2011-2016全国卷理数学试题及答案分类汇编十四不等式选讲
- 格式:docx
- 大小:872.28 KB
- 文档页数:7
绝密★启用前2011年普通高等学校招生全国统一考试(大纲卷)(适用地区:河北、广西、云南、甘肃、内蒙古、贵州、西藏、青海)理科数学本试卷共22题,共150分。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第I 卷(选择题)一、单选题 1.A .-2B .C .D .2.A .B .C .D .3.下面四个条件中,使a b >成立的充分而不必要的条件是 A .1a b +> B .1a b −> C .22a b >D .33a b >4.设n S 为等差数列{}n a 的前n 项和,若11a =,公差22,24k k d S S +=−=,则k= A .8B .7C .6D .55.设函数()()cos 0f x x ωω=> ,将()y f x =的图像向右平移3π个单位长度后,所得图像与原图像重合,则ω的最小值等于( )A .12B .3C .6D .96.已知直二面角l αβ−−,点A ∈α,AC ⊥l ,C 为垂足,B ∈β,BD ⊥l ,D 为垂足,若AB=2,AC=BD=1,则D 到平面ABC 的距离等于( )A .2B .3C .3D .17.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4为朋友,每位朋友1本,则不同的赠送方法共有 A .4种 B .10种 C .18种 D .20种 8.曲线21xy e =+在点()0,2处的切线与直线0y =和y x =围成的三角形的面积为(A)13 (B)12 (C)23(D)19.设()f x 是周期为2的奇函数,当01x ≤≤时,()2(1)f x x x =−,则5()2f −= ( ) A .12− B .14−C .14D .1210.A .B .C .D .11.已知平面α截一球面得圆M ,过圆心M 且与α成60二面角的平面β截该球面得圆N ,若该球面的半径为4.圆M 的面积为4π,则圆N 的面积为 A .4π B .7πC .11πD .13π12.设向量,,a b c 满足2a b ==,2a b ⋅=−,(),60a c b c −−=︒,则c v 的最大值等于( )A .4B .2CD .1第II 卷(非选择题)二、填空题13.(1−√x)20的二项展开式中,x 的系数与x 9的系数之差为 .14.已知,2παπ⎛⎫∈⎪⎝⎭,sin α,则tan 2α=_________.15.已知1F ,2F 分别为双曲线221927x yC −=:的左、右焦点,点A C ∈,点M 的坐标为()2,0,AM 为12F AF ∠的角平分线,则2AF =_______16.已知点E F 、分别在正方体1111ABCD A B C D −的棱1BB 、1CC 上,且12B E EB =,12CF FC =,侧面AEF 与面ABC 所成的二面角的正切值等于_______. 三、解答题17.ABC 的内角A 、B 、C 的对边分别为,,a b c .已知90,A C a c −=+=,求C18.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立.(Ⅰ)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(Ⅱ)X 表示该地的100位车主中,甲、乙两种保险都不购买的车主数.求X 的期望.19.如图,四棱锥S ABCD −中,//AB CD ,BC CD ⊥,侧面SAB 为等边三角形.2,1AB BC CD SD ====. (1)证明:SD ⊥平面SAB ;(2)求AB 与平面SBC 所成角的大小.20.设数列{}n a 满足11110,111n na a a +=−=−−(Ⅰ)求{}n a 的通项公式; (Ⅱ)设n b =1nn k k S b ==∑,证明:1nS<.21.已知O 为坐标原点,F 为椭圆C :2212y x +=在y 轴正半轴上的焦点,过F且斜率为的直线l 与C 交于A 、B 两点,点P 满足0OA OB OP ++=.(Ⅰ)证明:点P 在C 上;(Ⅱ)设点P 关于点O 的对称点为Q ,证明:A 、P 、B 、Q 四点在同一圆上.22.(Ⅰ)设函数()()2ln 12xf x x x =+−+,证明:当0x >时,()0f x > (Ⅱ)从编号1到100的100张卡片中每次随机抽取一张,然后放回,用这种方式连续抽取20次,设抽到的20个号码互不相同的概率为p ,证明:1929110p e ⎛⎫<< ⎪⎝⎭2011年普通高等学校招生全国统一考试(大纲卷)理科数学(参考答案)1.B 2.B 3.A 【解析】 试题分析:由,但无法得出,A 满足;由、均无法得出,不满足“充分”;由,不满足“不必要”.4.D 【解析】D.由11a =,公差2d =,得21n a n =−,从而2n S n =,所以()222224k k S S k k +−=+−=,解得k=55.C 【详解】 由题可知:平移之后函数表达式为cos 3y x πωω⎛⎫=−⎪⎝⎭由该函数图像与函数()cos f x x ω=图像重合, 所以2,3k k Z πωπ=∈,则6,k k Z ω=∈,又0>ω, 所以当1k =时,ω的最小值为6故选:C 6.C 【详解】因为在直二面角l αβ−−上,,A AC l α∈⊥,所以AC β⊥,同理BD α⊥,又2,1AB AC BD ===,易得CD =,用体积法求D 到平面ABC 的距离d ,11=22BCD S ∆=,12ABC S ∆=,A 到平面BCD 的距离为1,所以1113232D ABC A BCD V d V −−=⨯⨯==⨯⨯三棱锥三棱锥,解得:3d =. 故选C.7.B【详解】分两种情况:①选2本画册,2本集邮册送给4位朋友,有C 42=6种方法;②选1本画册,3本集邮册送给4位朋友,有C 41=4种方法.所以不同的赠送方法共有6+4=10(种). 8.D 【解析】2022x x y e y =''=⇒=,所以在点()0,2处的切线方程为22y x =+,它与y x =的交点为()2,2−−,与0y =的交点为()1,0−,所以三角形面积为12112⨯⨯= 9.A 【详解】∵函数是周期为2的周期函数,∴51()()22f f −=−,而1111()2(1)2222f =⨯⨯−=, 又函数为奇函数,∴5111()()()2222f f f −=−=−=−.故选A . 10.D 11.D 【解析】由圆M 的面积为4π,得2M r =,于是球心O 到圆M =,因为β与α成60二面角,OM α⊥,所以OM 与MN 成30角,所以12ON OM ==所以22413N r ==,所以圆N 的面积为13π12.A 【解析】因为2a b ==,2a b ⋅=−,所以1cos ,2a b a b a b⋅==−, ,120a b =︒.如图所以,设,,OA a OB b OC c ===,则CA a c =−, C B b c =−, 120AOB ∠=︒. 所以60ACB ∠=︒,所以180AOB ACB ∠+∠=︒,所以,,,A O B C 四点共圆. 不妨设为圆M ,因为AB b a =−,所以222212AB a a b b =−+=. 所以23AB =,由正弦定理可得AOB 的外接圆即圆M 的直径为2R 4AB sin AOB==∠.所以当OC 为圆M 的直径时,c 取得最大值4. 故选A.13.0 【解析】二项展开式的通项为T r+1=C 20r (−√x)r ,x 的系数为C 202(−1)2,x 9的系数为C 2018(−1)18=C 202(−1)2,所以x 的系数与x 9的系数之差为014.43−【详解】,2παπ⎛⎫∈ ⎪⎝⎭cos 5α∴==−sin 1tan cos 2ααα∴==− 22tan 14tan 211tan 314ααα−∴===−−−本题正确结果:43−15.6【详解】不妨设A 在双曲线的右支上, ∵AM 为12F AF ∠的平分线,∴1122824AF F M AF MF ===, 又∵1226AF AF a −==,解得26AF =,故答案为6. 16.3【详解】由题意画出图形如图:因为E 、F 分别在正方体1111ABCD A B C D −的棱1BB 、1CC 上, 延长CB 、FE 交点为S 连接AS ,过B 作BP AS ⊥连接PE , 所以面AEF 与面ABC 所成的二面角就是BPE ∠, 因为12B E EB =,12CF FC =,所以:1:2BE CF =,所以:1:2SB SC =, 设正方体的棱长为a,所以AS =,2BP a=,3a BE =, 在RT PBE中,32aBE tan EPB PB ∠===,故答案为3.17.12C π=【解析】解:由90A C −=,得22B AC C ππ=−−=−故sin sin cos 2A C C π⎛⎫=+= ⎪⎝⎭,sin sin 2cos 22B C C π⎛⎫=−= ⎪⎝⎭由sin sin a c A C B +=⇒+=,故cos sin 2C C C +=,)22cos sin cos sin C C C C +=−又显然2C π<,故cos sin 2C C −=,再由22cos sin 1C C +=,解得:cos 4C =,于是12C π=18.