第1讲 一元二次方程与韦达定理
- 格式:doc
- 大小:457.21 KB
- 文档页数:7
1
911
+⨯
例2. 0519998081999
52
2=++=+-b b a a 及已知,求b
a
的值.
【巩固练习】
1. 如果a 、b 都是质数,且0132=+-m a a ,0132=+-m b b ,求b
a
a b +的值
2. 设实数a ,b 分别满足,01999,01991922=++=++b b a a 且b
a a
b ab 1
4,1++≠求的值.
3. △ABC 的一边长为5,另两边长恰为方程01222=+-m x x 的两根,则m 的取值范围是 .
当堂检测
1.设1x 、2x 是关于x 的方程02=++q px x 的两根,1x +1、2x +1是关于x 的方程的两根,
则p 、q 的值分别等于 .
2.在R t △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,a 、b 是关于x 的方程
0772=++-c x x 的两根,那么AB 边上的中线长是 .
课后巩固
1、将本节课错题进行组卷,进行二次练习,培养错题管理习惯;
2、对笔记本进行复习,培养复习习惯。
预习思考
同学们,今天我们学习了韦达定理,大家尝试一下借助韦达定理解下面这道题:
已知x1、x2是关于x的一元二次方程4x2+4(m-1)x+m2=0的两个非零实数根,问x1和x2能否同号?若能同号,请求出相应的m的取值范围;若不能同号,请说明理由.。
初中数学联赛体系第1讲 一元二次方程的根与解法【知识要点与基本方法】 一、一元二次方程基本概念1、概念:只含有一个未知数x 的整式方程,并且都可以化为20ax bx c ++=(,,a b c 为常数,0a ≠)的形式的方程叫做一元二次方程.2、一元二次方程必须满足的三大条件 (1)整式方程(2)含有一个未知数(3)未知数的最高次数为2 3、一元二次方程的一般形式形如关于x 的一元二次方程:)0(02≠=++a c bx ax 的形式,(它的特征是方程左边是一个关于未知数的二次三项式,方程右边是零,其中2ax 叫二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项.注意b 、c 可以是任何实数,但a 绝对不能为零)二、一元二次方程的根与解法1、一元二次方程的根0x x =是方程20ax bx c ++=(,,a b c 为常数,0a ≠)的根的充要条件是0020=++c bx ax . 2、直接开平方法解一元二次方程:(1)把方程化成有一边是含有未知数的完全平方的形式,另一边是非负数的形式,即化成)0()(2≥=±a a b x 的形式(2)直接开平方,解得a b x a b x -=+= 21,3、配方法的定义:通过配成完全平方式的方法得到了一元二次方程的根,这种解一元二次方程的方法称为配方法.【注】、用配方法解一元二次方程的步骤:(1)利用配方法解一元二次方程时,如果02=++c bx ax 中a 不等于1,必须两边同时除以a ,使得二次项系数为1.(2)移项,方程的一边为二次项和一次项,另一边为常数项。
(3)方程两边同时加上一次项系数一半的平方。
(4)用直接开平方法求出方程的根. 4、公式法解一元二次方程(1)对于一元二次方程02=++c bx ax 其中0≠a ,由配方法有22244)2(aacb a b x -=+, ①当042≥-ac b 时,得aacb b x 242-±-=;②当042<-ac b 时,一元二次方程无实数解.(2)公式法的定义:利用求根公式接一元二次方程的方法叫做公式法.(3)运用求根公式求一元二次方程的根的一般步骤:①必须把一元二次方程化成一般式02=++c bx ax ,以明确a 、b 、c 的值; ②再计算ac b 42-的值:当04Δ2≥-=ac b 时,方程有实数解,其解为:aacb b x 242-±-=;当04Δ2<-=ac b 时,方程无实数解. 5、因式分解解一元二次方程(1)分解因式法解一元二次方程:当一元二次方程的一边为0,而另一边易于分解成两个一次因式的积时,可用解两个一元一次方程的方法来求得一元二次方程的解,这种解一元二次方程的方法称为分解因式法.(2)分解因式法的理论依据是:若0=⋅b a ,则0=a 或0=b (3)用分解因式法解一元二次方程的一般步骤: ①将方程的右边化为零;②将方程的左边分解为两个一次因式的乘积; ③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,他们的解就是一元一次方程的解.6、含字母系数一元二次方程的解法解关于含字母系数的方程,要求对每个参数允许值回答:方程是否有解?