06-14年浙江省向量高考题
- 格式:doc
- 大小:316.00 KB
- 文档页数:3
2014年普通高等学校招生全国统一考试(浙江卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则=A C U ( )A.∅B. }2{C. }5{D. }5,2{(2)已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件 (3)某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是A. 902cmB. 1292cmC. 1322cmD. 1382cm4. 为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像( )A.向右平移4π个单位 B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位 5. 在46)1()1(y x ++的展开式中,记nm yx 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( )A.45B.60C.120D. 2106. 已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ( )A.3≤cB.63≤<cC.96≤<cD. 9>c7.在同一直角坐标系中,函数x x g x x x f a alog )(),0()(=≥=的图像可能是( )8.记,max{,},x x y x y y x y ≥⎧=⎨<⎩,,min{,},y x yx y x x y≥⎧=⎨<⎩,设,a b 为平面向量,则( )A.min{||,||}min{||,||}a b a b a b +-≤B.min{||,||}min{||,||}a b a b a b +-≥C.2222min{||,||}||||a b a b a b +-≥+ D.2222min{||,||}||||a b a b a b +-≤+9. 已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球()3,3m n ≥≥,从乙盒中随机抽取()1,2i i =个球放入甲盒中.(a )放入i 个球后,甲盒中含有红球的个数记为()1,2ii ξ=;(b )放入i 个球后,从甲盒中取1个球是红球的概率记为()1,2i p i =.则A.()()1212,p p E E ξξ><B.()()1212,p p E E ξξ<>C.()()1212,p p E E ξξ>>D.()()1212,p p E E ξξ<< 10. 设函数21)(x x f =,),(2)(22x x x f -=|2sin |31)(3x x f π=,99,,2,1,0,99==i ia i ,记|)()(||)()(||)()(|98991201a f a f a f a f a f a f I k k k k k k k -++-+-= ,.3,2,1=k 则A.321I I I <<B. 312I I I <<C. 231I I I <<D. 123I I I << 二、填空题:本大题共7小题,每小题4分,共28分.11.若某程序框图如图所示,当输入50时,则该程序运算后输出的结果是________.12.随机变量ξ的取值为0,1,2,若()105P ξ==,()1E ξ=,则()D ξ=________.13.当实数x ,y 满足240,10,1,x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时,14ax y ≤+≤恒成立,则实数a 的取值范围是________.14. 在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).15.设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是______16.设直线)0(03≠=+-m m y x 与双曲线12222=-by a x (0a b >>)两条渐近线分别交于点B A ,,若点)0,(m P 满足PB PA =,则该双曲线的离心率是__________ 17、如图,某人在垂直于水平地面的墙面前的点处进行射击训练. 已知点到墙面的距离为,某目标点沿墙面的射击线移动,此人为了准确瞄准目标点,需计算由点观察点的仰角的大小.若则的最大值二、解答题:本大题共5小题,共72分18.(本题满分14分)在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知a b ≠,c =,22cos cos cos cos A B A A B B -=(1)求角C 的大小 (2)若4sin 5A =,求ABC ∆的面积19.(本题满分14分)已知数列{}n a 和{}n b 满足()()*∈=N n a a a nb n 221 .若{}na 为等比数列,且.6,2231b b a +==(1)求n a 与n b ; (2)设()*∈-=N n b a c nn n 11。
2014年普通高等学校招生全国统一考试(浙江卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则=A C U ( ) A. ∅ B. }2{ C. }5{ D. }5,2{(2)已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件(3)某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是 A. 902cm B. 1292cm C. 1322cm D. 1382cm4.为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像( )A.向右平移4π个单位 B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位5.在46)1()1(y x ++的展开式中,记nm y x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f )( )A.45B.60C.120D. 2106.已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ( ) A.3≤c B.63≤<c C.96≤<c D. 9>c 7.在同意直角坐标系中,函数x x g x x x f a alog )(),0()(=≥=的图像可能是( )8.记,max{,},x x y x y y x y ≥⎧=⎨<⎩,,min{,},y x yx y x x y≥⎧=⎨<⎩,设,a b 为平面向量,则( ) A.min{||,||}min{||,||}a b a b a b +-≤ B.min{||,||}min{||,||}a b a b a b +-≥ C.2222min{||,||}||||a b a b a b +-≥+ D.2222min{||,||}||||a b a b a b +-≤+9.已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球()3,3m n ≥≥,从乙盒中随机抽取()1,2i i =个球放入甲盒中.(a )放入i 个球后,甲盒中含有红球的个数记为()1,2ii ξ=;(b )放入i 个球后,从甲盒中取1个球是红球的概率记为()1,2i p i =. 则A.()()1212,p p E E ξξ><B.()()1212,p p E E ξξ<>C.()()1212,p p E E ξξ>>D.()()1212,p p E E ξξ<< 10.设函数21)(xx f =,),(2)(22x x x f -=|2sin |31)(3x x f π=,99,,2,1,0,99==i ia i ,记|)()(||)()(||)()(|98991201a f a f a f a f a f a f I k k k k k k k -++-+-= ,.3,2,1=k 则( )A.321I I I <<B. 312I I I <<C. 231I I I <<D. 123I I I << 二、填空题:本大题共7小题,每小题4分,共28分.11.若某程序框图如图所示,当输入50时,则该程序运算后输出的结果是________.12.随机变量ξ的取值为0,1,2,若()105P ξ==,()1E ξ=,则()D ξ=________. 13.当实数x ,y 满足240,10,1,x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时,14ax y ≤+≤恒成立,则实数a 的取值范围是________.14.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).15.设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是______15.设直线)0(03≠=+-m m y x 与双曲线12222=-b y a x (0a b >>)两条渐近线分别交于点B A ,,若点)0,(m P 满足PB PA =,则该双曲线的离心率是__________17、如图,某人在垂直于水平地面的墙面前的点处进行射击训练.已知点到墙面的距离为,某目标点沿墙面的射击线移动,此人为了准确瞄准目标点,需计算由点观察点的仰角的大小.若则的最大值三、解答题:本大题共5小题,共72分。
2014 年浙江省高考数学试卷(理科)一、选择题(每小题 5 分,共 50 分).(分)设全集U={ x∈N| x≥2},集合 A={ x∈ N| x 2≥5} ,则?U()1 5A=A.?B.{ 2}C.{ 5}D.{ 2,5} 2.(5分)已知 i 是虚数单位, a,b∈R,则“ a=b=1是”“( a+bi)2=2i ”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.(5 分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm24.(5 分)为了得到函数y=sin3x+cos3x 的图象,可以将函数y=cos3x 的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位.(分)在()6(1+y)4的展开式中,记 x m n项的系数为 f( m,n),则 f5 51+x y(3,0)+f( 2, 1) +f(1,2)+f(0,3)=()A.45B.60C.120D.210 6.(5 分)已知函数 f( x)=x3+ax2+bx+c.且 0<f(﹣ 1)=f(﹣ 2)=f(﹣ 3)≤3,则()A.c≤3B.3<c≤ 6C.6<c≤9D.c>9 7.(5 分)在同一直角坐标系中,函数f(x)=x a( x> 0),g(x)=log a x 的图象可1能是()A.B.C.D.8.(5 分)记 max{ x,y} =,min{ x,y} =,设,为平面向量,则()A.min{|+ |,|﹣ |}≤min{|| ,||}B.min{|+ |,|﹣ |}≥min{|| ,||}.+ |2,|﹣ |2}≤| |2+| |2C max{|.+ |2, |﹣ |2}≥| |2+| |2D max{|9.( 5 分)已知甲盒中仅有 1 个球且为红球,乙盒中有 m 个红球和 n 个蓝球( m ≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.( a)放入 i 个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入 i 个球后,从甲盒中取 1 个球是红球的概率记为 p i(i=1,2).则()A.p1> p2,E(ξ1)< E(ξ2)B.p1< p2,E(ξ1)> E(ξ2).1>p2,E(ξ1)> E(ξ2)D.p1<p2,E(ξ1)< E(ξ2)C p10.(5 分)设函数 f1(x)=x2,f2( x)=2( x﹣ x2),,,,,,,.记k=| f k(a1)﹣f k(a0)|+| f k(a2)﹣f k(a1)丨+ +| f ki=0 1 299I(a99)﹣ f k( a98)| ,k=1, 2, 3,则()A.I1<I2<I3.2<I1<I3.1<I3<I2.3<I2<I1B IC ID I2二、填空题11.( 4 分)在某程序框图如图所示,当输入50 时,则该程序运算后输出的结果是.12.( 4 分)随机变量ξ的取值为 0,1,2,若 P(ξ =0) = , E(ξ)=1,则 D(ξ)=.13.(4 分)当实数 x,y 满足时,1≤ax+y≤ 4恒成立,则实数a的取值范围是.14.( 4 分)在 8 张奖券中有一、二、三等奖各 1 张,其余 5 张无奖.将这 8 张奖券分配给 4 个人,每人 2 张,不同的获奖情况有种(用数字作答).15.( 4 分)设函数 f(x)=,若f(f(a))≤ 2,则实数a的取值范围是.16.( 4 分)设直线 x﹣3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点 P( m,0)满足 | PA| =| PB| ,则该双曲线的3离心率是.17.(4 分)如图,某人在垂直于水平地面ABC的墙面前的点 A 处进行射击训练.已知点 A 到墙面的距离为 AB,某目标点 P 沿墙面上的射线 CM 移动,此人为了准确瞄准目标点 P,需计算由点 A 观察点 P 的仰角θ的大小.若 AB=15m,AC=25m,∠ BCM=30°,则 tan θ的最大值是.(仰角θ为直线AP与平面 ABC所成角)三、解答题18.( 14 分)在△ ABC中,内角 A, B, C 所对的边分别为 a,b,c.已知 a≠b,c= ,cos2A﹣cos2 B= sinAcosA﹣sinBcosB(1)求角 C 的大小;(2)若 sinA= ,求△ ABC的面积.4.(分)已知数列{ a n } 和{ b } 满足 a a(n∈N*).若 { a } 为等19 14n1a2a3n=n比数列,且 a1=2, b3=6+b2.(Ⅰ)求 a n和 b n;(Ⅱ)设 c(∈N *).记数列 { c } 的前 n 项和为 S .n=n n n(i)求 S n;(i i)求正整数 k,使得对任意 n∈N*均有 S k≥ S n.20(.15 分)如图,在四棱锥 A﹣BCDE中,平面 ABC⊥平面 BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC= .