(Ⅰ)0.8;(Ⅱ)20 【详解】(Ⅰ)设该车主购买乙种保险的概率为P ,则(10.5)0.3P −=,故0.6P =, 该车主甲、乙两种保险都不购买的概率为(10.5)(10.6)0.2−−=,由对立事件的概率该车主至少购买甲、乙两种保险中的1种的概率10.20.8−= (Ⅱ)甲、乙两种保险都不购买的概率为0.2,~(100,0.2)X B 所以1000.220EX =⨯=19.(1)见解析 (2)arcsin7【详解】(1)建立空间直角坐标系如图所示:设()1,0,0D ,则()2,2,0A ,()0,2,0B ,设(),,S x y z ,则0,0,0x y z >>>,()2,2,AS x y z =−−,(),2,BS x y z =−,()1,,DS x y z =−,因为AS BS =,所以=1x =,因为1DS =,所以221y z +=,又因为2BS =,所以()22224x y z +−+=,所以1,22y z ==,所以11,,22S ⎛⎫ ⎪ ⎪⎝⎭,所以31,,22AS ⎛⎫=−− ⎪ ⎪⎝⎭,31,22BS ⎛⎫=− ⎪ ⎪⎝⎭,10,,22DS ⎛⎫= ⎪ ⎪⎝⎭, 所以33330,04444DS AS DS BS ⋅=−+=⋅=−+=, 所以,,SD AS SD BS AS BS S ⊥⊥=,所以SD ⊥平面SAB ;(2)设平面SBC 的法向量为(),,a m n p =,31,22BS ⎛⎫=− ⎪ ⎪⎝⎭,()0,2,0CB =uu r,因为00a BS a CB ⎧⋅=⎨⋅=⎩,所以302220m n p n ⎧−+=⎪⎨⎪=⎩,取m =,所以()3,0,2a =−, 又因为()2,0,0AB =,所以2cos ,72AB a AB a AB a⋅<>===⋅⋅,设AB 与平面SBC 所成角为α,所以sin 7α=,所以arcsin7α=. 20.(Ⅰ)11n a n=− (Ⅱ)见解析【解析】解:(Ⅰ)由111111n na a +−=−−得: 数列11n a ⎧⎫⎨⎬−⎩⎭是等差数列,首项为1111a =− 故()11111n nn a =+−⨯=−,从而11n a n=−(Ⅱ)nb====所以11111nn k k S b n ===+−=−<∑21.(Ⅰ)见解析(Ⅱ)见解析 【详解】 证明:(Ⅰ)设A (x 1,y 1),B (x 2,y 2)椭圆C :2212y x +=①,则直线AB 的方程为:y =+1 ②联立方程可得4x 2﹣x ﹣1=0,则x 1+x 22=,x 1×x 214=−则y 1+y 2=(x 1+x 2)+2=1 设P (p 1,p 2),则有:0A =(x 1,y 1),0B =(x 2,y 2),0P =(p 1,p 2);∴00A B +=(x 1+x 2,y 1+y 2)=(2,1);0P =(p 1,p 2)=﹣(00A B +)=(2−,﹣1)∴p 的坐标为(2−,﹣1)代入①方程成立,所以点P 在C 上. (Ⅱ)设点P 关于点O 的对称点为Q ,证明:A 、P 、B 、Q 四点在同一圆上.设线段AB 的中点坐标为(122x x +,122y y +),即(4,12),则过线段AB 的中点且垂直于AB 的直线方程为:y 122−=(x 4−),即y 2=x 14+;③ ∵P 关于点O 的对称点为Q ,故0(0.0)为线段PQ 的中点,则过线段PQ 的中点且垂直于PQ 的直线方程为:y 2=−x ④;③④联立方程组,解之得:x 8=−,y 18=③④的交点就是圆心O 1(8−,18),r 2=|O 1P |2=(2−−(8−))2+(﹣118−)29964=故过PQ 两点圆的方程为:(x 8+)2+(y 18−)29964=⑤,把y =+1 …②代入⑤,有x 1+x 22=,y 1+y 2=1 ∴A ,B 也是在圆⑤上的.∴A 、P 、B 、Q 四点在同一圆上. 22.(Ⅰ)见解析;(Ⅱ)见解析 【详解】证明:(Ⅰ)0x >时,()()()()()222222101212x x x f x x x x x +−=−=>++++', 于是()f x 在()0,∞+上单调增,所以()()00f x f >= (Ⅱ)2019100998281999881100100p ⨯⨯⨯⨯⨯⨯⨯==()()199981(9881)918990100⨯⨯⨯⨯⨯⨯⨯=(共有19192−=对数相乘) 1922219191990909090909010010010x ⨯⨯⨯⨯⎛⎫>≤== ⎪⎝⎭。
2011年高考试题数学(理科)选修系列:不等式选讲一、选择题:1. (2011年高考山东卷理科4)不等式|5||3|10x x -++≥的解集为 (A )[-5.7] (B )[-4,6] (C )(,5][7,)-∞-⋃+∞ (D )(,4][6,)-∞-⋃+∞ 【答案】D【解析】由不等式的几何意义知,式子|3||5|++-x x 表示数轴的点)(x 与点(5)的距离和与点(-3)的距离之和,其距离之和的最小值为8,结合数轴,选项D 正确 二、填空题1. (2011年高考天津卷理科13)已知集合{}1|349,|4,(0,)A x R x x B x R x t t t⎧⎫=∈++-≤=∈=+∈+∞⎨⎬⎩⎭,则集合A B ⋂=________.【答案】{}52|≤≤-∈x R x【解析】∵{}{}54|9|4||3||≤≤-∈=≤-++∈=x R x x x R x A ,()()⎭⎬⎫⎩⎨⎧+∞∈-⨯≥∈=⎭⎬⎫⎩⎨⎧+∞∈-+=∈=,0,6142|,0,614|t t t x R x t t t x R x B {}2|-≥∈=x R x ,∴{}{}{}52|2|54|≤≤-∈=-≥∈≤≤-∈=x R x x R x x R x B A . 对于实数x ,y ,若11≤-x ,12≤-y ,则12+-y x 的最大值为 . 【答案】 53. (2011年高考广东卷理科9)不等式130x x +--≥的解集是______. 【解析】}1|{≥x x 。
由题得1)3()1(|3||1|22≥∴-≥+∴-≥+x x x x x 所以不等式的解集为}1|{≥x x 。
金太阳新课标资源网4.(2011年高考陕西卷理科15)(不等式选做题)若关于x 的不等式12a x x ≥++-存在实数解,则实数a 的取值范围是 【答案】(,3][3,)-∞-+∞【解析】:因为12|12|3x x x x ++-≥+-+=所以12a x x ≥++-存在实数解, 有3a ≥3a ≤-或3a ≥ 三、解答题:1.(2011年高考辽宁卷理科24)(本小题满分10分)选修4-5:不等式选讲 已知函数f (x )=|x-2|-|x-5|. (I )证明:-3≤f (x )≤3;(II )求不等式f (x )≥x 2-8x+15的解集.解:(I )3,2,()|2||5|27,25,3, 5.x f x x x x x x -≤⎧⎪=---=-<<⎨⎪≥⎩当25,327 3.x x <<-<-<时 所以3() 3.f x -≤≤ (II )由(I )可知,当22,()815x f x x x ≤≥-+时的解集为空集;当225,()815{|55}x f x x x x x <<≥-+-≤<时的解集为; 当25,()815{|56}x f x x x x x ≥≥-+≤≤时的解集为.综上,不等式2()815{|56}.f x x x x x ≥-+≤≤的解集为2. (2011年高考全国新课标卷理科24)(本小题满分10分) 选修4-5不等选讲 设函数0,3)(>+-=a x a x x f (1)当1=a 时,求不等式23)(+≥x x f 的解集;(2)如果不等式0)(≤x f 的解集为{}1-≤x x ,求a 的值。