若有解,写出解集.特别地,当二次项系数含有字母系数时,如果题目本身没有指明时一元二次方程,则必须对二次项系数讨论是否为零.【例1】 1、若一元二次方程222(2)3(15)40m x m x m -+++-=的常数项为零,则m 的值为_________. 2、若方程()112=⋅+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 . 【例2】1、用分解因式法解下列方程(1)01032=--x x (2)01762=+-x x (3)0625412=-+x x (4)021)1(4)1(2=----x x . 2、利用求根公式求解下列方程(1) 0222=--x x (2)010342=+-x x(3)()()()()5211313+-=+-x x x x (4)061054422=--++-p x p px x【对应训练】:1、用公式法解下列方程(1)0232=+-x x (2)2212x x -=- (3)x x 3)1(2-=+(4)1(61)432(2)2x x x x ++-=+ (5)023222=--+-n mn m mx x【例3】解下列方程(1)42200x x --=;(2)06)13(2)32(2=----x x ;(3).02)23()21(2=++-+x x【例4】解下列方程 (1)4122+-=x x(2)112432--=-+x x x【例5】解关于x 的方程 (1);0)(222=++-ab x b a abx(2).)1()1()232(22222b x x ab a x x -=+---【例6】1、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 .2、设b a 、是整数,方程02=++b ax x 有一个根是347-,则=+b a .3、已知02=++c bx ax )0(≠ac 有一个根是3,则方程02=++a bx cx 一定有一个根是 ,方程02=+-a bx cx 一定有一个根是 .4、已知两数积1≠ab ,且03123456789022=++a a ,02123456789032=++b b ,则=ba【例7】已知方程p x x =--)97)(19(有实根21,r r ,试求方程p r x r x -=--))((21的最小实根.【例8】求k 的值,使得两个一元二次方程0)2(,0122=-++=-+k x x kx x 有公共根,并分别求出这两个方程的解集.【例9】对于任意实数,k 方程04)(2)1(2222=++++-+b k k x k a x k 都有实根1,试求另一个根的最大值与最小值.【例10】已知方程)0(2>=++a x c bx ax 的两根21x x 、满足ax x 1021<<<.当10x x <<时,证明:12x c bx ax x <++<.【例11】已知首项系数不相等的两个一元二次方程0)2()2()1(,0)2()2()1(222222=+++--=+++--b b x b x b a a x a x a 有公共根.(1)求证:.2++=b a ab(2)若b a ,为正整数,求ab ab ba b a --++的值. (3)设0x 为公共根,求证:.048403040>++-x x x【课后强化训练】A 组1、下列方程中,是一元二次方程的序号是①042=-y y ; ②0322=--x x ; ③312=x; ④bx ax =2; ⑤x x 322+=; ⑥043=+-x x ; ⑦22=t ; ⑧0332=-+xx x ; ⑨22=-x x ; ⑩)0(2≠=a bx ax2、已知方程3ax 2-bx -1=0和ax 2+2bx -5=0,有共同的根1-,则a = ,b = .3、已知a 2-5ab +6b 2=0,则abb a +等于 4、在实数范围内分解因式:=--12x x ;=++-223y xy x5、等腰三角形的两边的长是方程091202=+-x x 的两个根,则此三角形周长为 6、已知042=+-b x x 的一根的相反数为042=-+b x x 的根,则042=-+bx x 的根是 7、已知0132=+-a a ,那么=++--2219294a a a ___________. 8、方程019991997199822=⋅++x x 的解是 . 