(Ⅰ)证明: DE⊥平面 ACD;(Ⅱ)求二面角B﹣AD﹣ E 的大小.521.( 15 分)如图,设椭圆C:(a>b>0),动直线l与椭圆C只有一个公共点 P,且点 P 在第一象限.(Ⅰ)已知直线l 的斜率为 k,用 a,b,k 表示点 P 的坐标;(Ⅱ)若过原点O 的直线 l1与 l 垂直,证明:点 P 到直线 l1的距离的最大值为 a ﹣b.22.( 14 分)已知函数 f (x)=x3+3| x﹣ a| (a∈R).(Ⅰ)若 f(x)在 [ ﹣ 1,1] 上的最大值和最小值分别记为M(a),m(a),求 M(a)﹣ m(a);(Ⅱ)设 b∈R,若 [ f(x)+b] 2≤4 对 x∈[ ﹣1,1] 恒成立,求 3a+b 的取值范围.62014 年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题(每小题 5 分,共 50 分)1.(5 分)设全集 U={ x∈N| x≥2} ,集合 A={ x∈ N| x2≥ 5} ,则 ?U A=()A.?B.{ 2}C.{ 5}D.{ 2,5}【考点】 1F:补集及其运算.【专题】 5J:集合.【分析】先化简集合 A,结合全集,求得 ?U A.【解答】解:∵全集 U={ x∈N| x≥2} ,集合 A={ x∈N| x2≥5} ={ x∈ N| x≥3} ,则 ?U A={ 2} ,故选: B.【点评】本题主要考查全集、补集的定义,求集合的补集,属于基础题.2.(5 分)已知 i 是虚数单位, a,b∈R,则“ a=b=1是”“( a+bi)2=2i ”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【考点】 29:充分条件、必要条件、充要条件; A1:虚数单位 i、复数.【专题】 5L:简易逻辑.【分析】利用复数的运算性质,分别判断“a=b=1?”“( a+bi )2=2i ”与“”a=b=1?“(a+bi)2=2i ”的真假,进而根据充要条件的定义得到结论.【解答】解:当“a=b=1时”,“(a+bi)2=(1+i)2=2i ”成立,故“a=b=1是”“(a+bi)2=2i ”的充分条件;当“(a+bi)2 =a2﹣ b2+2abi=2i 时”,“a=b=1或”“a=b=﹣1”,故“a=b=1是”“(a+bi)2=2i ”的不必要条件;综上所述,“a=b=1是”“(a+bi)2=2i ”的充分不必要条件;7故选: A.【点评】本题考查的知识点是充要条件的定义,复数的运算,难度不大,属于基础题.3.(5 分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm2【考点】 L!:由三视图求面积、体积.【专题】 5Q:立体几何.【分析】几何体是直三棱柱与直四棱柱的组合体,根据三视图判断直三棱柱的侧棱长与底面的形状及相关几何量的数据,判断四棱柱的高与底面矩形的边长,把数据代入表面积公式计算.【解答】解:由三视图知:几何体是直三棱柱与直四棱柱的组合体,其中直三棱柱的侧棱长为 3,底面是直角边长分别为 3、4 的直角三角形,四棱柱的高为 6,底面为矩形,矩形的两相邻边长为 3 和 4,∴几何体的表面积S=2×4× 6+3×6+3×3+2×3×4+2××3×4+(4+5)×3=48+18+9+24+12+27=138( cm2).故选: D.【点评】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.84.(5 分)为了得到函数y=sin3x+cos3x 的图象,可以将函数y=cos3x 的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位【考点】 HJ:函数 y=Asin(ωx+φ)的图象变换.【专题】 57:三角函数的图像与性质.【分析】利用两角和与差的三角函数化简已知函数为一个角的一个三角函数的形式,然后利用平移原则判断选项即可.【解答】解:函数 y=sin3x+cos3x=,故只需将函数y=cos3x 的图象向右平移个单位,得到 y==的图象.故选: C.【点评】本题考查两角和与差的三角函数以及三角函数的平移变换的应用,基本知识的考查.5.(5 分)在( 1+x)6(1+y)4的展开式中,记 x m y n项的系数为 f( m,n),则 f(3,0)+f( 2, 1) +f(1,2)+f(0,3)=()A.45B.60C.120D.210【考点】 DA:二项式定理.【专题】 5P:二项式定理.【分析】由题意依次求出 x3y0,x2y1, x1y2,x0y3,项的系数,求和即可.【解答】解:( 1+x)6( 1+y)4的展开式中,含 x3y0的系数是:=20.f(3,0)=20;含 x2y1的系数是=60, f(2,1)=60;含 x1y2的系数是=36, f(1,2)=36;含 x0y3的系数是=4,f( 0, 3) =4;9∴f(3,0)+f( 2, 1) +f (1,2)+f(0,3)=120.故选: C.【点评】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.6.(5 分)已知函数 f( x)=x3+ax2+bx+c.且 0<f(﹣ 1)=f(﹣ 2)=f(﹣ 3)≤3,则()A.c≤3B.3<c≤ 6C.6<c≤9D.c>9【考点】 7E:其他不等式的解法.【专题】 11:计算题; 51:函数的性质及应用.【分析】由 f(﹣ 1)=f(﹣ 2)=f(﹣ 3)列出方程组求出a,b,代入 0<f(﹣ 1)≤3,即可求出 c 的范围.【解答】解:由 f(﹣ 1)=f(﹣ 2)=f(﹣ 3)得,解得,则 f( x)=x3+6x2+11x+c,由0<f(﹣1)≤3,得0<﹣1+6﹣11+c≤3,即 6<c≤ 9,故选: C.【点评】本题考查方程组的解法及不等式的解法,属于基础题.7.(5 分)在同一直角坐标系中,函数f(x)=x a( x> 0),g(x)=log a x 的图象可能是()A.B.10C.D.【考点】 3A:函数的图象与图象的变换.【专题】 51:函数的性质及应用.【分析】结合对数函数和幂函数的图象和性质,分当0< a< 1 时和当 a>1 时两种情况,讨论函数f(x)=x a(x≥0),g(x)=log a x 的图象,比照后可得答案.此时答案 D 满足要求,当 a>1 时,函数 f(x)=x a(x≥0),g(x)=log a x 的图象为:无满足要求的答案,11综上:故选 D,故选: D.【点评】本题考查的知识点是函数的图象,熟练掌握对数函数和幂函数的图象和性质,是解答的关键.8.(5 分)记 max{ x,y} =,min{ x,y} =,设,为平面向量,则()A.min{|+ |,|﹣ |} ≤min{| | ,||}B.min{| + | ,| ﹣ |} ≥min{|| ,||}.max{|+ |2,|﹣ |2}≤| |2+| |2.max{| + |2,| ﹣ |2} ≥C D| |2+|| 2【考点】 98:向量的加法; 99:向量的减法.【专题】 5A:平面向量及应用.【分析】将,平移到同一起点,根据向量加减法的几何意义可知,+ 和﹣分别表示以,为邻边所做平行四边形的两条对角线,再根据选项内容逐一判断.【解答】解:对于选项 A,取⊥,则由图形可知,根据勾股定理,结论不成立;对于选项 B,取,是非零的相等向量,则不等式左边min{|+ | ,|﹣|} =0,显然,不等式不成立;对于选项C,取,是非零的相等向量,则不等式左边max{| + | 2, |﹣| 2} =| + | 2=4,而不等式右边=|| 2+| | 2=2,故C不成立,D选项正确.故选: D.【点评】本题在处理时要结合着向量加减法的几何意义,将,,,放12在同一个平行四边形中进行比较判断,在具体解题时,本题采用了排除法,对错误选项进行举反例说明,这是高考中做选择题的常用方法,也不失为一种快速有效的方法,在高考选择题的处理上,未必每一题都要写出具体解答步骤,针对选择题的特点,有时“排除法”,“确定法”,“特殊值”代入法等也许是一种更快速,更有效的方法.9.( 5 分)已知甲盒中仅有 1 个球且为红球,乙盒中有 m 个红球和 n 个蓝球( m ≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.( a)放入 i 个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入 i 个球后,从甲盒中取 1 个球是红球的概率记为 p i(i=1,2).则()> p ,E(ξ)< E(ξ)A.p1 212 C.p1>p2,E(ξ1)> E(ξ2)B.p < p ,E(ξ)> E(ξ)1212 D.p1<p2,E(ξ1)< E(ξ2)【考点】 CH:离散型随机变量的期望与方差.【专题】 5I:概率与统计.【分析】首先,这两次先后从甲盒和乙盒中拿球是相互独立的,然后分两种情况:即当ξ=1时,有可能从乙盒中拿出一个红球放入甲盒,也可能是拿到一个蓝球放入甲盒;ξ=2时,则从乙盒中拿出放入甲盒的球可能是两蓝球、一红一蓝、或者两红;最后利用概率公式及分布列知识求出P1,P2和E(ξ1),E(ξ2)进行比较即可.【解答】解析:,,,所以 P1>P2;由已知ξ的取值为 1、2,ξ的取值为 1、2、 3,12所以,==,13)﹣ E(ξ)=.E(ξ12故选: A.【点评】正确理解ξi(i=1,2)的含义是解决本题的关键.此题也可以采用特殊值法,不妨令 m=n=3,也可以很快求解..(分)设函数1(x)=x2,f2(x)=2(x﹣x2),,,10 5fi=0, 1,2,, 99.记 I k=| f k(a1)﹣ f k(a0)|+| f k(a2)﹣ f k(a1)丨 + +| f k (a99)﹣ f k( a98)| ,k=1, 2, 3,则()A.I1<I2<I3B.I2<I1<I3C.I1<I3<I2D.I3<I2<I1【考点】 57:函数与方程的综合运用.【专题】 51:函数的性质及应用.【分析】根据记 I k=| f k(a1)﹣ f k(a0)|+| f k(a2)﹣ f k(a1)丨 + +| f k( a99)﹣ f k (a98)| ,分别求出 I1, I2,I3与 1 的关系,继而得到答案【解答】解:由,故==1,由,故×= ×<1,+=,故 I2<I1<I3,故选: B.【点评】本题主要考查了函数的性质,关键是求出这三个数与1 的关系,属于难题.14二、填空题11.( 4 分)在某程序框图如图所示,当输入50 时,则该程序运算后输出的结果是 6 .【考点】 E7:循环结构; EF:程序框图.【专题】 5K:算法和程序框图.【分析】根据框图的流程模拟运行程序,直到满足条件S>50,跳出循环体,确定输出的 i 的值.【解答】解:由程序框图知:第一次循环 S=1,i=2;第二次循环 S=2×1+2=4,i=3;第三次循环S=2×4+3=11, i=4;第四次循环 S=2×11+4=26,i=5;第五次循环 S=2×26+5=57,i=6,满足条件 S> 50,跳出循环体,输出i=6.故答案为: 6.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.1512.( 4 分)随机变量ξ的取值为 0,1,2,若 P(ξ =0) = , E(ξ)=1,则 D(ξ)=.【考点】 CH:离散型随机变量的期望与方差.【专题】 5I:概率与统计.【分析】结合方差的计算公式可知,应先求出P(ξ=1),P(ξ=2),根据已知条件结合分布列的性质和期望的计算公式不难求得.【解答】解析:设 P(ξ=1)=p,P(ξ=2)=q,则由已知得 p+q=,,解得,,所以.故答案为:【点评】本题综合考查了分布列的性质以及期望、方差的计算公式.13.(4 分)当实数 x,y 满足时,1≤ax+y≤ 4恒成立,则实数a的取值范围是[].【考点】 7C:简单线性规划.【专题】 59:不等式的解法及应用.【分析】由约束条件作出可行域,再由1≤ax+y≤ 4 恒成立,结合可行域内特殊点 A, B, C 的坐标满足不等式列不等式组,求解不等式组得实数 a 的取值范围.【解答】解:由约束条件作可行域如图,联立,解得 C(1,).联立,解得 B(2,1).16在 x﹣y﹣ 1=0 中取 y=0 得 A(1,0).要使 1≤ax+y≤4 恒成立,则,解得: 1.∴实数 a 的取值范围是.解法二:令 z=ax+y,当 a>0 时, y=﹣ax+z,在 B 点取得最大值, A 点取得最小值,可得,即 1≤a≤;当 a<0 时, y=﹣ax+z,在 C 点取得最大值,① a<﹣ 1 时,在 B 点取得最小值,可得,解得0≤a≤(不符合条件,舍去)②﹣ 1<a< 0 时,在 A 点取得最小值,可得,解得1≤a≤(不符合条件,舍去)综上所述即: 1≤a≤;故答案为:.【点评】本题考查线性规划,考查了数形结合的解题思想方法,考查了数学转化17思想方法,训练了不等式组得解法,是中档题.14.( 4 分)在 8 张奖券中有一、二、三等奖各 1 张,其余 5 张无奖.将这 8 张奖券分配给 4 个人,每人 2 张,不同的获奖情况有60种(用数字作答).【考点】 D9:排列、组合及简单计数问题.【专题】 5O:排列组合.【分析】分类讨论,一、二、三等奖,三个人获得;一、二、三等奖,有 1 人获得2张,1人获得 1张.【解答】解:分类讨论,一、二、三等奖,三个人获得,共有=24 种;一、二、三等奖,有 1 人获得 2 张, 1 人获得 1 张,共有=36 种,共有 24+36=60 种.故答案为: 60.【点评】本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.15.( 4 分)设函数 f(x)=,若f(f(a))≤ 2,则实数a的取值范围是(﹣∞,].【考点】 5B:分段函数的应用.【专题】 59:不等式的解法及应用.【分析】画出函数 f (x)的图象,由f(f( a))≤ 2,可得 f( a)≥﹣ 2,数形结合求得实数 a 的取值范围.【解答】解:∵函数 f (x)=,它的图象如图所示:由 f(f( a))≤ 2,可得 f( a)≥﹣ 2.当 a<0 时, f (a)=a2+a=(a+)2﹣≥﹣2恒成立;18当 a≥0 时, f (a)=﹣a2≥﹣ 2,即 a2≤2,解得 0≤ a≤,则实数 a 的取值范围是a≤,故答案为:(﹣∞,] .【点评】本题主要考查分段函数的应用,其它不等式的解法,体现了数形结合的数学思想,属于中档题.16.( 4 分)设直线 x﹣3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点 P( m,0)满足 | PA| =| PB| ,则该双曲线的离心率是.【考点】 KC:双曲线的性质.【专题】 5D:圆锥曲线的定义、性质与方程.