不等式选讲年份题号考点考查内容2011文理24不等式选讲绝对值不等式的解法2012文理24不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法2013卷1文理24不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷2文理24不等式选讲多元不等式的证明2014卷1文理24不等式选讲基本不等式的应用卷2文理24不等式选讲绝对值不等式的解法2015卷1文理24不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷2文理24不等式选讲不等式的证明2016卷1文理24不等式选讲分段函数的图像,绝对值不等式的解法卷2文理24不等式选讲绝对值不等式的解法,绝对值不等式的证明卷3文理24不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法2017卷1文理23不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷2文理23不等式选讲不等式的证明卷3文理23不等式选讲绝对值不等式的解法,绝对值不等式解集非空的参数取值范围问题2018卷1文理23不等式选绝对值不等式的解法,不等式恒成立参数取值范围问题的解法讲卷2文理23不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷3文理23不等式选讲绝对值函数的图象,不等式恒成立参数最值问题的解法2019卷1文理23不等式选讲三元条件不等式的证明卷2文理23不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷3文理23不等式选讲三元条件最值问题的解法,三元条件不等式的证明2020卷1文理23不等式选讲绝对值函数的图像,绝对值不等式的解法卷2文理23不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷3文理23不等式选讲三元条件不等式的证明考点出现频率2021年预测考点120绝对值不等式的求解23次考4次2021年主要考查绝对值不等式的解法、绝对值不等式的证明,不等式恒成立参数取值范围问题的解法等.考点121含绝对值不等式的恒成立问题23次考12次考点122不等式的证明23次考7次考点120绝对值不等式的求解1.(2020全国Ⅰ文理22)已知函数()3121f x x x =+--.(1)画出()y f x =的图像;(2)求不等式()()1f x f x >+的解集.【解析】(1)∵()3,1151,1313,3x x f x x x x x ⎧⎪+≥⎪⎪=--<<⎨⎪⎪--≤-⎪⎩,作出图像,如图所示:(2)将函数()f x 的图像向左平移1个单位,可得函数()1f x +的图像,如图所示:由()3511x x --=+-,解得76x =-,∴不等式的解集为7,6⎛⎫-∞- ⎪⎝⎭.2.(2020江苏23)设x ∈R ,解不等式2|1|||4x x ++≤.【答案】22,3⎡⎤-⎢⎥⎣⎦【思路导引】根据绝对值定义化为三个不等式组,解得结果.【解析】1224x x x <-⎧⎨---≤⎩ 或10224x x x -≤≤⎧⎨+-≤⎩或0224x x x >⎧⎨++≤⎩,21x ∴-≤<-或10x -≤≤或203x <≤,∴解集为22,3⎡⎤-⎢⎥⎣⎦.3.(2016全国I 文理)已知函数()|1||23|f x x x =+--.(I)在图中画出()y f x =的图像;(II)求不等式|()|1f x >的解集.【解析】(1)如图所示:(2)()4133212342x x f x x x x x ⎧⎪--⎪⎪=--<<⎨⎪⎪-⎪⎩,≤,,≥,()1f x >.当1x -≤,41x ->,解得5x >或3x <,1x -∴≤;当312x -<<,321x ->,解得1x >或13x <,113x -<<∴或312x <<;当32x ≥,41x ->,解得5x >或3x <,332x <∴≤或5x >.综上,13x <或13x <<或5x >,()1f x >∴,解集为()()11353⎛⎫-∞+∞ ⎪⎝⎭ ,,,.4.(2014全国II 文理)设函数()f x =1(0)x x a a a++->(Ⅰ)证明:()f x ≥2;(Ⅱ)若()35f <,求a 的取值范围.【解析】(I)由0a >,有()f x 111()2x x a x x a a a a a=++-≥+--=+≥,∴()f x ≥2.(Ⅱ)1(3)33f a a=++-.当时a >3时,(3)f =1a a+,由(3)f <5得3<a <5212;当0<a ≤3时,(3)f =16a a-+,由(3)f <5得12<a ≤3.综上:a 的取值范围是(152+,5212+).5.(2011新课标文理)设函数()3f x x a x =-+,其中0a >.(Ⅰ)当1a =时,求不等式()32f x x ≥+的解集;(Ⅱ)若不等式()0f x ≤的解集为{}|1x x ≤-,求a 的值.【解析】(Ⅰ)当1a =时,()32f x x ≥+可化为|1|2x -≥,由此可得3x ≥或1x ≤-.故不等式()32f x x ≥+的解集为{|3x x ≥或1}x ≤-.(Ⅱ)由()0f x ≤得30x a x -+≤,此不等式化为不等式组30x ax a x ≥⎧⎨-+≤⎩或30x aa x x ≤⎧⎨-+≤⎩,即4x a a x ⎧⎪⎨⎪⎩≥≤或2x aax ⎧⎪⎨-⎪⎩≤≤,因为0a >,∴不等式组的解集为{}|2a x x ≤-,由题设可得2a-=1-,故2a =.考点121含绝对值不等式的恒成立问题6.(2020全国Ⅱ文理22)已知函数()221f x x a x a =-+-+.(1)当2a =时,求不等式()4f x ≥的解集;(2)若()4f x ≥,求a 的取值范围.【答案】(1)32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭;(2)(][),13,-∞-+∞ .【思路导引】(1)分别在3x ≤、34x <<和4x ≥三种情况下解不等式求得结果;(2)利用绝对值三角不等式可得到()()21f x a ≥-,由此构造不等式求得结果.【解析】(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤;当34x <<时,()4314f x x x =-+-=≥,无解;当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥;综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭.(2)()()()()22222121211f x x a x a x ax a a a a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号),()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(][),13,-∞-+∞ .7.(2019全国II 文理23)[选修4-5:不等式选讲](10分)已知()|||2|().f x x a x x x a =-+--(1)当1a =时,求不等式()0f x <的解集;(2)若(,1)x ∈-∞时,()0f x <,求a 的取值范围.【解析】(1)当a=1时,()=|1| +|2|(1)f x x x x x ---.当1x <时,2()2(1)0f x x =--<;当1x ≥时,()0f x ≥,∴不等式()0f x <的解集为(,1)-∞.(2)因为()=0f a ,∴1a ≥.当1a ≥,(,1)x ∈-∞时,()=() +(2)()=2()(1)<0f x a x x x x a a x x -----∴a 的取值范围是[1,)+∞.8.(2018全国Ⅰ文理)已知()|1||1|f x x ax =+--.(1)当1a =时,求不等式()1f x >的解集;(2)若(0,1)x ∈时不等式()f x x >成立,求a 的取值范围.【解析】(1)当1a =时,()|1||1|f x x x =+--,即2,1,()2,11,2, 1.--⎧⎪=-<<⎨⎪⎩≤≥x f x x x x 故不等式()1f x >的解集为1{|}2x x >.(2)当(0,1)x ∈时|1||1|x ax x +-->成立等价于当(0,1)x ∈时|1|1ax -<成立.若0≤a ,则当(0,1)x ∈时|1|1-≥ax ;若0a >,|1|1ax -<的解集为20x a <<,∴21≥a,故02<≤a .综上,a 的取值范围为(0,2].9.(2018全国Ⅱ文理)设函数()5|||2|=-+--f x x a x .(1)当1a =时,求不等式()0≥f x 的解集;(2)若()1≤f x ,求a 的取值范围.【解析】(1)当1=a 时,24,1,()2,12,26, 2.+-⎧⎪=-<⎨⎪-+>⎩≤≤x x f x x x x 可得()0≥f x 的解集为{|23}-≤≤x x .(2)()1≤f x 等价于|||2|4++-≥x a x .而|||2||2|++-+≥x a x a ,且当2=x 时等号成立.故()1≤f x 等价于|2|4+≥a .