9、若1≠ab ,且07200552=++a a ,05200572=++b b ,则_________=ba. 10、已知方程(2011x)2-2010·2012x -1=0的较大根为a ,方程x2+2010x -2011=0的较小根为b ,则a -b =__________.11、方程0672=+-x x ,各根的和是 .12、若31028-是方程02=++b ax x 的一个根(其中b a 、是有理数),则ab 的值是 . 13、用公式法解下列各方程(1)x 2+6x +9=7 (2)017122=++x x(3)08242=+-x x (4)4)3)(12(=--x x(5)02)82(42=++-y y (6)02322=--x x(7))3)(21()12(5+-=-x x x14、用因式分解法解下列方程:(1)t (2t -1)=3(2t -1); (2)y 2+7y +6=0;(3)y 2-15=2y (4)(2x -1)(x -1)=1.(5))3)(21()12(5+-=-x x x (6)10x 2-x -3=015、解下列方程(1)0)34()45(22=---x x ; (2)06)23(2=++-x x ;(3)0154)35(222=----x x ; (4)02)32()347(2=----x x ;(5)629332+=-+++x x x x .16、已知两个二次方程02=++b ax x ,02=++d cx x 有一个公共根1,求证:二次方程0222=++++db xc a x 也有一个根为1.17、求方程072=--kx x 与()0162=+--k x x 的公共根.B 组1、已知c b 、为方程02=++c bx x 的两个根,且0≠c ,c b ≠.则c b 、的值分别是 、2、已知正实数a b c ,,满足方程组222229217226a b ac b c ab c a bc ⎧++=⎪++=⎨⎪++=⎩,则a b c ++的值是3、关于x 的方程1)12(62++-=m x m x 有一根α,满足不等式:19981998≤≤-α,且使得α53为整数,则m 可取 个值.4、已知02=++c bx ax 的两根和为1S ,两根平方和为2S ,两根立方根为3S ,则123cS bS aS ++的值是5、已知1=x 是方程02=++c bx ax 的根,0≠abc .则)111(32333222cb ac b a c b a +++++++的值是 .6、(2012湖北随州)设0122=-+a a ,01224=--b b ,且012≠-ab ,52213⎪⎪⎭⎫ ⎝⎛+-+a a b ab 的值是 .7、解下列关于x 的方程(1)03222=-+m x m x ; (2)0))()((=+++++++abc b a x a c x c b x ;(3))0(0)(33442≠=++-ab b a x b a abx ;(4)0)3(2)1(2=+--+m x m x m ;(5)02)5(522=--+-x m x m )(.8、已知下面三个方程有公共根.02=++c bx ax ,02=++a cx bx , 02=++b ax cx .求证:abc c b a 3333=++.9、设等腰三角形的一腰与底边长分别是方程062=+-a x x 的两根,当这样的三角形只有一个时,试求a 的取值范围.10、若21q q 、是方程02=++b ax x 的两个实根,且0,21≠≠b q q .又21c c 、是任意两个实数,则n n n q c q c x 2211+=是方程021=++--n n n bx ax x 的解.11、设2121,,,b b a a 都是实数,21a a ≠,且1))(())((22122111=++=++b a b a b a b a ,求证:1))(())((22211211-=++=++b a b a b a b a .初中数学联赛体系第2讲 可化为一元二次方程的方程(组)模块一、特殊高次方程的解法次数超过2的整式方程称为高次方程.一般地高次方程没有统一的求解方法.对于一些特殊的高次方程,可通过降次,转化为一元二次方程或一元一次方程求解.转化的方法有因式分解法、换元法、变换主元法等.