【分析】先求出 A,B 的坐标,可得AB 中点坐标为(,),利用点 P( m,0)满足 | PA| =| PB| ,可得=﹣3,从而可求双曲线的离心率.【解答】解:双曲线(a>0,b>0)的两条渐近线方程为y=±x,则19与直线 x﹣3y+m=0 联立,可得 A(,),B(﹣,),∴ AB中点坐标为(,),∵点 P(m, 0)满足 | PA| =| PB| ,∴=﹣3,∴ a=2b,∴= b,∴e= = .故答案为:.【点评】本题考查双曲线的离心率,考查直线的位置关系,考查学生的计算能力,属于中档题.17.(4 分)如图,某人在垂直于水平地面ABC的墙面前的点 A 处进行射击训练.已知点 A 到墙面的距离为 AB,某目标点 P 沿墙面上的射线 CM 移动,此人为了准确瞄准目标点 P,需计算由点 A 观察点 P 的仰角θ的大小.若 AB=15m,AC=25m,∠BCM=30°,则 tan θ的最大值是.(仰角θ为直线AP与平面 ABC所成角)【考点】 HO:三角函数模型的应用;HU:解三角形.【专题】 58:解三角形.20【分析】过 P 作 PP′⊥ BC,交 BC于 P′,连接 AP′,则 tan θ=,求出PP′,AP′,利用函数的性质,分类讨论,即可得出结论.【解答】解:∵ AB=15m,AC=25m,∠ ABC=90°,∴ BC=20m,过 P 作 PP′⊥ BC,交 BC于 P′,连接 AP′,则 tan θ=,设 BP′=x,则 CP′=20﹣ x,由∠ BCM=30°,得 PP′=CP′tan30 °=(20﹣ x),在直角△ ABP′中, AP′=,∴ tan θ= ?,令 y=,则函数在x∈[ 0,20]单调递减,∴ x=0 时,取得最大值为=.若 P′在 CB的延长线上, PP′=CP′tan30 °=(20+x),在直角△ ABP′中, AP′=,∴ tan θ= ?,令 y=,则y′=0可得x=时,函数取得最大值,故答案为:.【点评】本题考查利用数学知识解决实际问题,考查函数的单调性,考查学生分21析解决问题的能力,属于中档题.三、解答题18.( 14 分)在△ ABC中,内角 A, B, C 所对的边分别为 a,b,c.已知 a≠b,c= ,cos2A﹣cos2 B= sinAcosA﹣sinBcosB(1)求角 C 的大小;(2)若 sinA= ,求△ ABC的面积.【考点】 GL:三角函数中的恒等变换应用;HP:正弦定理.【专题】 58:解三角形.【分析】( 1)利用倍角公式、两角和差的正弦公式可得,由 a≠ b 得, A≠B,又 A+B∈( 0,π),可得,即可得出.(2)利用正弦定理可得 a,利用两角和差的正弦公式可得 sinB,再利用三角形的面积计算公式即可得出.【解答】解:(1)由题意得,,∴,化为,由 a≠b 得, A≠ B,又 A+B∈( 0,π),得,即,∴;( 2)由,利用正弦定理可得,得,由 a<c,得 A<C,从而,故,∴.【点评】本题考查了正弦定理、倍角公式、两角和差的正弦公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.22.(分)已知数列{ a n } 和{ b } 满足 a a(n∈N*).若 { a } 为等19 14n1a2a3n=n比数列,且 a1=2, b3=6+b2.(Ⅰ)求 a n和 b n;(Ⅱ)设 c(∈N *).记数列 { c } 的前 n 项和为 S .n=n n n(i)求 S n;(i i)求正整数 k,使得对任意 n∈N*均有 S k≥ S n.【考点】 8E:数列的求和; 8K:数列与不等式的综合.【专题】 54:等差数列与等比数列.【分析】(Ⅰ)先利用前n 项积与前( n﹣1)项积的关系,得到等比数列 { a n } 的第三项的值,结合首项的值,求出通项 a n,然后现利用条件求出通项 b n;(Ⅱ)(i)利用数列特征进行分组求和,一组用等比数列求和公式,另一组用裂项法求和,得出本小题结论;(ii)本小题可以采用猜想的方法,得到结论,再加以证明.【解答】解:(Ⅰ)∵ a1 23 a n(∈*)①,a a=n N当 n≥2,n∈N*时,②,由①②知:,令 n=3,则有.∵b3=6+b2,∴ a3=8.∵{ a n} 为等比数列,且 a1=2,∴ { a n} 的公比为 q,则=4,由题意知 a n>0,∴ q> 0,∴ q=2.∴( n∈ N*).又由 a a(∈N * )得:1a2a3n=n,23,∴b n=n(n+1)(n∈N*).(Ⅱ)(i)∵ c n ===.∴S n=c1+c2+c3+ +c n====;(ii)因为 c1=0,c2>0,c3> 0, c4>0;当 n≥5 时,,而=>0,得,所以,当 n≥5 时, c n< 0,综上,对任意 n∈ N*恒有 S4≥S n,故 k=4.【点评】本题考查了等比数列通项公式、求和公式,还考查了分组求和法、裂项求和法和猜想证明的思想,证明可以用二项式定理,还可以用数学归纳法.本题计算量较大,思维层次高,要求学生有较高的分析问题解决问题的能力.本题属于难题.20.(15 分)如图,在四棱锥 A﹣BCDE中,平面 ABC⊥平面 BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.(Ⅰ)证明: DE⊥平面 ACD;(Ⅱ)求二面角B﹣AD﹣ E 的大小.24【考点】 LW:直线与平面垂直; MJ:二面角的平面角及求法.【专题】 5F:空间位置关系与距离;5G:空间角; 5Q:立体几何.【分析】(Ⅰ)依题意,易证AC⊥平面 BCDE,于是可得 AC⊥ DE,又 DE⊥DC,从而 DE⊥平面 ACD;(Ⅱ)作 BF⊥AD,与 AD 交于点 F,过点 F 作 FG∥ DE,与 AE交于点 G,连接 BG,由(Ⅰ)知 DE⊥AD,则 FG⊥AD,所以∠ BFG就是二面角 B﹣AD﹣ E 的平面角,利用题中的数据,解三角形,可求得 BF=,AF= AD,从而 GF= ,cos∠BFG==,从而可求得答案.【解答】证明:(Ⅰ)在直角梯形 BCDE中,由 DE=BE=1,CD=2,得 BD=BC=,由 AC=222,AB=2得 AB=AC+BC ,即 AC⊥BC,又平面 ABC⊥平面 BCDE,从而 AC⊥平面 BCDE,所以 AC⊥DE,又 DE⊥DC,从而 DE⊥平面 ACD;(Ⅱ)作 BF⊥AD,与 AD 交于点 F,过点 F 作 FG∥ DE,与 AE交于点 G,连接 BG,由(Ⅰ)知 DE⊥AD,则 FG⊥AD,所以∠ BFG就是二面角 B﹣AD﹣ E 的平面角,222在直角梯形 BCDE中,由 CD =BC+BD ,得 BD⊥BC,又平面ABC⊥平面BCDE,得BD⊥平面ABC,从而BD⊥AB,由于 AC⊥平面 BCDE,得 AC⊥ CD.在 Rt△ACD中,由 DC=2,AC= ,得 AD= ;在Rt△AED中,由 ED=1,AD= 得 AE= ;在 Rt△ABD 中,由 BD=,AB=2,AD=得BF=,AF= AD,从而GF=,在△ ABE,△ ABG中,利用余弦定理分别可得 cos∠BAE=,BG=.在△ BFG中, cos∠BFG==,25所以,∠ BFG=,二面角B﹣AD﹣E的大小为.【点评】本题主要考查空间点、线、面位置关系,二面角等基础知识,同时考查空间想象能力,推理论证能力和运算求解能力.21.( 15 分)如图,设椭圆C:(a>b>0),动直线l与椭圆C只有一个公共点 P,且点 P 在第一象限.(Ⅰ)已知直线l 的斜率为 k,用 a,b,k 表示点 P 的坐标;(Ⅱ)若过原点O 的直线 l1与 l 垂直,证明:点 P 到直线 l1的距离的最大值为 a ﹣b.【考点】 KH:直线与圆锥曲线的综合.【专题】 5D:圆锥曲线的定义、性质与方程;5E:圆锥曲线中的最值与范围问题.【分析】(Ⅰ)设直线 l 的方程为 y=kx+m( k< 0),由,消去y得(b2+a2k2)x2+2a2kmx+a2m2﹣a2b2=0,利用△ =0,可求得在第一象限中点P的坐标;(Ⅱ)由于直线 l1过原点 O 且与直线 l 垂直,设直线 l1的方程为 x+ky=0,利用点26到直线间的距离公式,可求得点P到直线l1的距离d=,整理即可证得点 P 到直线 l 1的距离的最大值为a﹣b..【解答】解:(Ⅰ)设直线 l 的方程为 y=kx+m(k<0),由,消去 y得(b2+a2k2) x2+2a2kmx+a2m2﹣a2b2=0.由于直线 l 与椭圆 C 只有一个公共点P,故△ =0,即 b2﹣ m2+a2 k2=0,此时点 P 的横坐标为﹣,代入y=kx+m得点 P 的纵坐标为﹣ k?+m=,∴点 P 的坐标为(﹣,),又点 P 在第一象限,故m>0,故 m=,故点 P 的坐标为 P(,).(Ⅱ)由于直线 l1过原点 O 且与直线 l 垂直,故直线 l1的方程为 x+ky=0,所以点P 到直线 l1的距离d=,整理得: d=,27因为a2k2 +≥ 2ab,所以≤=a﹣b,当且仅当k2=时等号成立.所以,点 P 到直线 l1的距离的最大值为a﹣b.【点评】本题主要考查椭圆的几何性质、点到直线间的距离、直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法、基本不等式应用等综合解题能力.22.( 14 分)已知函数 f (x)=x3+3| x﹣ a| (a∈R).(Ⅰ)若 f(x)在 [ ﹣ 1,1] 上的最大值和最小值分别记为M(a),m(a),求 M (a)﹣ m(a);(Ⅱ)设 b∈R,若 [ f(x)+b] 2≤4 对 x∈[ ﹣1,1] 恒成立,求 3a+b 的取值范围.【考点】 6E:利用导数研究函数的最值.【专题】 53:导数的综合应用.【分析】(Ⅰ)利用分段函数,结合 [ ﹣ 1,1] ,分类讨论,即可求 M( a)﹣ m( a);(Ⅱ)令 h(x)=f( x)+b,则 h( x)=,h′(x)=,则[ f( x)+b] 2≤4 对 x∈ [ ﹣ 1,1] 恒成立,转化为﹣ 2≤h(x)≤2 对 x∈[ ﹣1,1] 恒成立,分类讨论,即可求 3a+b 的取值范围.【解答】解:(Ⅰ)∵ f(x)=x3+3| x﹣a| =,28∴ f (′ x)=,①a≤﹣ 1 时,∵﹣ 1≤x≤1,∴ x≥a,f( x)在(﹣ 1, 1)上是增函数,∴ M(a)=f(1)=4﹣3a, m(a)=f(﹣ 1) =﹣4﹣3a,∴M(a)﹣ m( a) =8;②﹣ 1<a< 1 时, x∈( a, 1),f (x)=x3+3x﹣ 3a,在( a,1)上是增函数;x∈(﹣ 1, a),f(x) =x3﹣ 3x+3a,在(﹣ 1,a)上是减函数,∴M(a)=max{ f(1),f(﹣ 1)} ,m(a)=f(a)=a3,∵ f(1)﹣ f(﹣ 1) =﹣ 6a+2,∴﹣ 1<a≤时, M(a)﹣ m( a)=﹣a3﹣3a+4;<a< 1 时, M ( a)﹣ m(a)=﹣a3+3a+2;③a≥ 1 时,有 x≤ a, f(x)在(﹣ 1,1)上是减函数,∴ M(a)=f(﹣ 1) =2+3a,m( a)=f(1)=﹣2+3a,∴ M(a)﹣ m( a) =4;(Ⅱ)令 h(x)=f( x)+b,则 h( x)=,h′(x)=,∵[ f(x)+b] 2≤ 4 对 x∈[ ﹣1,1] 恒成立,∴﹣ 2≤h(x)≤ 2 对 x∈ [ ﹣ 1, 1] 恒成立,由(Ⅰ)知,① a≤﹣ 1 时, h( x)在(﹣ 1,1)上是增函数,最大值 h(1)=4﹣3a+b,最小值 h(﹣ 1)=﹣4﹣3a+b,则﹣ 4﹣3a+b≥﹣ 2 且 4﹣3a+b≤2 矛盾;②﹣ 1<a≤时,最小值h(a)=a3+b,最大值h(1)=4﹣ 3a+b,∴ a3+b≥﹣ 2且 4﹣ 3a+b≤ 2,令 t( a) =﹣ 2﹣ a3+3a,则 t ′( a)=3﹣3a2>0,t (a)在( 0,)上是增函数,∴t (a)> t (0)=﹣2,∴﹣ 2≤3a+b≤0;③<a<1时,最小值h(a)=a3+b,最大值 h(﹣ 1)=3a+b+2,则 a3+b≥﹣ 229且 3a+b+2≤2,∴﹣< 3a+b≤0;④a≥ 1 时,最大值 h(﹣ 1)=3a+b+2,最小值 h(1)=3a+b﹣2,则 3a+b﹣2≥﹣2 且 3a+b+2≤2,∴ 3a+b=0.综上, 3a+b 的取值范围是﹣ 2≤3a+b≤0.【点评】本题考查导数的综合运用,考查函数的最值,考查分类讨论、化归与转化的数学思想,难度大.30。
2014·浙江卷(理科数学)1.[2014·浙江卷] 设全集U ={x ∈N |x ≥2},集合A ={x ∈N |x 2≥5},则∁U A =( )A .∅B .{2}C .{5}D .{2,5}1.B [解析]∁U A ={x ∈N |2≤x <5}={2},故选B. 2.、[2014·浙江卷] 已知i 是虚数单位,a ,b ∈R ,得“a =b =1”是“(a +b i)2=2i ”的( ) A .充分不必要条件B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件2.A [解析]由a ,b ∈R ,(a +b i)2=a 2-b 2+2ab i =2i, 得⎩⎪⎨⎪⎧a 2-b 2=0,2ab =2,所以⎩⎪⎨⎪⎧a =1,b =1或⎩⎪⎨⎪⎧a =-1,b =-1.故选A. 3.[2014·浙江卷] 几何体的三视图(单位:cm)如图1-1所示,则此几何体的表面积是( )A .90cm 2B .129cm 2C .132cm 2D .138cm 23.D [解析]所以该几何体的表面积为2(4×3+6×3+6×4)+2×12×3×4+4×3+3×5-3×3=138(cm 2),故选D.4.[2014·浙江卷] 为了得到函数y =sin3x +cos3x 的图像,可以将函数y =2cos3x 的图像( )A .向右平移π4个单位B .向左平移π4个单位C .向右平移π12个单位D .向左平移π12个单位4.C [解析]y =sin3x +cos3x =2cos ⎝⎛⎭⎫3x -π4=2cos ⎣⎡⎦⎤3⎝⎛⎭⎫x -π12,所以将函数y =2cos3x 的图像向右平移π12个单位可以得到函数y =sin3x +cos3x 的图像,故选C.5.[2014·浙江卷] 在(1+x )6(1+y )4的展开式中,记x m y n 项的系数为f (m ,n ),则f (3,0)+f (2,1)+f (1,2)+f (0,3)=( )A .45B .60C .120D .2105.C [解析]含x m y n 项的系数为f (m ,n )=C m 6C n 4,故原式=C 36C 04+C 26C 14+C 16C 24+C 06C 34=120,故选C.6.