由|2|4+≥a 可得6-≤a 或2≥a ,∴a 的取值范围是(,6][2,)-∞-+∞ .10.(2018全国Ⅲ文理)设函数()|21||1|f x x x =++-.(1)画出()y f x =的图像;(2)当[0,)x ∈+∞时,()f x ax b +≤,求a b +的最小值.【解析】(1)13,,21()2,1,23, 1.x x f x x x x x ⎧-<-⎪⎪⎪=+-<⎨⎪⎪⎪⎩≤≥()y f x =的图像如图所示.(2)由(1)知,()y f x =的图像与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当3a ≥且2b ≥时,()f x ax b +≤在[0,)+∞成立,因此a b +的最小值为5.11.(2018江苏)若x ,y ,z 为实数,且226x y z ++=,求222x y z ++的最小值.【解析】由柯西不等式,得2222222()(122)(22)x y z x y z ++++++≥.因为22=6x y z ++,∴2224x y z ++≥,当且仅当122x y z ==时,不等式取等号,此时244333x y z ===,,,∴222x y z ++的最小值为4.12.(2017全国Ⅰ文理)已知函数2()4f x x ax =-++,()|1||1|g x x x =++-.(1)当1a =时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[1,1]-,求a 的取值范围.【解析】(1)当1a =时,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤.①当1x <-时,①式化为2340x x --≤,无解;当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤;当1x >时,①式化为240x x +-≤,从而11712x -+<≤,∴()()f x g x ≥的解集为117{|1}2x x -+-<≤.(2)当[1,1]x ∈-时,()2g x =,∴()()f x g x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥.又()f x 在[1,1]-的最小值必为(1)f -与(1)f 之一,∴(1)2f -≥且(1)2f ≥,得11a -≤≤,∴a 的取值范围为[1,1]-.13.(2017全国Ⅲ文理)已知函数()|1||2|f x x x =+--.(1)求不等式()1f x ≥的解集;(2)若不等式2()f x x x m -+≥的解集非空,求m 的取值范围.【解析】(1)3,1()21,123,2x f x x x x -<-⎧⎪=--⎨⎪>⎩≤≤,当1x <-时,()f x 1≥无解;当x -12≤≤时,由()f x 1≥得,x -211≥,解得x 12≤≤;当>2x 时,由()f x 1≥解得>2x .∴()f x 1≥的解集为{}x x 1≥.(2)由()f x x x m -+2≥得m x x x x +---+212≤,而x x x x x x x x +---+--+2212+1+2≤x ⎛⎫ ⎪⎝⎭2355=--+244≤,且当32x =时,2512=4x x x x +---+,故m 的取值范围为5-,4⎛⎤∞ ⎥⎝⎦.14.(2016全国III 文理)已知函数()|2|f x x a a =-+(Ⅰ)当a=2时,求不等式()6f x ≤的解集;(Ⅱ)设函数()|21|g x x =-,当x ∈R 时,()()3f x g x +≥,求a 的取值范围.【解析】(Ⅰ)当2a =时,()|22|2f x x =-+.解不等式|22|26x -+ ,得13x - ,因此()6f x ≤的解集为{|13}x x - .(Ⅱ)当x R ∈时,()()|2||12|f xg x x a a x +=-++-|212|x a x a -+-+ |1|a a =-+,当12x =时等号成立,∴当x R ∈时,()()3f x g x + 等价于|1|3a a -+ .①当1a 时,①等价于13a a -+ ,无解.当1a >时,①等价于13a a -+ ,解得2a .∴a 的取值范围是[2,)+∞.15.(2015全国I 文理)已知函数()|1|2||f x x x a =+--,0a >.(Ⅰ)当1a =时,求不等式()1f x >的解集;(Ⅱ)若()f x 的图像与x 轴围成的三角形面积大于6,求a 的取值范围.【解析】(Ⅰ)当1a =时,不等式()1f x >化为|1|2|1|10x x +--->,当1x -≤时,不等式化为40x ->,无解;当11x -<<时,不等式化为320x ->,解得213x <<;当1x ≥时,不等式化为20x -+>,解得12x <≤.∴()1f x >的解集为2{|2}3x x <<.(Ⅱ)有题设可得,12,1()312,112,x a x f x x a x a x a x a --<-⎧⎪=+--⎨⎪-++>⎩≤≤,∴函数()f x 图象与x 轴围成的三角形的三个顶点分别为21(,0),(21,0),(,1)3a A B a C a a -++,ABC ∆的面积为22(1)3a +.有题设得22(1)63a +>,故2a >.∴a 的取值范围为(2,)+∞.16.(2014全国I 文理)若0,0ab >>,且11a b +=.(Ⅰ)求33a b +的最小值;(Ⅱ)是否存在,a b ,使得236a b +=?并说明理由.【解析】(I)11a b =+≥,得2ab ≥,且当a b ==时取等号.故33ab+≥≥,且当a b ==∴33a b +的最小值为(II)由(I)知,23a b +≥.由于6>,从而不存在,a b ,使得236a b +=.16.(2013全国I 文理)已知函数()f x =|21||2|x x a -++,()g x =3x +.(Ⅰ)当a =-2时,求不等式()f x <()g x 的解集;(Ⅱ)设a >-1,且当x ∈[2a -,12)时,()f x ≤()g x ,求a 的取值范围.【解析】(Ⅰ)当a =-2时,不等式()f x <()g x 化为|21||22|30x x x -+---<,设函数y =|21||22|3x x x -+---,y =15, 212, 1236, 1x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩,其图像如图所示,从图像可知,当且仅当(0,2)x ∈时,y <0,∴原不等式解集是{|02}x x <<.(Ⅱ)当x ∈[2a -,12)时,()f x =1a +,不等式()f x ≤()g x 化为13a x ++≤,∴2x a -≥对x ∈[2a -,12)都成立,故2a -≥2a -,即a ≤43,∴a 的取值范围为(-1,43].17.(2012新课标文理)已知函数|2|||)(-++=x a x x f .(Ⅰ)当|3-=a 时,求不等式()3f x 的解集;(Ⅱ)若()|4|f x x - 的解集包含]2,1[,求a 的取值范围.【解析】(1)当3a =-时,()3323f x x x ⇔-+- 2323x x x ⎧⇔⎨-+-⎩ 或23323x x x <<⎧⇔⎨-+-⎩ 或3323x x x ⎧⇔⎨-+-⎩ 1x ⇔ 或4x .(2)原命题()4f x x ⇔- 在[1,2]上恒成立24x a x x ⇔++-- 在[1,2]上恒成立22x a x ⇔--- 在[1,2]上恒成立30a ⇔- .考点122不等式的证明18.(2020全国Ⅲ文理23)设,,,0,1a b c a b c abc ∈++==R .(1)证明:0ab bc ca ++<;(2)用{}max ,,a b c 表示,,a b c 的最大值,证明:{}3max ,,4a b c ≥【答案】(1)证明见解析(2)证明见解析.【思路导引】(1)根据题设条件,0=++c b a 两边平方,再利用均值不等式证明即可;(2)思路一:不妨设max{,,}a b c a =,由题意得出0,,0a b c ><,由()222322b c b c bc a a a bc bc+++=⋅==,结合基本不等式,即可得出证明.思路二:假设出c b a ,,中最大值,根据反证法与基本不等式推出矛盾,即可得出结论.【解析】(1)证明:().0,02=++∴=++c b a c b a ,0222222=+++++∴ca ac ab c b a 即()222222c b a ca bc ab ++-=++.0,0222<++∴<++∴ca bc ab ca bc ab (2)证法一:不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,1,a b c a bc =--= ,()222322224b c b c bc bc bc a a a bc bc bc++++∴=⋅==≥=,当且仅当b c =时,取等号,a ∴≥,即max{,,}a b c .