【例1】解下列方程(1)13322)132(222+-=+-x x x x(2)222222)143()352()2(+-=+-+-+x x x x x x(3).3123=--x x x(4).022224223=-+++x x x(5)062536506650362562345678=+-+-+-+-x x x x x x x x【例2】解方程.02)65(2)11(2102234=++++---a a x a x a x x 其中a 是常数.【例3】方程02=++b ax x 有两个不同的实数根.求证:方程01)2(234=+--++ax x b ax x 有4个不同的实数根.模块二、特殊分式方程的解法分母中含有未知数的方程叫分式方程,求解分式方程总的原则是通过去分母或换元,时期转化为整式方程,然后再求解.在这个过程中离不开分式的恒等变形,如通分、约分及降低分子的次数等等,这就有可能使未知数的范围扩大(或缩小),从而使方程产生增根(或遗根),因此,当未知数的范围扩大时,需验根。
一元二次方程根与系数的关系(韦达定理)【学习目标】1、学会用韦达定理求代数式的值。
2、理解并掌握应用韦达定理求待定系数。
3、理解并掌握应用韦达定理构造方程.解方程组。
4、能应用韦达定理分解二次三项式。
知识框图求代数式的值 求待定系数 一元二次 韦达定理 应用 构造方程方程的求 解特殊的二元二次方程组 根公式 二次三项式的因式分解 【内容分析】韦达定理:对于一元二次方程20(0)ax bx c a ++=≠.如果方程有两个实数根12,x x .那么1212,b cx x x x a a+=-=说明:(1)定理成立的条件0∆≥ (2)注意公式重12bx x a+=-的负号与b 的符号的区别 根系关系的三大用处 (1)计算对称式的值例 若12,x x 是方程2220070x x +-=的两个根.试求下列各式的值:(1) 2212x x +; (2)1211x x +; (3) 12(5)(5)x x --; (4)12||x x -.解:由题意.根据根与系数的关系得:12122,2007x x x x +=-=-(1) 2222121212()2(2)2(2007)4018x x x x x x +=+-=---=(2)121212112220072007x x x x x x +-+===- (3) 121212(5)(5)5()2520075(2)251972x x x x x x --=-++=---+=-(4) 12||x x -====说明:利用根与系数的关系求值.要熟练掌握以下等式变形:222121212()2x x x x x x +=+-.12121211x x x x x x ++=.22121212()()4x x x x x x -=+-. 12||x x -=2212121212()x x x x x x x x +=+.33312121212()3()x x x x x x x x +=+-+等等.韦达定理体现了整体思想.【课堂练习】1.设x 1.x 2是方程2x 2-6x +3=0的两根.则x 12+x 22的值为_________2.已知x 1.x 2是方程2x 2-7x +4=0的两根.则x 1+x 2= .x 1·x 2= .(x 1-x 2)2=3.已知方程2x 2-3x+k=0的两根之差为212.则k= ;4.若方程x 2+(a 2-2)x -3=0的两根是1和-3.则a= ;5.若关于x 的方程x 2+2(m -1)x+4m 2=0有两个实数根.且这两个根互为倒数.那么m 的值为 ;6. 设x 1,x 2是方程2x 2-6x+3=0的两个根.求下列各式的值: (1)x 12x 2+x 1x 22(2) 1x 1 -1x 27.已知x 1和x 2是方程2x 2-3x -1=0的两个根.利用根与系数的关系.求下列各式的值:2221x 1x 1+(2)构造新方程理论:以两个数为根的一元二次方程是。
一元二次方程韦达定理法韦达定理是解一元二次方程的一种方法,它利用方程的根与系数之间的关系来求解方程。
它的全名叫做“韦尔斯特拉斯定理”,是一个非常有用的数学定理,对于解二次方程有着很大的帮助。
下面我将详细介绍一下韦达定理的原理和具体的应用步骤。
首先,我们来看一元二次方程的一般形式:ax^2+bx+c=0,其中a、b、c是已知的实数,且a≠0。
这里的x代表未知数,我们的目标是求出方程的根。
根据韦达定理,给定方程ax^2+bx+c=0,可以得到以下两个重要的等式:1.方程的两个根的和等于-b/a,即x1+x2=-b/a;2.方程的两个根的乘积等于c/a,即x1*x2=c/a。
这两个等式被称为韦达定理。
那么,我们该如何利用韦达定理来解二次方程呢?下面我将通过几个例子来说明具体的步骤和计算方法。