[2014·浙江卷] 已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( )A .c ≤3B .3<c ≤6C .6<c ≤9D .c >96.C [解析]由f (-1)=f (-2)=f (-3)得⎩⎪⎨⎪⎧-1+a -b +c =-8+4a -2b +c ,-8+4a -2b +c =-27+9a -3b +c ⇒⎩⎪⎨⎪⎧-7+3a -b =0,19-5a +b =0⇒⎩⎪⎨⎪⎧a =6,b =11,则f (x )=x 3+6x 2+11x +c ,而0<f (-1)≤3,故0<-6+c ≤3, ∴6<c ≤9,故选C. 7.、[2014·浙江卷] 在同一直角坐标系中,函数f (x )=x a (x >0),g (x )=log a x 的图像可能是( )AC 图1-2 图1-27.D [解析]只有选项D 符合,此时0<a <1,幂函数f (x )在(0,+∞)上为增函数,且当x ∈(0,1)时,f (x )的图像在直线y =x 的上方,对数函数g (x )在(0,+∞)上为减函数,故选D.8.[2014·浙江卷] 记max{x ,y }=⎩⎪⎨⎪⎧x ,x ≥y ,y ,x <y ,min{x ,y }=⎩⎪⎨⎪⎧y ,x ≥y ,x ,x <y .设a ,b 为平面向量,则( )A .min{|a +b |,|a -b |}≤min{|a |,|b |}B .min{|a +b |,|a -b |}≥min{|a |,|b |}C .max{|a +b |2,|a -b |2}≤|a |2+|b |2D .max{|a +b |2,|a -b |2}≥|a |2+|b |28.D [解析]对于A ,当a =0,b ≠0时,不等式不成立;对于B ,当a =b ≠0时,不等式不成立;对于C ,D ,设OA →=a ,OB →=b ,构造平行四边形OACB ,根据平行四边形法则,∠AOB 与∠OBC 至少有一个大于或等于90°,根据余弦定理,max{|a +b |2,|a -b |2}≥|a |2+|b |2成立,故选D.9.、[2014·浙江卷] m 个红球和n 个蓝球(m ≥3,n ≥3),从乙盒中随机抽取i (i =1,2)个球放入甲盒中.(a)放入i 个球后,甲盒中含有红球的个数记为ξi (i =1,2);(b)放入i 个球后,从甲盒中取1个球是红球的概率记为p i (i =1,2). 则( )A .p 1>p 2,E (ξ1)<E (ξ2)B .p 1<p 2,E (ξ1)>E (ξ2)C .p 1>p 2,E (ξ1)>E (ξ2)D .p 1<p 2,E (ξ1)<E (ξ2)9.A [解析]方法一:不妨取m =n =3,此时,p 1=36×22+36×12=34,p 2=C 23C 26×33+C 13C 13C 26×23+C 23C 26×13=23,则p 1>p 2;E (ξ1)=1×36+2×36=32,E (ξ2)=1×C 23C 26+2×C 13C 13C 26+3×C 23C 26=2,则E (ξ1)<E (ξ2).故选A.方法二:p 1=m m +n ×22+n m +n ×12=2m +n 2(m +n ),p 2=C 2m C 2m +n ×33+C 1m C 1m C 2m +n ×23+C 2nC 2m +n ×13=3m 2-3m +4mn +n 2-n3(m +n )(m +n -1),则p 1-p 2=mn +n (n -1)6(m +n )(m +n -1)>0;E (ξ1)=1×n m +n +2×mm +n =2m +n m +n,E (ξ2)=1×C 2n C 2m +n +2×C 1m C 1n C 2m +n +3×C 2mC 2m +n=3m 2-3m +4mn +n 2-n(m +n )(m +n -1),E (ξ1)-E (ξ2)=-m 2+m -mn(m +n )(m +n -1)<0,故选A.10.[2014·浙江卷] 设函数f 1(x )=x 2,f 2(x )=2(x -x 2),f 3(x )=13|sin2πx |,a i =i99,i =0,1,2,…,99.记I k =|f k (a 1)-f k (a 0)|+|f k (a 2)-f k (a 1)|+…+|f k (a 99)-f k (a 98)|,k =1,2,3,则( )A .I 1<I 2<I 3B .I 2<I 1<I 3C .I 1<I 3<I 2D .I 3<I 2<I 110.B [解析]对于I 1,由于⎪⎪⎪⎪⎝⎛⎭⎫i 992-⎝⎛⎭⎫i -1992=2i -1992(i =1,2,…,99),故I 1=1992(1+3+5+…+2×99-1)=992992=1;对于I 2,由于2⎪⎪⎪⎪i 99-i -199-⎝⎛⎭⎫i 992+⎝⎛⎭⎫i -1992=2992|100-2i |(i =1,2,…,99),故I 2=2992×2×50(98+0)2=100×98992=992-1992<1.I 3=13sin ⎝⎛⎭⎫2π×199-sin ⎝⎛⎭⎫2π×099+sin ⎝⎛⎭⎫2π×299-sin ⎝⎛⎭⎫2π×199+…+ sin ⎝⎛⎭⎫2π×9999-sin ⎝⎛⎭⎫2π×9899= 13⎣⎡⎦⎤2sin ⎝⎛⎭⎫2π×2599-2sin ⎝⎛2π×7499≈43>1.故I 2<I 1<I 3,故选B. 11.[2014·浙江卷] 若某程序框图如图1-3所示,当输入50时,则该程序运行后输出的结果是________.11.6 [解析]第一次运行,S =1,i =2;第二次运行,S =4,i =3;第三次运行,S =11,i =4;第四次运行,S =26,i =5;第五次运行,S =57,i =6,此时S >n ,输出i =6.12.[2014·浙江卷] 随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,则D (ξ)=________.12.25[解析]设P (ξ=1)=x ,P (ξ=2)=y , 则⎩⎪⎨⎪⎧x +y =45,x +2y =1⇒⎩⎨⎧x =35,y =15,所以D (ξ)=(0-1)2×15+(1-1)2×35+(2-1)2×15=25.13. [2014·浙江卷] 当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是________.13.⎣⎡⎦⎤1,32 [解析]实数x ,y 满足的可行域如图中阴影部分所示,图中A (1,0),B (2,1),C ⎝⎛⎭⎫1,32.当a ≤0时,0≤y ≤32,1≤x ≤2,所以1≤ax +y ≤4不可能恒成立;当a >0时,借助图像得,当直线z =ax +y 过点A 时z 取得最小值,当直线z =ax +y 过点B 或C 时z 取得最大值,故⎩⎪⎨⎪⎧1≤a ≤4,1≤2a +1≤4,1≤a +32≤4,解得1≤a ≤32.故a ∈⎣⎡⎦⎤1,32.14.[2014·浙江卷] 在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种.(用数字作答)14.60 [解析]分两种情况:一种是有一人获得两张奖券,一人获得一张奖券,有C 23A 24=36种;另一种是三人各获得一张奖券,有A 34=24种.故共有60种获奖情况.15.[2014·浙江卷] 设函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2,x ≥0.若f [f (a )]≤2,则实数a 的取值范围是________.15.(-∞,2] [解析]函数f (x )的图像如图所示,令t =f (a ),则f (t )≤2,由图像知t ≥-2,所以f (a )≥-2,则a ≤ 2.16.[2014·浙江卷] 设直线x -3y +m =0(m ≠0)与双曲线x a 2-y 2b2=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m ,0)满足|P A |=|PB |,则该双曲线的离心率是________.16.52 [解析]双曲线的渐近线为y =±bx ,渐近线与直线x -3y +m =的交点为A ⎝ ⎛⎭⎪⎫-am a +3b ,bm a +3b ,B ⎝ ⎛⎭⎪⎫a -3b ,a -3b .设AB 的中点为D ,由|P A |=|PB |知AB 与DP 垂直,则D ⎝ ⎛⎭⎪⎫-a 2m (a +3b )(a -3b ),-3b 2m (a +3b )(a -3b ),k DP=-3,解得a 2=4b 2,故该双曲线的离心率是52.17.[2014·浙江卷] 如图1-4,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练.已知点A 到墙面的距离为AB ,某目标点P 沿墙面上的射线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小.若AB =15m ,AC =25m ,∠BCM =30°,则tan θ的最大值是与平面ABC 所成角)17.539[解析]由勾股定理得BC =20m .如图,过P 点作PD ⊥BC 于D ,连接AD, 则由点A 观察点P 的仰角θ=∠P AD ,tan θ=PDAD .设PD =x ,则DC =3x ,BD =20-3x ,在Rt △ABD 中,AD =152+(20-3x )2=625-403x +3x 2,所以tan θ=x 625-403x +3x 2=1625x 2-403x +3=1625⎝⎛⎭⎫1x -2036252+2725≤539,故tan θ的最大值为539.18. [2014·浙江卷]在△ABC a ,b ,c .已知a ≠b ,c =3,cos 2A -cos 2B =3sin A cos A -3sin B cos B .(1)求角C 的大小;(2)若sin A =45,求△ABC 的面积.18.解:(1)由题意得1+cos2A 2-1+cos2B 2=32sin2A -32sin2B ,即32sin2A -12cos2A =32sin2B -12cos2B ,sin ⎝⎛⎭⎫2A -π6=sin ⎝⎛⎭⎫2B -π6.由a ≠b ,得A ≠B ,又A +B ∈(0,π),得2A -π6+2B -π6=π,即A +B =2π3,所以C =π3.(2)由c =3,sin A =45,a sin A =c sin C ,得a =85.由a <c ,得A <C ,从而cos A =35,故sin B =sin(A +C )=sin A cos C +cos A sin C =4+3310.所以,△ABC 的面积为S =12ac sin B =83+1825.19.[2014·浙江卷] 已知数列{a n }和{b n }满足a 1a 2a 3…a n =(2)b n (n ∈N *).若{a n }为等比数列,且a 1=2,b 3=6+b 2.(1)求a n 与b n .(2)设c n =1a n -1b n(n ∈N *).记数列{c n }的前n 项和为S n .(i)求S n ;(ii)求正整数k ,使得对任意n ∈N *均有S k ≥S n .19.解:(1)由题意a 1a 2a 3…a n =(2)b n ,b 3-b 2=6, 知a 3=(2)b 3-b 2=8.又由a 1=2,得公比q =2(q =-2舍去),所以数列{a n }的通项为a n =2n (n ∈N *).所以,a 1a 2a 3…a n =2n (n +1)2=(2)n (n +1).故数列{b n }的通项为b n =n (n +1)(n ∈N *).(2)(i)由(1)知c n =1a n -1b n =12n -⎝⎛⎭⎫1n -1n +1(n ∈N *).所以S n =1n +1-12n (n ∈N *).(ii)因为c 1=0,c 2>0,c 3>0,c 4>0,当n ≥5时,c n =1n (n +1)⎣⎡⎦⎤n (n +1)2n -1, 而n (n +1)2n -(n +1)(n +2)2n +1=(n +1)(n -2)2n +1>0, 得n (n +1)2n ≤5×(5+1)25<1,所以,当n ≥5时,c n <0.综上,若对任意n ∈N *恒有S k ≥S n ,则k =4. 20.、[2014·浙江卷] 如图1-5,在四棱锥A -BCDE 中,平面ABC ⊥平面BCDE ,∠CDE =∠BED =90°,AB =CD =2,DE =BE =1,AC = 2.(1)证明:DE ⊥平面ACD ; (2)求二面角B -AD -E 的大小.20.解:(1)证明:在直角梯形BCDE 中,由DE =BE =1,CD =2,得BD =BC =2, 由AC =2,AB =2,得AB 2=AC 2+BC 2,即AC ⊥BC .又平面ABC ⊥平面BCDE ,从而AC ⊥平面BCDE , 所以AC ⊥DE .又DE ⊥DC ,从而DE ⊥平面ACD . (2)方法一:过B 作BF ⊥AD ,与AD 交于点F ,过点F 作FG ∥DE ,与AE 交于点G ,连接BG .由(1)知DE ⊥AD ,则FG ⊥AD .所以∠BFG 是二面角B -AD -E 的平面角.在直角梯形BCDE 中,由CD 2=BC 2+BD 2, 得BD ⊥BC .又平面ABC ⊥平面BCDE ,得⊥AB .由AC ⊥平面BCDE ,得AC ⊥CD .在Rt △ACD 中,由DC =2,AC =2,得AD = 6. 在Rt △AED 中,由ED =1,AD =6,得AE =7.在Rt △ABD 中,由BD =2,AB =2,AD =6,得BF =233,AF =23AD .从而GF =23ED=23. 在△ABE ,△ABG 中,利用余弦定理分别可得cos ∠BAE =5714,BG =23.在△BFG 中,cos ∠BFG =GF 2+BF 2-BG 22BF ·GF=32.所以,∠BFG =π6,即二面角B -AD -E 的大小是π6.方法二:以D 为原点,分别以射线DE ,DC 为x ,y 轴的正半轴,建立空间直角坐标系D -xyz ,如图所示.由题意知各点坐标如下:D (0,0,0),E (1,0,0),C (0,2,0), A (0,2,2),B (1,1,0).设平面ADE 的法向量为m =(x 1,y 1,z 1), 平面ABD 的法向量为n =(x 2,y 2,z 2).可算得AD =(0,-2,-2),AE =(1,-2,-2),DB →=(1,1,0).由⎩⎨⎧m ·AD =0,m ·AE →=0,即⎩⎨⎧-2y 1-2z 1=0,x 1-2y 1-2z 1=0,可取m =(0,1,-2).由⎩⎪⎨⎪⎧n ·AD →=0,n ·DB →=0,即⎩⎨⎧-2y 2-2z 2=0,x 2+y 2=0,可取n =(1,-1,2).于是|cos 〈m ,n 〉|=|m ·n ||m |·|n |=33×2=32.由题意可知,所求二面角是锐角,故二面角B -AD -E 的大小是π6.21.、[2014·浙江卷] 如图1-6,设椭圆C :x 2a 2+y 2b2=1(a >b >0),动直线l 与椭圆C 只有一个公共点P ,且点P 在第一象限.