证法二:不妨设403<<<≤c b a ,则,4,41133>=-->=c b a c ab而1132a b ->--≥>==矛盾,∴命题得证.19.(2019全国I 文理23)已知a ,b ,c 为正数,且满足abc=1.证明:(1)222111a b c a b c++≤++;(2)333()()()24a b b c c a +++≥++.【解析】(1)因为2222222,2,2a b ab b c bc c a ac +≥+≥+≥,又1abc =,故有222111ab bc ca a b c ab bc ca abc a b c ++++≥++==++,∴222111a b c a b c++≤++.(2)因为, , a b c 为正数且1abc =,故有333()()()a b b c c a +++++≥=3(+)(+)(+)a b b c ac 3≥⨯⨯⨯=24.∴333()()()24a b b c c a +++++≥.20.(2019全国III 文理23)设,,x y z ∈R ,且1x y z ++=.(1)求222(1)(1)(1)x y z -++++的最小值;(2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a ≤-或1a ≥-.【解析】(1)由于2[(1)(1)(1)]x y z -++++222(1)(1)(1)2[(1)(1)(1)(1)(1)(1)]x y z x y y z z x =-+++++-++++++-2223(1)(1)(1)x y z ⎡⎤≤-++++⎣⎦,故由已知得2224(1)(1)(1)3x y z -++++≥,当且仅当x=53,y=–13,13z =-时等号成立.∴222(1)(1)(1)x y z -++++的最小值为43.(2)由于2[(2)(1)()]x y z a -+-+-222(2)(1)()2[(2)(1)(1)()()(2)]x y z a x y y z a z a x =-+-+-+--+--+--2223(2)(1)()x y z a ⎡⎤-+-+-⎣⎦ ,故由已知2222(2)(2)(1)()3a x y z a +-+-+- ,当且仅当43a x -=,13a y -=,223a z -=时等号成立,因此222(2)(1)()x y z a -+-+-的最小值为2(2)3a +.由题设知2(2)133a + ,解得3a - 或1a - .21.(2017全国Ⅱ文理)已知0a >,0b >,332a b +=,证明:(1)()()554a b a b ++≥;(2)2a b +≤.【解析】(1)556556()()a b a b a ab a b b ++=+++3323344()2()a b a b ab a b =+-++()22244ab a b =+-≥.(2)∵33223()33a b a a b ab b +=+++23()ab a b =++23()2()4a b a b +≤++33()24a b +=+,∴3()8a b +≤,因此2a b +≤.22.(2017江苏)已知a ,b ,c ,d 为实数,且224a b +=,2216c d +=,证明8ac bd +≤.【解析】证明:由柯西不等式可得:22222()()()ac bd a b c d +++≤,因为22224,16,a b c d +=+=∴2()64ac bd +≤,因此8ac bd +≤.23.(2016全国II 文理)已知函数()1122f x x x =-++,M 为不等式()2f x <的解集.(I)求M ;(II)证明:当a ,b M ∈时,1a b ab +<+.【解析】(I)当12x <-时,()11222f x x x x =---=-,若112x -<<-;当1122x -≤≤时,()111222f x x x =-++=<恒成立;当12x >时,()2f x x =,若()2f x <,112x <<.综上可得,{}|11M x x =-<<.(Ⅱ)当()11a b ∈-,,时,有()()22110a b -->,即22221a b a b +>+,则2222212a b ab a ab b +++>++,则()()221ab a b +>+,即1a b ab +<+,证毕.24.(2015全国II 文理)设,,,a b c d 均为正数,且a b c d +=+,证明:(Ⅰ)若ab >cd ,则a b c d +>+;(Ⅱ)a b c d +>+是||||a b c d -<-的充要条件.【解析】(Ⅰ)∵2()2a b a b ab +=++,2()c d c d cd +=++由题设a b c d +=+,ab cd >得22()a b c d >+a b c d +>(Ⅱ)(ⅰ)若||||a b c d -<-,则22()()a b c d -<-,即22()4()4a b ab c d cd +-<+-.因为a b c d +=+,∴ab cd >,由(Ⅰ)得a b c d >(ⅱ)a b c d +>则22(a b c d >+,即a b ab c d cd ++>++因为a b c d +=+,∴ab cd >,于是2222()()4()4()a b a b ab c d cd c d -=+-<+-=-.因此||||a b c d -<-.a b c d +>||||a b c d -<-的充要条件.25.(2013全国II 文理)设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤;(Ⅱ)2221a b c b c a++≥.【解析】(Ⅰ)2222222,2,2a b ab b c bc c a ca +≥+≥+≥得222a b c ab bc ca ++≥++,由题设得()21a b c ++=,即2222221a b c ab bc ca +++++=,∴()31ab bc ca ++≤,即13ab bc ca ++≤.(Ⅱ)∵2222,2,2a b c b a c b a c b c a +≥+≥+≥,∴222()2()a b c a b c a b c b c a +++++≥++,即222a b c a b c b c a ++≥++,∴2221a b c b c a ++≥.。
2011年普通高等学校招生全国统一考试理科数学(必修+选修II)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动, 用橡皮擦干净后,再选涂其他答案标号,在试题卷....上作答无效。
...... 3.第Ⅰ卷共l2小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题 (1)复数1z i =+,z 为z 的共轭复数,则1zz z --= (A )2i - (B )i - (C )i (D )2i(2)函数2(0)y x x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥(C )24y x =()x R ∈ (D )24(0)y x x =≥(3)下面四个条件中,使a b >成立的充分而不必要的条件是 (A )1a b +> (B )1a b -> (C )22a b > (D )33a b >(4)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k = (A )8 (B )7 (C )6 (D )5(5)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13 (B )3 (C )6 (D )9(6)已知直二面角α –ι- β,点A ∈α,AC ⊥ι,C 为垂足,B ∈β,BD ⊥ι,D 为垂足.若AB=2,AC=BD=1,则D 到平面ABC 的距离等于 (A)23 (B)33 (C)63(D) 1(7)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,则不同的赠送方法共有(A)4种 (B)10种 (C)18种 (D)20种(8)曲线y=2xe-+1在点(0,2)处的切线与直线y=0和y=x围成的三角形的面积为(A)13(B)12(C)23(D)1(9)设()f x是周期为2的奇函数,当0≤x≤1时,()f x=2(1)x x-,则5 ()2f-=(A) -12(B)14- (C)14(D)12(10)已知抛物线C:24y x=的焦点为F,直线24y x=-与C交于A,B两点.则cos AFB∠=(A)45(B)35(C)35- (D)45-(11)已知平面α截一球面得圆M,过圆心M且与α成060二面角的平面β截该球面得圆N.若该球面的半径为4,圆M的面积为4π,则圆N的面积为(A)7π (B)9π (C)11π (D)13π(12)设向量a,b,c满足a=b =1,a b =12-,,a cb c--=060,则c的最大值等于(A)2 (B)3 (c)2 (D)1第Ⅱ卷注意事项:1、答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。