例1:求解方程x^2-5x+6=0首先,根据韦达定理,我们可以得到两个等式:1. x1+x2=5/1=5;2. x1*x2=6/1=6。
接下来,我们可以利用这两个等式来解方程。
为了找到满足这两个等式的数对(x1,x2),我们需要考虑所有可能的因式分解形式。
根据等式1,我们可以得到以下数对(x1,x2)的和等于5:(1,4),(2,3),(3,2),(4,1)根据等式2,我们可以得到以下数对(x1,x2)的乘积等于6:(1,6),(2,3),(3,2),(6,1)接下来,我们需要进一步检验这些数对是否满足原方程。
我们将每一个数对代入方程,观察方程的左右两边是否相等。
通过检验,我们发现数对(2,3)满足原方程。
所以,方程的解为x=2,x=3。
例2:求解方程2x^2-7x+3=0同样地,根据韦达定理,我们可以得到两个等式:1. x1+x2=7/2;2. x1*x2=3/2。
为了找到满足这两个等式的数对(x1,x2),我们需要考虑所有可能的因式分解形式。
根据等式1,我们可以找到数对(1/2,7/2)、(7/2,1/2)的和等于7/2。
一对一个性化辅导教师授课学案分析:在同时满足方程(1),( 2)条件的」的取值范围中筛选符合条件的」的整数值。
说明:熟悉一元二次方程实数根存在条件是解答此题的基础,正确确定」的取值范围,并依靠熟练的解不等式的基本技能和一定的逻辑推理,从而筛选出「- :,这也正是解答本题的基本技巧。
二、判别一元二次方程两根的符号。
例1:不解方程,判别方程爲■一■-:两根的符号。
分析:对于■■■■■■■; 111来说,往往二次项系数,一次项系数,常数项皆为已知,可据此求出根的判别式△,但△只能用于判定根的存在与否,若判定根的正负,则需要确定;1或;二的正负情况。
因此解答此题的关键是:既要求出判别式的值,又要确定】〔或< -的正负情况。
说明:判别根的符号,需要把“根的判别式”和“根与系数的关系”结合起来进行确定,另外由于本题中1 : <0,所以可判定方程的根为一正一负;倘若1〔>0,仍需考虑;1一C的正负,方可判别方程是两个正根还是两个负根。
三、已知一元二次方程的一个根,求出另一个根以及字母系数的值。
例2:已知方程.的一个根为2,求另一个根及匸的值。
分析:此题通常有两种解法:一是根据方程根的定义,把二]代入原方程,先求出匸的值,再通过解方程办法求出另一个根;二是利用一元二次方程的根与系数的关系求出另一个根及■■■■的值。
说明:比较起来,解法二应用了韦达定理,解答起来较为简单。
例3:已知方程■ ' - 1 -M有两个实数根,且两个根的平方和比两根的积大21,求匸的值。
分析:本题若利用转化的思想,将等量关系“两个根的平方和比两根的积大21”转化为关于匸的方程,即可求得匸的值。
说明:当求出-'—-后,还需注意隐含条件:!.,应舍去不合题意的;.'。
四、运用判别式及根与系数的关系解题。
例5:已知I、二是关于T的一元二次方程’'一 -'r'的两个非零实数根,问I和二能否同号?若能同号,请求出相应的匸的取值范围;若不能同号,请说明理由,说明:一元二次方程根与系数的关系深刻揭示了一元二次方程中根与系数的内在联系,是分析研究有关一元二次方程根的问题的重要工具,也是计算有关一元二次方程根的计算问题的重要工具。
专题 一元二次方程及韦达定理【基本知识】1.一元二次方程符合三个条件:①一个未知数;②未知数的最高次数为;③整式方程。
任何一个关于x 的一元二次方程都可以化成下面的形式:ax 2+bx +c = 0(a 、b 、c 是常数,且a ≠0)2.了解形如(x +m )2= n (n ≥0)的一元二次方程的解法 —— 直接开平方法3.用配方法解一元二次方程的一般步骤:(1)把常数项移到方程右边;(2)在方程的两边各加上一次项系数的一半的平方,使左边成为完全平方;(3)利用直接开平方法解之。
4.一元二次方程20(0)ax bx c a ++=≠的求根公式:242b b ac x a -±-= (240b ac -≥) 5.一元二次方程ax 2+bx +c = 0(a≠0)的根的情况可由b 2-4ac 来判定:当b 2-4ac >0时,方程有两个不相等的实数根; 当b 2-4ac = 0时,方程有两个相等的实数根;当b 2-4ac < 0时,方程没有实数根。
我们把b 2-4ac 叫做一元二次方程ax 2+bx +c = 0的根的判别式。