(1)已知直线l 的斜率为k ,用a ,b ,k 表示点P 的坐标;(2)若过原点O 的直线l 1与l l 1的距离的最大值为a -b .21.解:(1)设直线l 的方程为y =kx +m (k <0),由⎩⎪⎨⎪⎧y =kx +m ,x 2a 2+y 2b 2=1,消去y 得(b 2+a 2k 2)x 2+2a 2kmx +a 2m 2-a 2b 2=0.由于l 与C 只有一个公共点,故Δ=0,即b 2-m 2+a 2k 2=0,解得点P 的坐标为⎝⎛⎭⎫-a 2km b 2+a 2k 2,b 2m b 2+a 2k 2.又点P 在第一象限,故点P 的坐标为P ⎝ ⎛⎭⎪⎫-a 2k b 2+a 2k2,b 2m b 2+a 2k 2.(2)由于直线l 1过原点O 且与l 垂直,故直线l 1的方程为x +ky =0,所以点P 到直线l 1的距离d =⎪⎪⎪⎪⎪⎪-a 2k b 2+a 2k2+b 2k b 2+a 2k 21+k 2,整理得d =a 2-b 2b 2+a 2+a 2k 2+b 2k2.因为a 2k 2+b 2k2≥2ab ,所以a 2-b 2b 2+a 2+a 2k 2+b 2k2≤a 2-b 2b 2+a 2+2ab=a -b ,当且仅当k 2=ba时等号成立.所以,点P 到直线l 1的距离的最大值为a -b . 22.、[2014·浙江卷] 已知函数f (x )=x 3+3|x -a |(a ∈R ).(1)若f (x )在[-1,1]上的最大值和最小值分别记为M (a ),m (a ),求M (a )-m (a ); (2)设b ∈R ,若[f (x )+b ]2≤4对x ∈[-1,1]恒成立,求3a +b 的取值范围.22.解:(1)因为f (x )=⎩⎪⎨⎪⎧x 3+3x -3a ,x ≥a ,x 3-3x +3a ,x <a ,所以f ′(x )=⎩⎪⎨⎪⎧3x 2+3,x ≥a ,3x 2-3,x <a .由于-1≤x ≤1,(i)当a ≤-1时,有x ≥a , 故f (x )=x 3+3x -3a ,此时f (x )在(-1,1)上是增函数, 因此,M (a )=f (1)=4-3a ,m (a )=f (-1)=-4-3a ,故M (a )-m (a )=(4-3a )-(-4-3a )=8.(ii)当-1<a <1时,若x ∈(a ,1),则f (x )=x 3+3x -3a .在(a ,1)上是增函数;若x ∈(-1,a ),则f (x )=x 3-3x +3a 在(-1,a )上是减函数.所以,M (a )=max{f (1),f (-1)},m (a )=f (a )=a 3.由于f (1)-f (-1)=-6a +2,因此,当-1<a ≤13时,M (a )-m (a )=-a 3-3a +4;当13<a <1时,M (a )-m (a )=-a 3+3a +2.(iii)当a ≥1时,有x ≤a ,故f (x )=x 3-3x +3a ,此时f (x )在(-1,1)上是减函数,因此,M (a )=f (-1)=2+3a ,m (a )=f (1)=-2+3a ,故M (a )-m (a )=(2+3a )-(-2+3a )=4.综上,M (a )-m (a )=⎩⎪⎨⎪⎧8,a ≤-1,-a 3-3a +4,-1<a ≤13,-a 3+3a +2,13<a <1,4,a ≥1.(2)令h (x )=f (x )+b ,则h (x )=⎩⎪⎨⎪⎧x 3+3x -3a +b ,x ≥a ,x 3-3x +3a +b ,x <a ,h ′(x )=⎩⎪⎨⎪⎧3x 2+3,x >a ,3x 2-3,x <a .因为[f (x )+b ]2≤4对x ∈[-1,1]恒成立, 即-2≤h (x )≤2对x ∈[-1,1]恒成立,所以由(1)知,(i)当a ≤-1时,h (x )在(-1,1)上是增函数,h (x )在[-1,1]上的最大值是h (1)=4-3a +b ,最小值是h (-1)=-4-3a +b ,则-4-3a +b ≥-2且4-3a +b ≤2,矛盾.(ii)当-1<a ≤13时,h (x )在[-1,1]上的最小值是h (a )=a 3+b ,最大值是h (1)=4-3a +b ,所以a 3+b ≥-2且4-3a +b ≤2,从而-2-a 3+3a ≤3a +b ≤6a -2且0≤a ≤13.令t (a )=-2-a 3+3a ,则t ′(a )=3-3a 2>0,t (a )在⎝⎛⎭⎫0,13上是增函数,故t (a )>t (0)=-2, 因此-2≤3a +b ≤0.(iii)当13<a <1时,h (x )在[-1,1]上的最小值是h (a )=a 3+b ,最大值是h (-1)=3a +b +2,所以a 3+b ≥-2且3a +b +2≤2,解得-2827<3a +b ≤0;(iv)当a ≥1时,h (x )在[-1,1]上的最大值是h (-1)=2+3a +b ,最小值是h (1)=-2+3a +b ,所以3a +b +2≤2且3a +b -2≥-2,解得3a +b =0.综上,得3a +b 的取值范围是-2≤3a +b ≤0. 自选模块 1.[2014·浙江卷] (1)解不等式2|x -2|-|x +1|>3;(2)设正数a ,b ,c 满足abc =a +b +c ,求证:ab +4bc +9ac ≥36,并给出等号成立条件.解:(1)当x ≤-1时,2(2-x )+(x +1)>3,得x <2,此时x ≤-1; 当-1<x ≤2时,2(2-x )-(x +1)>3,得x <0,此时 -1<x <0;当x >2时,2(x -2)-(x +1)>3,得x >8,此时x >8. 综上所述,原不等式的解集是(-∞,0)∪(8,+∞).(2)证明:由abc =a +b +c ,得1ab +1bc +1ca=1.由柯西不等式,得(ab +4bc +9ac )⎝⎛⎭⎫1ab +1bc +1ca ≥(1+2+3)2, 所以ab +4bc +9ac ≥36,当且仅当a =2,b =3,c =1时,等号成立.2.[2014·浙江卷] (1)在极坐标系Ox 中,设集合A ={(ρ,θ)|0≤θ≤π4,0≤ρ≤cos θ},求集合A 所表示区域的面积;(2)在直角坐标系xOy 中,直线l :⎩⎨⎧x =-4+t cos π4,y =t sinπ4(t 为参数),曲线C :⎩⎪⎨⎪⎧x =a cos θ,y =2sin θ(θ为参数),其中a >0.若曲线C 上所有点均在直线l 的右下方,求a 的取值范围. 解:(1)在ρ=cos θ两边同乘ρ,得ρ2=ρcos θ.化成直角坐标方程,得x 2+y 2=x ,即⎝⎛⎭⎫x -122+y 2=14.所以集合A 所表示的区域为:由射线y =x (x ≥0),y =0(x ≥0),圆⎝⎛⎭⎫x -122+y 2=14所围成的区域,如图所示的阴影部分,所求面积为π16+18.第 11 页 共 11 页(2)由题意知,直线l 因为曲线C 上所有点均在直线l 的右下方,故对θ∈R ,有a cos θ-2sin θ+4>0恒成立, 即a 2+4cos(θ+φ)>-4⎝⎛⎭⎫其中tan φ=2a 恒成立, 所以a 2+4<4.又a >0,得0<a <2 3.。
2014年普通高等学校招生全国统一考试(浙江卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则=A C U ( )A. ∅B. }2{C. }5{D. }5,2{(2)已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件(3)某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是A. 902cmB. 1292cmC. 1322cmD. 1382cm4.为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像( )A.向右平移4π个单位 B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位 5.在46)1()1(y x ++的展开式中,记n m y x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f )( )A.45B.60C.120D. 2106.已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ( )A.3≤cB.63≤<cC.96≤<cD. 9>c7.在同意直角坐标系中,函数x x g x x x f a a log )(),0()(=≥=的图像可能是( )8.记,max{,},x x y x y y x y ≥⎧=⎨<⎩,,min{,},y x y x y x x y≥⎧=⎨<⎩,设,a b 为平面向量,则( )A.min{||,||}min{||,||}a b a b a b +-≤B.min{||,||}min{||,||}a b a b a b +-≥C.2222min{||,||}||||a b a b a b +-≥+D.2222min{||,||}||||a b a b a b +-≤+ 9.已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球()3,3m n ≥≥,从乙盒中随机抽取()1,2i i =个球放入甲盒中.(a )放入i 个球后,甲盒中含有红球的个数记为()1,2i i ξ=;(b )放入i 个球后,从甲盒中取1个球是红球的概率记为()1,2i p i =.则A.()()1212,p p E E ξξ><B.()()1212,p p E E ξξ<>C.()()1212,p p E E ξξ>>D.()()1212,p p E E ξξ<<10.设函数21)(x x f =,),(2)(22x x x f -=|2sin |31)(3x x f π=,99,,2,1,0,99 ==i ia i ,记|)()(||)()(||)()(|98991201a f a f a f a f a f a f I k k k k k k k -++-+-= ,.3,2,1=k 则A.321I I I <<B. 312I I I <<C. 231I I I <<D. 123I I I <<二、填空题:本大题共7小题,每小题4分,共28分.11.若某程序框图如图所示,当输入50时,则该程序运算后输出的结果是________.12.随机变量ξ的取值为0,1,2,若()105P ξ==,()1E ξ=,则()D ξ=________. 13.当实数x ,y 满足240,10,1,x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时,14ax y ≤+≤恒成立,则实数a 的取值范围是________.14.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).15.设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是______ 16.设直线)0(03≠=+-m m y x 与双曲线12222=-by a x (0a b >>)两条渐近线分别交于点B A ,,若点)0,(m P 满足PB PA =,则该双曲线的离心率是__________17、如图,某人在垂直于水平地面的墙面前的点处进行射击训练.已知点到墙面的距离为,某目标点沿墙面的射击线移动,此人为了准确瞄准目标点,需计算由点观察点的仰角的大小.若则的最大值19(本题满分14分)已知数列{}n a 和{}n b 满足()()*∈=N n a a a n b n 221 .若{}n a 为等比数列,且.6,2231b b a +== (1)求n a 与n b ;(2)设()*∈-=N n b a c n n n 11。
2014年普通高等学校招生全国统一考试(浙江卷)数 学(理科)一. 选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 设全集{|2}U x N x =∈≥,集合2{|5}A x N x =∈≥,则U C A =( )A. ∅B. {2}C. {5}D. {2,5} 2. 已知i 是虚数单位,,a b R ∈,则“1a b ==”是“2()2a bi i +=”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件3. 某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是( )A. 902cm B. 1292cmC. 1322cm D. 1382cm4. 为了得到函数sin 3cos3y x x =+的图像,可以将函数2cos 3y x =的图像( )A. 向右平移4π 个单位B. 向左平移4π个单位 C. 向右平移12π个单位 D. 向左平移12π个单位5.在64(1)(1)x y ++的展开式中,记m nx y项的系数(,)f m n ,则(3,0)(2,1)(1,2)(0,3)f f f f +++= ( )A. 45B. 60C. 120D. 2106. 已知函数32()f x x ax bx c =+++ ,且0(1)(2)(3)3f f f <-=-=-≤( ) A.3c ≤ B.36c <≤ C.69c <≤ D. 9c >7. 在同一直角坐标系中,函数()(0)af x x x =≥,()log a g x x = 的图像可能是( )8. 记,max{,},x x y x y y x y ≥⎧=⎨<⎩,y,min{,}x,x yx y x y≥⎧=⎨<⎩,设,a b 为平面向量,则( )A .min{||,||}min{||,||}a b a b a b +-≤ B. min{||,||}min{||,||}a b a b a b +-≥C. 2222max{||,||}||||a b a b a b +-≤+ D. 2222max{||,||}||||a b a b a b +-≥+9. 已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球(3,3)m n ≥≥,从乙盒中随机抽取(1,2)i i =个球放入甲盒中.(a )放入i 个球后,甲盒中含有红球的个数记为(1,2)i i ξ=; (b )放入i 个球后,从甲盒中取1个球是红球的概率记为(1,2)i p i =. 则 ( )A.1212,()()p p E E ξξ><B. 1212,()()p p E E ξξ<>C. 1212,()()p p E E ξξ>>D. 1212,()()p p E E ξξ<<10. 设函数21()f x x =,22()2()f x x x =-,31()|sin 2|3f x x π=,99i a i =,,2,1,0=i 99, ,记10219998|()()||()()||()()|k k k k k k k I f a f a f a f a f a f a =-+-++-,1,2,3k = 则 ( )A.123I I I <<B. 213I I I <<C. 132I I I <<D. 321I I I <<二. 填空题:本大题共7小题,每小题4分,共28分.11. 若某程序框图如图所示,当输入50时,则该程序运算后输出的结果是________.12. 随机变量ξ的取值为0,1,2,若1(0)5P ξ==,()1E ξ=,则()D ξ=________.13.当实数,x y 满足240101x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时,14ax y ≤+≤恒成立,则实数a 的取值范围是________.14. 在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).15.设函数22,0(),0x x x f x x x ⎧+<⎪=⎨-≥⎪⎩若(())2f f a ≤,则实数a 的取值范围是______16.设直线30x y m -+=(0m ≠) 与双曲线12222=-by a x (0,0a b >>)两条渐近线分别交于点A ,B.若点(,0)P m 满足||||PA PB =,则该双曲线的离心率是__________17、如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练.已知点A 到墙面的距离为AB ,某目标点P 沿墙面上的射击线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小.若15AB m = ,25AC m =,30BCM ∠=︒,则tan θ的最大值是 (仰角θ 为直线AP 与平面ABC 所成角)三. 解答题:本大题共5小题,共72分。