近四年全国卷高考试题不等式选讲汇编2016全国一卷理科(24)(本小题满分10分),选修4—5:不等式选讲已知函数f (x )= ∣x +1∣-∣2x -3∣.(I )在答题卡第(24)题图中画出y= f (x )的图像;(II )求不等式∣f (x )∣﹥1的解集。
2016全国二卷理科(24)(本小题满分10分),选修4—5:不等式选讲已知函数f (x )= ∣x -21∣+∣x +21∣,M 为不等式f (x )<2的解集.(I )求M ;(II )证明:当a ,b ∈M 时,∣a +b ∣<∣1+ab ∣。
2016全国三卷理科24.(本小题满分10分)选修4-5:不等式选讲已知函数()|2|f x x a a=-+(I)当a=2时,求不等式()6f x≤的解集;(II)设函数()|21|,=-当x∈R时,f(x)+g(x)≥3,求a的取值g x x范围.2015全国一卷理科(24)(本小题满分10分)选修4—5:不等式选讲已知函数=|x+1|-2|x-a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图像与x 轴围成的三角形面积大于6,求a 的取值范围2015全国二卷理科24.(本小题满分10分)选修4 - 5:不等式选讲设a ,b ,c ,d 均为正数,且a + b = c + d ,证明:(1)若ab >cd;(2>是||||a b c d -<-的充要条件。
2014全国一卷理科24. (本小题满分10分)选修4—5:不等式选讲若0,0a b >>,且11a b+=(Ⅰ) 求33a b +的最小值;(Ⅱ)是否存在,a b ,使得236a b +=?并说明理由.2014全国二卷理科24. (本小题满分10)选修4-5:不等式选讲设函数()f x =1(0)x x a a a ++-> (Ⅰ)证明:()f x ≥2;(Ⅱ)若()35f <,求a 的取值范围.2013全国一卷理科(24)(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3. (Ⅰ)当a=-2时,求不等式f(x)<g(x)的解集;(Ⅱ)设a>-1,且当x∈[-a2,12)时,f(x)≤g(x),求a的取值范围.2013全国二卷理科(24)(本小题满分10分)选修4——5;不等式选讲设a ,b ,c 均为正数,且a+b+c=1,证明: (Ⅰ)13ab bc ca ++≤ (Ⅱ)2221a b c b c a ++≥2012全国一卷理科(24)(本小题满分10分)选修4—5:不等式选讲 已知函数()|||2|f x x a x =++-。
2011年普通高等学校招生全国统一考试理科数学(必修+选修II)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
.......... 3.第Ⅰ卷共l2小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题(1)复数1z i =+,z 为z 的共轭复数,则1zz z --=( ) (A )2i - (B )i - (C )i (D )2i 【答案】B【命题意图】本题主要考查复数的运算. 【解析】1zz z --=|z|21z --=2-(1+i)-1=i -.(2)函数0)y x =≥的反函数为( )(A )2()4x y x R =∈ (B )2(0)4x y x =≥ (C )24y x =()x R ∈ (D )24(0)y x x =≥【答案】B【命题意图】本题主要考查反函数的求法.【解析】由原函数反解得24y x =,又原函数的值域为0y ≥,所以函数0)y x =≥的反函数为2(0)4x y x =≥.(3)下面四个条件中,使a b >成立的充分而不必要的条件是( )(A )1a b +> (B )1a b -> (C )22a b > (D )33a b > 【答案】A【命题意图】本题主要考查充要条件及不等式的性质.【解析】即寻找命题P ,使P a b ⇒>,且a b >推不出P ,逐项验证知可选A.(4)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k =( ) (A )8 (B )7 (C )6 (D )5 【答案】D【命题意图】本题主要考查等差数列的基本公式的应用. 【解析】解法一2(2)(1)(1)[(2)12][12]442422k k k k k k S S k k k +++--=+⨯+⨯-⨯+⨯=+=,解得5k =.解法二:221[1(1)2](12)4424k k k k S S a a k k k +++-=+=++⨯++⨯=+=,解得5k =.(5)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于 (A )13(B )3 (C )6 (D )9 【答案】C【命题意图】本题主要考查三角函数的周期性及三角函数图像的平移变换. 【解析】由题意得2()3k k Z ππω⨯=∈,解得6k ω=,又0ω>,令1k =,得min 6ω=.(6)已知直二面角l αβ--,点A α∈,AC l ⊥,C 为垂足,B β∈,BD l ⊥,D 为垂 足.若2,1ABAC BD ===,则D 到平面ABC 的距离等于(A)3(B)3 (C)3【答案】C【命题意图】本题主要考查空间点到平面距离的求法. 【解析】如图,过D 作DE BC ⊥,垂足为E ,因为l αβ--是直二面角AC l ⊥,∴AC ⊥平面β,∴AC DE ⊥,BC DE ⊥,AC BC C =I ,∴DE ⊥平面ABC ,故DE 的长为点D到平面ABC 的距离.在Rt BCD∆中,由等面积法得3BD CD DE BC ⨯===.(7)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,则不同的赠送方法共有(A)4种 (B)10种 (C)18种 (D)20种 【答案】B【命题意图】本题主要考查两个原理与排列组合知识,考察考生分析问题的能力.【解析】分两类:一是取出1本画册,3本集邮册,此时赠送方法有144C =种;二是取出2本画册,2本集邮册,此时赠送方法有246C =种.故赠送方法共有10种.(8)曲线21xy e -=+在点(0,2)处的切线与直线0y =和y x =围成的三角形的面积为(A)13 (B)12 (C)23(D)1 【答案】A【命题意图】本题主要考查利用导数求切线方程和三角形面积公式. 【解析】'22,xy e-=-∴曲线21x y e -=+在点(0,2)处的切线的斜率2,k =-故切线方程是22y x =-+,在直角坐标系中作出示意图得围成的三角形的三个顶点分别为(0,0)、(1,0)、(23,23),∴三角形的面积是1211233S =⨯⨯=.(9)设()f x 是周期为2的奇函数,当01x ≤≤时,()f x =2(1)x x -,则5(2f -=(A) -12 (B)1 4- (C)14 (D)12【答案】A【命题意图】本题主要考查利用函数的周期性和奇偶性求函数值的方法. 【解析】由()f x 是周期为2的奇函数,利用周期性和奇偶性得:5511111()(2)()(2(1)2222222f f f f -=-+=-=-=-⨯⨯-=-.(10)已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A ,B 两点.则cos AFB ∠=(A)45(B)35 (C)35- (D)45-【答案】D【命题意图】本题主要考查直线与抛物线的位置关系,余弦定理的应用.【解析】联立2424y x y x ⎧=⎨=-⎩消去y 得2540x x -+=,解得1,4x x ==,不妨设A 点在x 轴的上方,于是A ,B 两点的坐标分别为(4,4),(1,2-),又(1,0)F ,可求得5,2AB AF BF ===.在ABF V 中,由余弦定理2224cos 25AF BF AB AFB AF BF +-∠==-⨯⨯.(11)已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为(A)7π (B)9π (C)11π (D)13π 【答案】D【命题意图】本题主要考查二面角的概念与球的性质.【解析】如图所示,由圆M 的面积为4π知球心O 到圆M的距离OM =在Rt OMN ∆中,30OMN ︒∠=,∴12ON OM ==故圆N的半径r =∴圆N 的面积为213S r ππ==.(12)设向量a r ,b r ,c r 满足||||1a b ==r r ,12a b =-r r g,,60a c b c ︒<-->=r r r r ,则||c r 的最大值等于(A)21 【答案】A圆的条件及数形结合的思想.【解析】如图,设,,AB a AD b AC c ===u u u r r u u u r r u u u r r,则120,60BAD BCD ︒︒∠=∠=,180BAD BCD ︒∠+∠=,∴,,,A B C D 四点共圆,当AC 为圆的直径时,||c r最大,最大值为2.绝密★启用前2011年普通高等学校招生全国统一考试理科数学(必修+选修II)第Ⅱ卷注意事项:1答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。