6. 设一元二次方程20ax bx c ++=的两根为1x ,2x ,则两根与方程系数之间有如下关系: 12b x x a +=-,12c x x a⋅=; 7、用一元二次方程解决实际问题要经历怎样的过程?(一审、二找、三设、四列(列代数式、列方程)、 五解、六验、七答)8. 用一元二次方程解决问题的关键是什么?(寻找题中的等量关系)巩固练习1.关于x 的方程20x px q ++=的两根同为负数,则( )A .0p >且0q >B .0p >且0q <C .0p <且0q >D .0p <且0q < 2.若关于x 的一元二次方程22430x kx k ++-=的两个实数根分别是12,x x ,且满足1212x x x x +=⋅。
x1x2公式韦达定理
一元二次方程里,根与系数的关系称为韦达定理,在条件为a≠0,且a,b,c皆为常数的一元二次方程ax²+bx+c中,两根为x1、x2,那么两根的关系是:x1+x2=-b/a,x1x2=c/a,前提条件是判别式△=b²-4ac大于等于0。
韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。
韦达在16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。
韦达定理在求根的对称函数,讨论二次方程根的符号、解对称方程组以及解一些有关二次曲线的问题都凸显出独特的作用。
根的判别式是判定方程是否有实根的充要条件,韦达定理说明了根与系数的关系。
无论方程有无实数根,实系数一元二次方程的根与系数之间适合韦达定理。
判别式与韦达定理的结合,则更有效地说明与判定一元二次方程根的状况和特征。
韦达定理最重要的贡献是对代数学的推进,它最早系统地引入代数符号,推进了方程论的发展,用字母代替未知数,指出了根与系数之间的关系。
韦达定理为数学中的一元方程的研究奠定了基础,对一元方程的应用创造和开拓了广泛的发展空间。
二次方程的根与系数(韦达定理)考点一:一元二次方程根的判别式1.一元二次方程根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆(1)当△>0时,一元二次方程有2个不相等的实数根;(2)当△=0时,一元二次方程有2个相等的实数根;(3)当△<0时,一元二次方程没有实数根.要点诠释: 利用根的判别式判定一元二次方程根的情况的步骤:①把一元二次方程化为一般形式;②确定的值;③计算ac b 42-的值;④根据的符号判定方程根的情况.2.一元二次方程根的判别式的逆用在方程中,(1)方程有两个不相等的实数根﹥0;(2)方程有两个相等的实数根=0;(3)方程没有实数根﹤0. 例:1.已知关于x 的一元二次方程x 2+bx+b ﹣1=0有两个相等的实数根,则b 的值是 。
2、若方程(x -2)2=a -4有实数根,则a 的取值范围是________3、若一元二次方程(1–2k)x 2 + 12x –10=0有实数根, 则K 的最大整数值为_______4、已知关于的一元二次方程有两个不相等的实数根,求的取值范围;5、当m 为何值时,关于x 的方程01)1(2)4(22=+++-x m x m有实根。
6、已知关于x 的方程x k x k 2211410-+++=(),k 取什么值时,方程有两个实数根?考点二:一元二次方程的根与系数的关系c b a .,ac b 42-()002≠=++a c bx ax ⇒ac b 42-⇒ac b 42-⇒ac b 42-1.一元二次方程的根与系数的关系如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么12x +x =___ ______,12x x =_____ ___.注意它的使用条件为a ≠0, Δ≥0.一元二次方程的根与系数的关系的应用(1)验根.不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两个根;(2)已知方程的一个根,求方程的另一根及未知系数;(3)不解方程,可以利用根与系数的关系求关于x 1、x 2的对称式的值.此时,常常涉及代数式的一些重要变形;如:①222121212()2x x x x x x +=+-; ②12121211x x x x x x ++=; ③; ④2221121212x x x x x x x x ++=2121212()2x x x x x x +-=; ⑤22121212()()4x x x x x x -=+-; ⑥22212121222222121212()211()x x x x x x x x x x x x ++-+==例:1如果x x 12、是方程x x 2720-+=的两个根,那么x x 12+=____________。