2014年普通高等学校招生全国统一考试(浙江卷)数学(理科)1.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设全集,集合,则()A. B. C. D.(2)已知是虚数单位,,则“”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件(3)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是A. 90B. 129C. 132D. 1384. 为了得到函数的图像,可以将函数的图像()A. 向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位5. 在的展开式中,记项的系数为,则()A.45B.60C.120D. 2106. 已知函数()A. B. C. D.7. 在同意直角坐标系中,函数的图像可能是()8. 记,,设为平面向量,则()A.B.C.D.9.已知甲盒中仅有1个球且为红球,乙盒中有个红球和个篮球,从乙盒中随机抽取个球放入甲盒中.(a)放入个球后,甲盒中含有红球的个数记为;(b)放入个球后,从甲盒中取1个球是红球的概率记为 .则A. B.C. D.10. 设函数,,,记,则A. B. C. D.2、填空题:本大题共7小题,每小题4分,共28分.11. 若某程序框图如图所示,当输入50时,则该程序运算后输出的结果是________.12. 随机变量的取值为0,1,2,若,,则________.13. 当实数,满足时,恒成立,则实数的取值范围是________.14. 在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).15. 设函数若,则实数的取值范围是______16. 设直线与双曲线()两条渐近线分别交于点,若点满足,则该双曲线的离心率是__________17、如图,某人在垂直于水平地面的墙面前的点处进行射击训练.已知点到墙面的距离为,某目标点沿墙面的射击线移动,此人为了准确瞄准目标点,需计算由点观察点的仰角的大小.若则的最大值19(本题满分14分)已知数列和满足. 若为 等比数列,且(1) 求与;(2) 设。
绝密★考试结束前2006年普通高等学校招生全国统一考试(浙江卷)数学(理科)本试题卷分选择题和非选择题两部分。
全卷共5页,选择题部分1至3页,非选择题部分4至5页。
满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。
2.每小题选出答案后,用2B铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
参考公式如果事件互斥,那么如果事件相互独立,那么如果事件在一次试验中发生的概率为,那么次独立重复试验中事件恰好发生次的概率台体的体积公式其中,分别表示台体的上、下面积,表示台体的高柱体体积公式其中表示柱体的底面积,表示柱体的高锥体的体积公式其中表示锥体的底面积,表示锥体的高球的表面积公式球的体积公式其中表示球的半径1 / 10一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合≤x≤2},B={x|0≤x≤4},则A∩B=(A)[0,2](B)[1,2](C)[0,4](D)[1,4]2.已知(A)1+2i (B) 1-2i(C)2+i(D)2-i3.已知0<a<1,,则(A)1<n<m (B) 1<m<n (C)m<n<1 (D) n<m<14.在平面直角坐标系中,不等式组表示的平面区域的面积是(A)(B)4 (C) (D)25.若双曲线上的点到左准线的距离是到左焦点距离的,则m=(A)(B)(C)(D)6.函数y =sin2x+sin2x,x的值域是(A)[-,](B)[-,](C)[](D)[]7.“a>b>c”是“ab<”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件8.若多项式(A)9 (B)10 (C)-9 (D)-109.如图,O是半径为l的球心,点A、B、C在球面上,OA、OB、OC两两垂直,E、F分别是大圆弧与的中点,则点E、F在该球面上的球面距离是(A)(B)(C)(D)10.函数f:{1,2,3}{1,2,3}满足f(f(x))= f(x),则这样的函数个数共有(A)1个(B)4个(C)8个(D)10个非选择题部分(共100分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
绝密★考试结束前2014年普通高等学校招生全国统一考试(浙江卷)数学(理科)本试题卷分选择题和非选择题两部分。
全卷共5页,选择题部分1至3页,非选择题部分4至5页。
满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
参考公式如果事件,A B 互斥 ,那么()()()P A B P A P B +=+如果事件,A B 相互独立,那么()()()P A B P A P B •=•如果事件A 在一次试验中发生的概率为P ,那么n 次独立重复试验中事件A 恰好发生k 次的概率()(1)(0,1,2,...,)k k n kn nP k C p p k n -=-=台体的体积公式121()3V h S S =+其中1S ,2S 分别表示台体的上、下面积,h 表示台体的高柱体体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高 球的表面积公式24S R π=球的体积公式343V R π=其中R 表示球的半径一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求.(1)设全集{|2}U x N x =∈≥,集合2{|5}A x N x =∈≥,则U A =ð( )(A )∅ (B ){2} (C ){5} (D ){2,5} 【答案】B【解析】2{|5}{|5}A x N x x N x =∈≥=∈≥,{|25}{2}U C A x N x =∈≤<=,故选B . 【点评】本题主要考查全集、补集的定义,求集合的补集,属于基础题. (2)已知i 是虚数单位,,a b R ∈,则“1a b ==”是“2(i)2i a b +=”的( )(A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 【答案】A【解析】当1a b ==时,22(i)(1i)2i a b +=+=,反之,2(i)2i a b +=,即222i 2i a b ab -+=,则22022a b ab ⎧-=⎨=⎩,解得11a b =⎧⎨=⎩ 或11a b =-⎧⎨=-⎩,故选A .【点评】本题考查的知识点是充要条件的定义,复数的运算,难度不大,属于基础题. (3)某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是( )(A )902cm (B )1292cm(C )1322cm (D )1382cm 【答案】D【解析】由三视图可知直观图左边一个横放的三棱柱右侧一个长方体,故几何体的表面积为:1246234363334352341382S =⨯⨯+⨯⨯+⨯+⨯+⨯+⨯+⨯⨯⨯=,故选D .【点评】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.(4)为了得到函数sin3cos3y x x =+的图像,可以将函数2cos3y x =的图像( ) (A )向右平移4π个单位 (B )向左平移4π个单位 (C )向右平移12π个单位 (D )向左平移12π个单位【答案】C【解析】sin3cos32sin(3)2sin[3()]412y x x x x ππ=+=+=+,而2cos32sin(3)2y x x π==+=2sin[3()]6x π+,由3()3()612x x ππ+→+,即12x x π→-,故只需将2cos3y x =的图象向右平移12π个单位,故选C .【点评】本题考查两角和与差的三角函数以及三角函数的平移变换的应用,基本知识的考查.(5)在64(1)(1)x y ++的展开式中,记m n x y 项的系数(,)f m n ,则(3,0)(2,1)(1,2)(0,3)f f f f +++=( )(A )45(B )60(C )120(D )210【答案】C 【解析】令x y =,由题意知(3,0)(2,1)(1,2)(0,3)f f f f +++即为10(1)x +展开式中3x 的系数,故(3,0)(2,1)(1,2)(0,3)f f f f +++=710120C =,故选C . 【点评】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力. (6)已知函数32()f x x ax bx c =+++ ,且0(1)(2)(3)3f f f <-=-=-≤( )(A )3c ≤ (B )36c <≤ (C )69c <≤ (D )9c > 【答案】C【解析】由(1)(2)(3)f f f -=-=-得184212793a b c a b c a b c a b c -+-+=-+-+⎧⎨-+-+=-+-+⎩,解得611a b =⎧⎨=⎩,所以32()611f x x x x c =+++,由0(1)3f <-≤,得016113c <-+-+≤,即69c <≤,故选C .【点评】本题考查方程组的解法及不等式的解法,属于基础题.(7)在同一直角坐标系中,函数()(0)a f x x x =≥,()log a g x x =的图像可能是( )(A ) (B ) (C ) (D )【答案】D【解析】函数()(0)a f x x x =≥,()log a g x x =分别的幂函数与对数函数答案A 中没有幂函数的图像, 不符合;答案B 中,()(0)a f x x x =≥中1a >,()log a g x x =中01a <<,不符合;答案C 中,()(0)a f x x x =≥中01a <<,()log a g x x =中1a >,不符合;答案D 中,()(0)a f x x x =≥中01a <<,()log a g x x =中01a <<,符合,故选D .【点评】本题考查的知识点是函数的图象,熟练掌握对数函数和幂函数的图象和性质,是解答的关键. (8)记,max{,},x x y x y y x y≥⎧=⎨<⎩,y,min{,}x,x yx y x y ≥⎧=⎨<⎩,设,a b r r 为平面向量,则( )(A )min{||,||}min{||,||}a b a b a b +-≤r r r r r r (B )min{||,||}min{||,||}a b a b a b +-≥r r r r r r(C )2222max{||,||}||||a b a b a b +-≤+r r r r r r (D )2222max{||,||}||||a b a b a b +-≥+r r r r r r 【答案】D【解析】由向量运算的平行四边形法可知min{||,||}a b a b +-r r r r 与min{||,||}a b r r的大小不确定,平行四边形法可知max{||,||}a b a b +-r r r r所对的角大于或等于90︒ ,由余弦定理知 2222max{||,||}||||a b a b a b +-≥+r r r r r r,(或22222222||||2(||||)max{||,||}||||22a b a b a b a b a b a b ++-++-≥==+r r r r r rr r r r r r ),故选D . 【点评】本题在处理时要结合着向量加减法的几何意义,将a r ,b r ,a b +r r ,a b -r r放在同一个平行四边形中进行比较判断,在具体解题时,本题采用了排除法,对错误选项进行举反例说明,这是高考中做选择题的常用方法,也不失为一种快速有效的方法,在高考选择题的处理上,未必每一题都要写出具体解答步骤,针对选择题的特点,有时“排除法”,“确定法”,“特殊值”代入法等也许是一种更快速,更有效的方法.(9)已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球(3,3)m n ≥≥,从乙盒中随机抽取(1,2)i i =个球放入甲盒中.(a )放入i 个球后,甲盒中含有红球的个数记为(1,2)i i ξ=; (b )放入i 个球后,从甲盒中取1个球是红球的概率记为(1,2)i p i =.