2011年全国各地高考数学试题及解答分类汇编大全(16计数原理、二项式定理)一、选择题:1. (2011福建理) (1+2x)3的展开式中,x 2的系数等于( )A.80B.40C.20D.10解析:(1+2x)5的展开式中含x 2的系数等于2225(2)40C x x =,系数为40.答案选B 。
2. (2011全国大纲卷文)4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有( )(A) 12种 (B) 24种 (C) 30种 (D)36种【答案】B【命题意图】本题主要考查两个原理与排列组合知识,考察考生分析问题的能力.【解析】第一步选出2人选修课程甲有246C =种方法,第二步安排剩余两人从乙、丙中各选1门课程有22⨯种选法,根据分步计数原理,有6424⨯=种选法.3. (2011全国大纲卷理)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,则不同的赠送方法共有( )(A)4种 (B)10种 (C)18种 (D)20种【答案】B【命题意图】本题主要考查两个原理与排列组合知识,考察考生分析问题的能力.【解析】分两类:一是取出1本画册,3本集邮册,此时赠送方法有144C =种;二是取出2本画册,2本集邮册,此时赠送方法有246C =种.故赠送方法共有10种.4.(2011全国新课标卷理))512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为 ( )(A )-40 (B )-20 (C )20 (D )40解析1.令x=1得a=1.故原式=511()(2)x x x x +-。
511()(2)x x x x+-的通项521552155(2)()(1)2r r r r r r r r T C x x C x ----+=-=-,由5-2r=1得r=2,对应的常数项=80,由5-2r=-1得r=3,对应的常数项=-40,故所求的常数项为40 ,选D解析2.用组合提取法,把原式看做6个因式相乘,若第1个括号提出x,从余下的5个括号中选2个提出x ,选3个提出1x ;若第1个括号提出1x ,从余下的括号中选2个提出1x,选3个提出x. 故常数项=223322335353111(2)()()(2)X C X C C C X X X X ⋅⋅-+⋅-⋅=-40+80=405.(2011陕西理)6(42)x x --(x ∈R )展开式中的常数项是 ( )(A )20- (B )15- (C )15 (D )20【分析】根据二项展开式的通项公式写出通项,再进行整理化简,由x 的指数为0,确定常数项是第几项,最后计算出常数项.【解】选C 62(6)1231666(4)(2)222r x r x r r x r xr r x xr r T C C C -----+==⋅⋅=⋅, 令1230x xr -=,则4r =,所以45615T C ==,故选C .6.(2011天津理)在62x x ⎛⎫- ⎪ ⎪⎝⎭的二项展开式中,2x 的系数为( ) A .154- B .154C .38-D .38【答案】C【解析】由二项式展开式得,()k k k k k k k k x C x x C T ---+-=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=36626612122, 令1=k ,则2x 的系数为()832116612-=⋅--⨯C .7.(2011重庆理)(13)(6)n x n N n +∈其中且≥的展开式中56x x 与的系数相等,则n=( )A .6B .7C .8D .9二、填空题:1.(2011安徽理)设2121221021)1(x a x a x a a x ++++=-Λ,则1110a a += ___ . (12)0【命题意图】本题考查二项展开式.难度中等. 【解析】101110102121(1)a C C =-=-,111011112121(1)a C C =-=,所以a a C C 111010112121+=-=0.2. (2011北京理)用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有__________个。
全国卷2011-2016文数学试题及详细答案分类汇编十五十五、不等式选讲1、(本小题满分10分)选修4—5:不等式选讲已知函数()|||2|f x x a x =++-。
(1)当3-=a 时,求不等式3)(≥x f 的解集;(2)若|4|)(-≤x x f 的解集包含[1,2],求a 的取值范围。
2、(2013全国文数1)(24)(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|2x -1|+|2x +a|,g(x)=x +3.(1)当a =-2时,求不等式f(x)<g(x)的解集;(2)设a >-1,且当x ∈1,22a ⎡⎫-⎪⎢⎣⎭时,f(x)≤g(x),求a 的取值范围.3、(2013全国文数2)(24)(本小题满分10分)选修4—5:不等式选讲设a ,b ,c 均为正数,且a +b +c =1.证明:(1)ab +bc +ca≤13;(2)222a b c b c a ++≥1. 4、(2014全国文数1)(24)(本小题满分10分)选修4—5:不等式选讲若0,0a b >>,且11a b +=.(Ⅰ) 求33a b +的最小值;(Ⅱ)是否存在,a b ,使得236a b +=?并说明文由.5、(2014全国文数2)(24)(本小题满分10)选修4-5:不等式选讲设函数()f x =1(0)x x a a a ++->(Ⅰ)证明:()f x ≥2;(Ⅱ)若()35f <,求a 的取值范围.6、(2015全国文数1)已知函数f (x )=|x+1|﹣2|x ﹣a|,a >0.(Ⅰ)当a=1时,求不等式f (x )>1的解集;(Ⅱ)若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值范围.7、(2015全国文数2)(24)(本小题满分10分)选修4-5:不等式证明选讲 设,,,a b c d 均为正数,且a b c d +=+.证明:(I )若ab cd > ,>(IIa b c d -<-的充要条件.8、(2016全国文数1)(24)(本小题满分10分),选修4—5:不等式选讲 已知函数()123f x x x =+--.(I )在答题卡第(24)题图中画出()y f x =的图像; (II )求不等式()1f x >的解集.9、(2016全国文数3)(24)(本小题满分10分),选修4—5:不等式选讲 已知函数f(x)=∣2x-a ∣+a.(I )当a=2时,求不等式f(x)≤6的解集;(II )设函数g(x)=∣2x-1∣.当x ∈R 时,f(x)+g(x)≥3,求a 的取值范围。
全国卷2011-2016理数学试题及详细答案分类汇编十四
十四、不等式选讲
1、(本小题满分10分)选修4-5:不等式选讲
设函数,其中。
(Ⅰ)当时,求不等式的解集;
(Ⅱ)若不等式的解集为,求a 的值。
2、(本小题满分10分)选修45-:不等式选讲
已知函数()2f x x a x =++- (1)当3a =-时,求不等式()3f x ≥的解集;
(2)若()4f x x ≤-的解集包含[1,2],求a 的取值范围。
3、(2013全国理数1)(24)(本小题满分10分)选修4—5:不等式选讲
已知函数f (x )=|2x -1|+|2x +a |,g (x )=x +3.