第1讲 一元二次方程1.1根的判别式一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b ac x aa-+=(1) 当240b ac ->时,右端是正数.因此,方程有两个不相等的实数根:242b b ac x a-±-=(2) 当240b ac -=时,右端是零.因此,方程有两个相等的实数根:1,22b x a=-(3) 当240b ac -<时,右端是负数.因此,方程没有实数根.由于可以用24b ac -的取值情况来判定一元二次方程的根的情况.因此,把24b ac -叫做一元二次方程20 (0)ax bx c a ++=≠的根的判别式,表示为:24b ac ∆=-课前练习:不解方程,判断下列方程的实数根的个数(1) 22310x x -+= (2) 24912y y +=(3) 25(3)60x x +-=【例1】已知关于x 的一元二次方程2320x x k -+=,根据下列条件,分别求出k 的范围: (1) 方程有两个不相等的实数根; (2) 方程有两个相等的实数根 (3)方程有实数根;(4) 方程无实数根.【例2】已知实数x 、y 满足22210x y xy x y +-+-+=,试求x 、y 的值.解:可以把所给方程看作为关于x 的方程,整理得:22(2)10x y x y y --+-+= 由于x 是实数,所以上述方程有实数根,因此:222[(2)]4(1)300y y y y y ∆=----+=-≥⇒=,代入原方程得:22101x x x ++=⇒=-.综上知:1,0x y =-=1.2 根与系数的关系(韦达定理)一元二次方程20 (0)ax bx c a ++=≠的两个根为:2244,22b b ac b b ac x x a a-+----==所以:22124422b b ac b b ac b x x aaa-+----+=+=-,22222122244()(4)422(2)4b b ac b b ac b b ac ac c x x aaaa a-+-------⋅=⋅===定理:如果一元二次方程20 (0)ax bx c a ++=≠的两个根为12,x x ,那么:1212,b cx x x x a a+=-=说明:一元二次方程根与系数的关系由十六世纪的法国数学家韦达发现,所以通常把此定理称为”韦达定理”.上述定理成立的前提是0∆≥.课前练习:1.已知方程2560x kx +-=的一个根是2,求它的另一个根及k 的值.2.已知两个数的和为4,积为-12,求这两个数.【例1】若12,x x 是方程2220070x x +-=的两个根,试求下列各式的值:(1) 2212x x + (2)1211x x +课堂练习:(3) 12(5)(5)x x --;(4) 12||x x -.【例2】已知关于x 的方程221(1)104x k x k -+++=,根据下列条件,分别求出k 的值.(1) 方程两实根的积为5; (2) 方程的两实根12,x x 满足12||x x =. 解:(1) ∵方程两实根的积为5∴ 222121[(1)]4(1)034,412154k k k k x x k ⎧∆=-+-+≥⎪⎪⇒≥=±⎨⎪=+=⎪⎩,所以,当4k =时,方程两实根的积为5.(2) 由12||x x =得知:①当10x ≥时,12x x =,所以方程有两相等实数根,故302k ∆=⇒=;②当10x <时,12120101x x x x k k -=⇒+=⇒+=⇒=-,由于302k ∆>⇒>,故1k =-不合题意,舍去. 综上可得,32k =时,方程的两实根12,x x 满足12||x x =.课堂练习:1.若关于x 的一元二次方程042=-+-a x x 的一根大于零、另一根小于零,求实数a 的取值范围.2.已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根. (1) 是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在,请您说明理由.(2) 求使12212x x x x +-的值为整数的实数k 的整数值.解:(1) 假设存在实数k ,使12123(2)(2)2x x x x --=-成立.