则( )(A )1212,()()p p E E ξξ><(B )1212,()()p p E E ξξ<>(C )1212,()()p p E E ξξ>>(D )1212,()()p p E E ξξ<< 【答案】A 【解析】解法一:11222()m n m np m n m n m n +=+⨯=+++ ,211222221233n m n m m n m n m n C C C C p C C C +++=++g g =223323()(1)m m mn n n m n m n -++-++-, ∴1222()m n p p m n +-=+-223323()(1)m m mn n n m n m n -++-++-=5(1)06()(1)mn n n m n m n +->++-,故12p p >.又∴1(1)n P m n ξ==+,1(2)m P m n ξ==+,∴12()12n m m n E m n m n m nξ+=⨯+⨯=+++, 又222(1)(1)n m n C n n P ξ+-===,11222(2)n m m n C C mnP ξ+===,222(m 1)(3)()(1)m m n C m P C m n m n ξ+-===++- ∴2(1)2(1)()123()(1)()(1)()(1)n n mn m m E m n m n m n m n m n m n ξ--=⨯+⨯+⨯++-++-++-=22334()(1)m n m n mnm n m n +--+++-21()()E E ξξ-=22334()(1)m n m n mn m n m n +--+++--2m n m n ++=(1)0()(1)m m mnm n m n -+>++-,所以21()()E E ξξ>,故选A . 解法二:在解法一中取3m n ==,计算后再比较,故选A .【点评】正确理解()1,2i i ξ=的含义是解决本题的关键.此题也可以采用特殊值法,不妨令3m n ==,也可以很快求解.(10)设函数21()f x x =,22()2()f x x x =-,31()|sin 2|3f x x π=,99i ia =,0,1,2i =,,99L ,记10219998|()()||()()||()()|k k k k k k k I f a f a f a f a f a f a =-+-++-L ,1,2,3k =,则( )(A )123I I I << (B )213I I I << (C )132I I I << (D )321I I I << 【答案】B 【解析】解法一:由22112199999999i i i --⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭g,故2111352991199()199999999999999I ⨯-=++++==L g , 由2211199(21)22||999999999999i i i i i ----⎛⎫⎛⎫--+=⨯ ⎪ ⎪⎝⎭⎝⎭,故2150(980)98100221992999999I +=⨯⨯⨯=<⨯g , 3110219998(|sin(2)||sin(2)||sin(2)||sin(2)||sin(2)||sin(2)|)3999999999999I ππππππ=-+-++-g g g g L g g=12574[2sin(2)2sin(2)]139999ππ->g g ,故213I I I <<,故选B . 解法二:估算法:k I 的几何意义为将区间[0,1]等分为99个小区间,每个小区间的端点的函数值之差的绝对值之和.如图为将函数21()f x x =的区间[0,1]等分为4个小区间的情形,因1()f x 在[0,1]上递增,此时110213243|()()||()()||()()||()()|I f a f a f a f a f a f a f a f a =-+-+-+- =11223344A H A H A H A H +++(1)(0)f f =-1=,同理对题中给出的1I ,同样有11I =;而2I 略小于1212⨯=,3I 略小于14433⨯=,所以估算得213I I I <<,故选B .【点评】本题主要考查了函数的性质,关键是求出这三个数与1的关系,属于难题.第Ⅱ卷(非选择题 共100分)二、填空题:本大题共7小题,每小题4分,共28分.(11)若某程序框图如图所示,当输入50时,则该程序运算后输出的结果是 . 【答案】6【解析】第一次运行结果1,2S i ==;第二次运行结果4,3S i ==;第三次运行结果11,4S i ==;第四次运行结果26,5S i ==;第五次运行结果57,6S i ==;此时5750S =>,∴输出6i =.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.(12)随机变量ξ的取值为0,1,2,若1(0)5P ξ==,()1E ξ=,则()D ξ= . 【答案】25【解析】设1ξ=时的概率为p ,ξ的分布列为:由11()012(1)155E p p ξ=⨯+⨯+⨯--= ,解得35p =ξ的分布列为即为故2221312()(01)(11)(21)5555E ξ=-⨯+-⨯+-⨯=.【点评】本题综合考查了分布列的性质以及期望、方差的计算公式.(13)当实数,x y 满足240101x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时,14ax y ≤+≤恒成立,则实数a 的取值范围是 __.【答案】3[1,]2【解析】解法一:作出不等式组240101x y x y x +-≤⎧⎪--≤⎨⎪≥⎩所表示的区域如图,由14ax y ≤+≤恒成立,故3(1,0),(2,1),(1,)2A B C ,三点坐标代入14ax y ≤+≤,均成立得1412143142a a a ⎧⎪≤≤⎪≤+≤⎨⎪⎪≤+≤⎩ 解得312a ≤≤ ,∴实数a 的取值范围是3[1,]2.解法二:作出不等式组240101x y x y x +-≤⎧⎪--≤⎨⎪≥⎩所表示的区域如图,由14ax y ≤+≤得,由图分析可知,0a ≥且在(1,0)A 点取得最小值,在(2,1)B 取得最大值, 故1214a a ≥⎧⎨+≤⎩,得312a ≤≤,故实数a 的取值范围是3[1,]2.【点评】本题考查线性规划,考查了数形结合的解题思想方法,考查了数学转化思想方法,训练了不等式组得解法,是中档题.ξ 0 1 2P15 p 115p --ξ 0 1 2P15 35 15(14)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有 种(用数字作答). 【答案】60 【解析】解法一:不同的获奖分两种,一是有一人获两张奖券,一人获一张奖券,共有223436C A =, 二是有三人各获得一张奖券,共有3424A =,因此不同的获奖情况共有362460+=种. 解法二:将一、二、三等奖各1张分给4个人有3464=种分法,其中三张奖券都分给一个人的有4种分法, 因此不同的获奖情况共有64460-=种.【点评】本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.(15)设函数22,0(),0x x x f x x x ⎧+<⎪=⎨-≥⎪⎩若(())2f f a ≤,则实数a 的取值范围是 .【答案】(,2]-∞.【解析】由题意2()0()()2f a f a f a <⎧⎨+≤⎩或2()0()2f a f a ≥⎧⎨-≤⎩,解得()2f a ≥-∴当202a a a <⎧⎨+≥-⎩或202a a ≥⎧⎨-≥-⎩,解得2a ≤.【点评】本题主要考查分段函数的应用,其它不等式的解法,体现了数形结合的数学思想,属于中档题.(16)设直线30x y m -+=(0m ≠) 与双曲线22221x y a b-=(0,0a b >>)两条渐近线分别交于点A ,B .若点(,0)P m 满足||||PA PB =,则该双曲线的离心率是 . 【答案】5【解析】解法一:由双曲线的方程可知,它的渐近线方程为b y x a =和by x a=-,分别与直线l : 30x y m -+= 联立方程组,解得,(,)33am bm A a b a b ----,(,)33am bm B a b a b-++, 设AB 中点为Q ,由||||PA PB = 得,则3333(,)22am am bm bma b a b a b a b Q ---++-+-+,即2222223(,)99a m b mQ a b a b ----,PQ 与已知直线垂直, ∴1PQ l k k =-g ,即222222319139b ma b a m m a b --=----g , 即得2228a b =,即22228()a c a =-,即2254c a =,所以5c e a ==.解法二:不妨设1a =,渐近线方程为222201x y b -=即2220b x y -=,由222030b x y x y m ⎧-=⎨-+=⎩消去x ,得2222(91)60b y b my b m --+=,设AB 中点为00(,)Q x y ,由韦达定理得:202391b my b =-……① ,又003x y m =-,由1PQ l k k =-g 得00113y x m =--g , 即得0011323y y m =--g 得035y m =代入①得2233915b m m b =-,得214b =,所以22215144c a b =+=+=,所以5c =,得5c e c a ===.【点评】本题考查双曲线的离心率,考查直线的位置关系,考查学生的计算能力,属于中档题. (17)如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练.已知点A 到墙面的距离为AB ,某目标点P 沿墙面上的射击线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小.若15AB m =,25AC m =,30BCM ∠=︒,则tan θ的最大值是 (仰角θ为直线AP 与平面ABC 所成角). 【答案】539【解析】解法一:∴15cm AB =,25cm AC =,90ABC ∠=︒,∴20cm BC =,过P 作PP BC '⊥,交BC 于P ', 1︒当P 在线段BC 上时,连接AP ',则'tan 'PP AP θ=,设BP x '=,则20CP x '=-, (020x ≤<)由30BCM ∠=︒,得3''tan 30(20)3PP CP x =︒=-. 在直角ABP ∆'中,2'225AP x =+ ∴2'320tan '3225PP x AP x θ-==+g ,令220225xy x-=+,则函数在 []0,20x ∈单调递减, ∴0x =时,tan θ取得最大值为232002034334592250-==+g2︒当P 在线段CB 的延长线上时,连接AP ',则'tan 'PP AP θ=, 设BP x '=,则20CP x '=+,(0x >) 由30BCM ∠=︒,得3''tan 30(20)3PP CP x =︒=+, 在直角ABP ∆'中,2'225AP x =+, ∴2'320tan '3225PP xAP x θ+==+g ,令220225x y x+=+,则2222520'(225x )225x y x-=++,∴当225450204x <<=时'0y >;当454x >时'0y <, 所以当454x =时max 2452054345225()4y +==+, 此时454x =时,tan θ取得最大值为3553339=g , 综合1︒,2︒可知tan θ取得最大值为539. 解法二:如图以B 为原点,BA 、BC 所在的直线分别为x ,y 轴,建立如图所示的空间直角坐标系,∴15cm AB =,25cm AC =,90ABC ∠=︒, ∴20cm BC =,由30BCM ∠=︒,可设3(0,,(20))3P x x -(其中20x ≤),'(0,,0)P x ,(15,0,0)A , 所以2223(20)'3203tan '315225x PP x AP x xθ--===++g, 设2320(x)tan 3225x f x θ-==+g (20x ≤), 22322520'(x)3(225)225x f x x +=-++g , 所以,当22545204x <-=- 时'0y >;当45204x -<≤时'0y <, 所以当454x =-时max 24520453534()()43945225()4f x f +=-==+g ,所以tan θ取得最大值为539. 解法三:分析知,当tan θ取得最大时,即θ最大, 最大值即为平面ACM 与地面ABC 所成的锐二面角的度量值,如图,过B 在面BCM 内作BD BC ⊥交CM 于D , 过B 作BH AC ⊥于H ,连DH ,则BHD ∠即为平面ACM 与地面ABC 所成的二面角的平面角,tan θ的最大值即为tan BHD ∠,在Rt ABC ∆中,由等面积法可得15201225AB BC BH AC ===g g ,203tan303DB BC =︒=g , 所以max203533(tan )tan 129DB BHD BH θ=∠===.【点评】本题考查利用数学知识解决实际问题,考查函数的单调性,考查学生分析解决问题的能力,属于中档题.三、解答题:本大题共5题,共72分.解答应写出文字说明,演算步骤或证明过程.(18)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知,3a b c ≠=,22cos cos 3sin cos 3sin cos A B A A B B -=-.(1)求角C 的大小;(2)若4sin 5A =,求ABC ∆的面积.解:(1)由题得1cos21cos233sin 2sin 22222A B A B ++-=-,即3131sin 2cos2sin 2cos22222A AB B -=-,sin(2)sin(2B )66A ππ-=-,由a b ≠得A B ≠,又(0,)A B π+∈ ,得22B 66A πππ-+-=,即23A B π+=,所以3C π=. (2)3c =,4sin 5A =,sin sinC a c A =,得85a =,由a c < 得A C <,从而3cos 5A =,故sin sin()B A C =+=433sinAcosC cosAsinC ++=, 所以,ABC ∆的面积为18318sin 225S ac B +==.【点评】本题主要考查二倍角公式、两角和差的三角公式、正弦定理的应用,属于中档题. (19)已知数列{}n a 和{}n b 满足123(2)(*)n b n a a a a n N =∈L .若{}n a 为等比数列,且1322,6a b b ==+. (1)求n a 与n b ; (2)设11(*)n n nc n N a b =-∈.记数列{}n c 的前n 项和为n S . (∴)求n S ;(∴)求正整数k ,使得对任意*n N ∈均有k n S S ≥.