学归纳法易证2)1(2≥->n n n n对成立,故).2()1(1)1(11(21)11(21≥-+-+<+++=+n n n a n n a nn a n nn n令).2())1(11(),2(11≥-+≤≥+=+n b n n b n a b nn n n 则取对数并利用已知不等式得 n n b n n b ln ))1(11ln(ln 1+-+≤+).2()1(1ln ≥-+≤n n n b n上式从2到n 求和得 )1(1321211ln ln 21-++⨯+⨯≤-+n n b b n.11113121211<--++-+-=nn因).2(3,3ln 1ln .313ln 11122≥=<+<=+=+++n ee b b a b n n 故故1,,,2,132222121≥<<<≥<-<+n e a e a e a n e e a n n 对一切故又显然成立. 7.(本小题满分12分)已知数列:,}{且满足的各项都是正数n a .),4(,21,110N n a a a a n n n ∈-==+(1)证明;,21N n a a n n ∈<<+ (2)求数列}{n a 的通项公式a n . 解:(1)方法一 用数学归纳法证明:1°当n=1时,,23)4(21,10010=-==a a a a∴210<<a a ,命题正确. 2°假设n=k 时有.21<<-k k a a 则)4(21)4(21,1111k k k k k k a a a a a a k n ---=-+=--+时).4)((21))((21)(211111k k k k k k k k k k a a a a a a a a a a ---=+---=-----而.0,04.0111<-∴>--<----k k k k k k a a a a a a又.2])2(4[21)4(2121<--=-=+k k k k a a a a∴1+=k n 时命题正确.由1°、2°知,对一切n ∈N 时有.21<<+n n a a 方法二:用数学归纳法证明:1°当n=1时,,23)4(21,10010=-==a a a a ∴2010<<<a a ;2°假设n=k 时有21<<-k k a a 成立, 令)4(21)(x x x f -=,)(x f 在[0,2]上单调递增,所以由假设有:),2()()(1f a f a f k k <<-即),24(221)4(21)4(2111-⨯⨯<-<---k k k k a a a a也即当n=k+1时 21<<+k k a a 成立,所以对一切2,1<<∈+k k a a N n 有 (2)下面来求数列的通项:],4)2([21)4(2121+--=-=+n n n n a a a a 所以21)2()2(2--=-+n n a an n n n n n n n n b b b b b a b 22212122222112)21()21(21)21(2121,2-+++----==⋅-=--=-=-= 则令, 又b n =-1,所以1212)21(22,)21(---=+=-=n nn n n b a b 即。