(1)当a =-2时,求不等式f (x )<g (x )的解集;
(2)设a >-1,且当x ∈1,22a ⎡⎫-⎪⎢⎣⎭
时,f (x )≤g (x ),求a 的取值范围. 4、(2013全国理数2)(24)(本小题满分10分)选修4—5:不等式选讲
设a ,b ,c 均为正数,且a +b +c =1,证明:
(1)ab +bc +ac ≤13
; (2)222
1a b c b c a
++≥. 5、(2014全国理数1)(24)(本小题满分10分)选修4—5:不等式选讲
若0,0a b >>
,且11a b
+=. (Ⅰ) 求33a b +的最小值;
(Ⅱ)是否存在,a b ,使得236a b +=?并说明理由.
6、(2014全国理数2)(24)(本小题满分10)选修4-5:不等式选讲
设函数()f x =1(0)x x a a a
++-> (Ⅰ)证明:()f x ≥2;
(Ⅱ)若()35f <,求a 的取值范围.
7、(2015全国理数1)(24)(本小题满分10分)选修4-5不等式选讲
设,,,a b c d 均为正数,且a b c d +=+,证明:
(Ⅰ)若ab cd >
;
a b c d -<-的充要条件.
8、(2015全国理数1)(24)(本小题满分10分)选修4—5:不等式选讲
()3f x x a x =-+0a >1a =()32f x x ≥+()0f x ≤{}|1
x x ≤-
已知函数=|x +1|-2|x-a |,a >0.
(Ⅰ)当a =1时,求不等式f (x )>1的解集;
(Ⅱ)若f (x )的图像与x 轴围成的三角形面积大于6,求a 的取值范围
9、(2106全国理数1)(24)(本小题满分10分),选修4—5:不等式选讲 已知函数()123f x x x =+--.
(I )在答题卡第(24)题图中画出()y f x =的图像;
(II )求不等式()1f x >的解集.
10、(2106全国理数2)(24)(本小题满分10分),选修4—5:不等式选讲 已知函数()1122f x x x =-++,M 为不等式()2f x <的解集.
(I )求M ;
(II )证明:当a ,b M ∈时,
1a b ab +<+. 11、(2106全国理数3)24.(本小题满分10分)选修4-5:不等式选讲
已知函数()|2|f x x a a =-+.
(I )当2a =时,求不等式()6f x ≤的解集;
(II )设函数()|21|g x x =-.当x ∈R 时,()()3f x g x +≥,求a 的取值范围.
答案
1、解析:(Ⅰ)当时,可化为。
由此可得或。
故不等式的解集为或。
( Ⅱ) 由得
此不等式化为不等式组或 即或 因为,所以不等式组的解集为 由题设可得=,故 2、解析:(1)当3a =-时,()3323f x x x ≥⇔-+-≥
2323x x x ≤⎧⇔⎨-+-≥⎩或23323x x x <<⎧⇔⎨-+-≥⎩或3323x x x ≥⎧⇔⎨-+-≥⎩
1x ⇔≤或4x ≥
(2)原命题()4f x x ⇔≤-在[1,2]上恒成立
24x a x x ⇔++-≤-在[1,2]上恒成立
22x a x ⇔--≤≤-在[1,2]上恒成立
30a ⇔-≤≤
3、解:(1)当a =-2时,不等式f (x )<g (x )化为|2x -1|+|2x -2|-x -3<0. 设函数y =|2x -1|+|2x -2|-x -3,
则y =15,,212,1,236, 1.x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩
其图像如图所示.从图像可知,当且仅当x ∈(0,2)时,y <0.
所以原不等式的解集是{x |0<x <2}.
1a =()32f x x ≥+|1|2x -≥3x ≥1x ≤-()32f x x ≥+{|3x x ≥1}x ≤-()0f x ≤30x a x -+≤30x a x a x ≥⎧⎨-+≤⎩30
x a a x x ≤⎧⎨-+≤⎩4x a a x ≥⎧⎪⎨≤⎪⎩2
x a a x ≤⎧⎪⎨≤-⎪⎩0a >{}|2a x x ≤-
2
a -1-2a =
(2)当x ∈1,22a ⎡⎫-
⎪⎢⎣⎭
时,f (x )=1+a . 不等式f (x )≤g (x )化为1+a ≤x +3.
所以x ≥a -2对x ∈1,22a ⎡⎫-⎪⎢⎣⎭
都成立. 故2a -≥a -2,即43
a ≤. 从而a 的取值范围是41,3⎛⎤- ⎥⎝
⎦. 4、解:(1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca ,
得a 2+b 2+c 2≥ab +bc +ca .
由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1.
所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13
. (2)因为22a b a b +≥,22b c b c +≥,2
2c a c a
+≥, 故222
()a b c a b c b c a
+++++≥2(a +b +c ), 即222
a b c b c a
++≥a +b +c . 所以222
a b c b c a
++≥1.
5、解析:(Ⅰ) 11
a b =+≥,得2ab ≥,且当a b ==
故33a b +≥=a b ==
∴33a b +的最小值为……5分
(Ⅱ)由623a b =+≥32
ab ≤,又由(Ⅰ)知2ab ≥,二者矛盾, 所以不存在,a b ,使得236a b +=成立. ……………10分
6、解析:(Ⅰ)由a>0,有f(x)=|x+1/a|+|x-a|≥|x+1/a-(x-a)|=1/a+a≥2. 所以f(x)≥2.
(Ⅱ)f(x)=|3+1/a|+|3-a|.
当a>3时,f(3)=a+1/a,由f(3)<5得3<a<
当0<a≤3时,f(3)=6-a+,f(3)<5得<a≤3
综上所诉,a的取值范围为()
7、
8、
9、⑴如图所示:
⑵ ()4133212342x x f x x x x x ⎧⎪--⎪⎪=--<<⎨⎪⎪-⎪⎩,≤,,≥
()1f x >
当1x -≤,41x ->,解得5x >或3x <
1x -∴≤ 当312x -<<,321x ->,解得1x >或13
x < 113x -<<∴或312
x << 当32
x ≥,41x ->,解得5x >或3x < 332
x <∴≤或5x > 综上,13
x <或13x <<或5x > ()1f x >∴,解集为()()11353⎛⎫-∞+∞ ⎪⎝
⎭ ,,, 10、解析:解:⑴当12x <-时,()11222f x x x x =---=-,若112
x -<<-; 当1122x -≤≤时,()111222
f x x x =-++=<恒成立; 当12
x >时,()2f x x =,若()2f x <,112x <<. 综上可得,{}|11M x x =-<<.
⑵当()11a b ∈-,
,时,有()()22110a b -->, 即22221a b a b +>+,
则2222212a b ab a ab b +++>++,
则()()22
1ab a b +>+, 即1a b ab +<+,
11、(Ⅰ)当2a =时,()|22|2f x x =-+.
解不等式|22|26x -+≤,得13x -≤≤,
因此,()6f x ≤的解集为{|13}x x -≤≤. ………………5分
(Ⅱ)当x ∈R 时,
()()|2||12|f x g x x a a x +=-++-|212|x a x a ≥-+-+|1|a a =-+, 当12
x =时等号成立, 所以当x ∈R 时,()()3f x g x +≥等价于|1|3a a -+≥. ① ……7分
当1a ≤时,①等价于13a a -+≥,无解;
当1a >时,①等价于13a a -+≥,解得2a ≥, 所以a 的取值范围是[2,)+∞. ………………10分。