∵ 一元二次方程24410kx kx k -++=的两个实数根 ∴ 2400(4)44(1)160k k k k k k ≠⎧⇒<⎨∆=--⋅+=-≥⎩,又12,x x 是一元二次方程24410kx kx k -++=的两个实数根 ∴ 1212114x x k x x k +=⎧⎪⎨+=⎪⎩∴ 222121212121212(2)(2)2()52()9x x x x x x x x x x x x --=+-=+-939425k k k+=-=-⇒=,但0k <. ∴不存在实数k ,使12123(2)(2)2x x x x --=-成立.(2) k 的整数值为2,3,5---.课后训练 A 组1.一元二次方程2(1)210k x x ---=有两个不相等的实数根,则k 的取值范围是( ) A .2k > B .2,1k k <≠且 C .2k < D .2,1k k >≠且2.若12,x x 是方程22630x x -+=的两个根,则1211x x +的值为( )A .2B .2-C .12D .923.已知菱形ABCD 的边长为5,两条对角线交于O 点,且OA 、OB 的长分别是关于x 的方程22(21)30x m x m +-++=的根,则m 等于( )A .3-B .5C .53-或D .53-或4.若t 是一元二次方程20 (0)a x b x c a ++=≠的根,则判别式24b a c ∆=-和完全平方式2(2)M a t b =+的关系是( )A .M ∆=B .M ∆>C .M ∆<D .大小关系不能确定5.若实数a b ≠,且,a b 满足22850,850a a b b -+=-+=,则代数式1111b a a b --+--的值为( )A .20-B .2C .220-或D .220或6.如果方程2()()()0b c x c a x a b -+-+-=的两根相等,则,,a b c 之间的关系是 ______7.已知一个直角三角形的两条直角边的长恰是方程22870x x -+=的两个根,则这个直角三角形的斜边长是 _______ .8.若方程22(1)30x k x k -+++=的两根之差为1,则k 的值是 _____ .9.设12,x x 是方程20x px q ++=的两实根,121,1x x ++是关于x 的方程20x qx p ++=的两实根,则p = _____ ,q = _____ .10.已知实数,,a b c 满足26,9a b c ab =-=-,则a = _____ ,b = _____ ,c = _____ .11.对于二次三项式21036x x -+,小明得出如下结论:无论x 取什么实数,其值都不可能等于10.您是否同意他的看法?请您说明理由.12.若0n >,关于x 的方程21(2)04x m n x m n --+=有两个相等的的正实数根,求m n的值.13.已知关于x 的一元二次方程2(41)210x m x m +++-=. (1) 求证:不论为任何实数,方程总有两个不相等的实数根; (2) 若方程的两根为12,x x ,且满足121112x x +=-,求m 的值.14.已知关于x 的方程221(1)104x k x k -+++=的两根是一个矩形两边的长.(1) k 取何值时,方程存在两个正实数根? (2) 当矩形的对角线长是5时,求k 的值.B 组1.已知关于x 的方程2(1)(23)10k x k x k -+-++=有两个不相等的实数根12,x x . (1) 求k 的取值范围;(2) 是否存在实数k ,使方程的两实根互为相反数?如果存在,求出k 的值;如果不存在,请您说明理由.2.已知关于x 的方程230x x m +-=的两个实数根的平方和等于11.求证:关于x 的方程22(3)640k x km x m m -+-+-=有实数根.3.若12,x x 是关于x 的方程22(21)10x k x k -+++=的两个实数根,且12,x x 都大于1. (1) 求实数k 的取值范围; (2) 若1212x x =,求k 的值.第三讲 一元二次方程根与系数的关系习题答案A 组1. B2. A3.A4.A5.A6.2,a c b b c +=≠且 7. 38. 9或3-9.1,3p q =-=- 10.3,3,0a b c ===11.正确12.413.21(1)1650 (2)2m m ∆=+>=-14.3(1) (2)22k k ≥=B 组1.13(1)112k k <≠且(2) 不存在2.1m = (1)当3k =时,方程为310x +=,有实根;(2) 当3k ≠时,0∆>也有实根. 3.(1) 314k k ≥≠且 ; (2) 7k =.。