解:(1)∴123(2)(*)n b n a a a a n N =∈L ①,当2n ≥,*n N ∈时,11231(2)n b n a a a a --=L ②,由①÷②知:当2n ≥时,1(2)n n b b n a --=,令3n =,则有323(2)b b a -=, ∴326b b =+,∴38a =.∴{}n a 为等比数列,且12a =, ∴{}n a 的公比为q ,则2324a q a ==,由题意知0n a >,∴0q >, ∴2q =.∴*2nn a n N ∈=().又由123(2)(*)n b n a a a a n N =∈L ,得:1232222(2)n b n ⨯⨯⨯⨯=L , 即(1)22(2)n n n b +=,∴*1n b n n n N =+∈()(). (2)(∴)∴1111111()2(1)21n n n n n c a b n n n n =-=-=--++, ∴123n n S c c c c =++++L =2111111111()()()21222321n n n --+--++--+L =21111(1)2221n n +++--+L =111121n n --++=1112n n -+.(∴)因为10c =,20c >,30c >,40c >;当5n ≥时,1(1)[1](1)2n nn n c n n +=-+, 而11(1)(1)(2)(n 1)(n 2)0222n n n n n n n ++++++--=>,得5(1)5(51)122n n n ++≤<g ,所以,当5n ≥时,0n c <,综上,对任意*n N ∈恒有4n S S ≥,故4k =.【点评】本题考查了等比数列通项公式、求和公式,还考查了分组求和法、裂项求和法和猜想证明的思想,证明可以用二项式定理,还可以用数学归纳法.本题计算量较大,思维层次高,要求学生有较高的分析问题解决问题的能力.本题属于难题.(20)如图,在四棱锥A BCDE -中,平面ABC ⊥平面BCDE ,90CDE BED ∠=∠=︒,2AB CD ==,1DE BE ==,2AC =.(1)证明:DE ⊥平面ACD ; (2)求二面角B AD E --的大小.解:(1)在直角梯形BCDE 中,由1DE BE ==,2CD =,得2BD BC ==,由2AC =,2AB =得222AB AC BC =+,即AC BC ⊥,又平面ABC ⊥平面BCDE ,从而AC ⊥平面BCDE ,所以AC DE ⊥,又DE DC ⊥,从而DE ⊥平面ACD .(2)解法一:作BF AD ⊥,与AD 交于点F ,过点F 作//FG DE ,与AB 交于点G ,连接BG , 由(1)知DE AD ⊥,则FG AD ⊥,所以BFG ∠就是二面角B AD E --的平面角,在直角梯形BCDE 中,由222CD BC BD =+,得BD BC ⊥, 又平面ABC ⊥平面BCDE , 得BD ⊥平面ABC ,从而BD AB ⊥,由于AC ⊥平面BCDE ,得AC CD ⊥.在Rt ACD ∆中,由2DC =,2AC =,得6AD =; 在Rt AED ∆中,由1ED =,6AD =得7AE =;在Rt ABD ∆中,由2BD =,2AB =,6AD =, 得233BF =,23AF AD =,从而 23GF =,在ABE ∆,ABG ∆中,利用余弦定理分别可得57cos 14BAE ∠=,23BC =.在BFG ∆中,2223cos 22GF BF BG BFG BF GF +-∠==g , 所以,6BFG π∠=,即二面角B AD E --的大小为6π. 解法二:以D 的原点,分别以射线DE ,DC 为x ,y 轴的正半轴,建立空间直角坐标系D xyz -, 如图所示.由题意知各点坐标如下:(0,0,0)D ,(1,0,0)E ,(0,2,0)C ,(0,2,2)A ,(1,1,0)B .设平面ADE 的法向量为111(,,)m x y z =u r,平面ABD 的法向量为222(,,)n x y z =r,可算得:(0,2,2)AD =--u u u r,(1,2,2)AE =--u u u r ,(1,1,0)DB =u u u r , 由00m AD m AE ⎧=⎪⎨=⎪⎩u r u u u rg u r u u u r g ,即11111220220y z x y z ⎧--=⎪⎨--=⎪⎩, 可取(0,1,2)m =-u r ,由00n AD n BD ⎧⋅=⎪⎨⋅=⎪⎩r u u u rr u u u r即22222200y z x y ⎧--=⎪⎨+=⎪⎩ 可取(0,1,2)n =-r ,于是||3|cos ,|||||32m n m n m n ⋅<>===⋅⋅u r ru r r u r r .由题意可知,所求二面角是锐角,故二面角B AD E --的大小为6π. 【点评】本题主要考查空间点、线、面位置关系,二面角等基础知识,同时考查空间想象能力,推理论证能力和运算求解能力.(21)如图,设椭圆C:22221(0)x y a b a b+=>>动直线l 与椭圆C 只有一个公共点P , 且点P 在第一象限.(1)已知直线l 的斜率为k ,用,,a b k 表示点P 的坐标;(2)若过原点O 的直线1l 与l 垂直,证明:点P 到直线1l 的距离的最大值为a b -. 解:(1)解法一:设l 方程为(0)y kx m k =+<,22221y kx m x y ab =+⎧⎪⎨+=⎪⎩,消去y 得:222222222()20b a k x a kmx a m a b +++-=, 由于直线l 与椭圆C 只有一个公共点P ,故0∆=,即22220b m a k -+=,解得点P 的坐标为22222222(,)a km b mP b a k b a k -++,又点P 在第一象限, 故点P 的坐标为22222222(,)a k b P b a kb a k-++.解法二:作变换''x x ay y b⎧=⎪⎪⎨⎪=⎪⎩,则椭圆C :22221(0)x y a b a b +=>> 变为圆'C :22''1x y +=,切点00(,)P x y 变为点00'(',')P x y ,切线00:()l y y k x x -=-(0)k <,变为00':'y (')l by k ax x -=-.在圆'C 中设直线''O P 的方程为''y mx =(0m >), 由22''''1y mx x y =⎧⎨+=⎩,解得02021'1'1x m m y m ⎧=⎪+⎪⎨⎪=⎪+⎩, 即221'(,)11m P mm++,由于'''O P l ⊥,所以'''1O P l k k =-g ,得1ak m b ⋅=-,即bm ak=-, 代入得22221'(,)11()()bak P b bak ak -++,即222222'(,)ak b P a k b a k b -++, 利用逆变换''x x ay y b ⎧=⎪⎪⎨⎪=⎪⎩,代入即得:22222222(,)a k b P a k b a k b -++. (2)由于直线1l 过原点O 且与直线l 垂直,故直线1l 的方程为0x ky +=, 所以点P 到直线1l 的距离222222222||1a kb kb a k b a kd k -+++=+,整理得:22222222a b d b b a a k k-=+++,因为22222b a k ab k+≥,所以2222222222222a b a b d a b b b a abb a a k k --=≤=-+++++,当且仅当2bk a=时等号成立. 所以,点P 到直线1l 的距离的最大值为a b -.【点评】本题主要考查椭圆的几何性质、点到直线间的距离、直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法、基本不等式应用等综合解题能力.(22)已知函数()33()f x x x a a R =+-∈.(1)若()f x 在[]1,1-上的最大值和最小值分别记为(),()M a m a ,求()()M a m a -; (2)设,b R ∈若()24f x b +≤⎡⎤⎣⎦对[]1,1x ∈-恒成立,求3a b +的取值范围.解:(1)∴33333,()3||33,x x a x a f x x x a x x a x a ⎧+-≥⎪=+-=⎨-+<⎪⎩,∴2233,'()33,x x af x x x a ⎧+≥⎪=⎨-<⎪⎩,由于11x -≤≤,(∴)当1a ≤-时,有x a ≥,故3()33f x x x a =+-,所以,()f x 在(1,1)-上是增函数,因此()(1)43M a f a ==-,()(1)43m a f a =-=--, 故()()(43)(43)8M a m a a a -=----=.(∴)当11a -<<时,若(),1x a ∈,3()33f x x x a =+-,在(),1a 上是增函数;若()1,x a ∈-,3()33f x x x a =--,在()1,a -上是减函数, ∴()max{(1),(1)}M a f f =-,3()()a m a f a ==, 由于(1)(1)62f f a --=-+,因此当113a -<≤时,3()()34M a m a a a -=--+; 当113a << 时,3()()32M a m a a a -=-++; (∴)当1a ≥时,有x a ≤,故3()33f x x x a =-+,此时()f x 在(1,1)-上是减函数,因此()(1)23M a f a =-=+,()(1)23m a f a ==-+,故()()4M a m a -=;综上,338,1134,13()()132,134,1a a a a M a m a a a a a ≤-⎧⎪⎪--+-<≤⎪-=⎨⎪-++<<⎪⎪≥⎩.(2)令()()h x f x b =+,则3333,()33,x x a b x a h x x x a b x a ⎧+-+≥⎪=⎨-++<⎪⎩,2233,'()33,x x ah x x x a⎧+≥⎪=⎨-<⎪⎩,因为()24f x b +≤⎡⎤⎣⎦对[]1,1x ∈-恒成立,即2()2h x -≤≤对[]1,1x ∈-恒成立,所以由(1)知, (∴)当1a ≤-时,()h x 在(1,1)-上是增函数,()h x 在[1,1]-上的最大值是(1)43h a b =-+,最小值(1)43h a b -=--+,则432a b --+≥-且432a b -+≤矛盾;(∴)当113a -<≤时,()h x 在[1,1]-上的最小值是3()h a a b =+, 最大值是(1)43h a b =-+,所以32a b +≥-且432a b -+≤, 从而323362a a a b a --+≤+≤- 且103a ≤≤, 令3()23t a a a =--+,则2'()330t a a =->,∴()t a 在1(0,)3上是增函数,故()(0)2t a t >=-,因此230a b -≤+≤;(∴)当113a <<时,()h x 在[1,1]-上的最小值是3()h a ab =+,最大值是(1)32h a b -=++,所以由32a b +≥-且322a b ++≤,解得283027a b -<+≤ (∴)当1a ≥时,()h x 在[1,1]-上的最大值是(1)32h a b -=++,最小值是(1)3a b 2h =+-,所以由322a b +-≥-且322a b ++≤,解得30a b +=.综上,3a b +的取值范围是230a b -≤+≤.【点评】本题考查导数的综合运用,考查函数的最值,考查分类讨论、化归与转化的数学思想,难度大.。
浙江省历年向量高考题
06年
(5)设向量a ,b ,c 满足a+b+c=0,且a ⊥b ,|a|=1,|b|=2,则|c|2= (A )1 (B )2 (C )4 (D )5 (16)如图,函数)其中20(),sin(2π
ϕϕπ≤
≤∈+=R x x y 的图象与y 轴交于点(0,1)
(Ⅰ)求ϕ的值;
(Ⅱ)设P 是图象上的最高点,M ,N 是图象与x 轴的交点,求PN PM 与的夹角。
07年
(9)若非零向量a 、b 满足|a -b | = | b |,则
(A )|2b | > |a -2b | (B )|2b | < |a -2b |
(C )|2a | > |2a -b | (D )|2a | < |2a -b |
08年
(16)已知a 是平面内的单位向量,若向量b 满足b ·(a -b )=0,
则|b |的取值范围是
5.已知向量(1,2)=a ,(2,3)=-b .若向量c 满足()//+c a b ,()⊥+c a b ,则c =( )
A .77
(,)93 B .77(,)39-- C .77(,)39 D .77(,)93
--18.(本题满分14分)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且满足25cos 25
A =, 3A
B A
C ⋅=. (I )求ABC ∆的面积; (II )若1c =,求a 的值.
10年
(13)已知平面向量,,1,2,(2),αβαβααβ==⊥-则2a β+的值是 。
(17)在平行四边形ABCD 中,O 是AC 与BD 的交点,P 、Q 、M 、N 分别是线段OA 、OB 、OC 、OD 的中点,在APMC 中任取一点记为E ,在B 、Q 、N 、D 中任取一点记为F ,设G 为满足向量OG OE OF =+的点,则在上述的点G 组成的集合中的点,落在平行四边形ABCD 外(不含边界)的概率为 。
11年
(15)若平面向量α、β 满足11αβ=≤,且以向量α、β为邻边的平行四边形的面积为12
,则α和β的夹角 θ的取值范围是____________________________。
7. 设a ,b 是两个非零向量.正确的是
A.若|a+b|=|a|-|b|,则a⊥b
B.若a⊥b,则|a+b|=|a|-|b|
C.若|a+b|=|a|-|b|,则存在实数λ,使得b=λ a
D.若存在实数λ,使得b=λa ,则|a+b|=|a|-|b|
15.在△ABC 中,M 是BC 的中点,AM=3,BC=10,则
=_______.
13年
4.设m ,n 是两条不同的直线,α,β是两个不同的平面,
A .若m α,n α,则m n
B .若m α,m β,则αβ
C .若m n ,m α⊥,则n α⊥
D .若m α,αβ⊥,则m β⊥
17. 设e 1,e 2为单位向量,非零向量b =x e 1+y e 2,x .y ∈R .若e 1,e 2的夹角为
6π,则|x||b |的最大值等于_______.
14年
9、设θ为两个非零向量a ,b 的夹角,已知对任意实数t ,||b ta +是最小值为1( )
A .若θ确定,则||a 唯一确定
B .若θ确定,则||b 唯一确定
C .若||a 确定,则θ唯一确定
D .若||b 确定,则θ唯一确定。