第二章 第二讲 函数解析式与定义域
- 格式:doc
- 大小:75.00 KB
- 文档页数:6
科 目数学 年级 高三 备课人 高三数学组 第 课时 2.1函数的解析式及定义域与值域考纲定位 理解函数的概念;掌握简单函数的定义域的求法;掌握求解析式的常用方法.疑难提示 1、要注意区间的正确表示,特别是分清开区间与闭区间的区别;2、简单函数的定义域和值域的求法;3、对符号()y f x =的理解及解析式的求法.【考点整合】1、函数的概念设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的 ,在集合B 中都有 的数()f x 和它对应,那么就称:f A B →为从集合A 到集合B 的一个函数,其中x 的取值范围A 叫函数的 , 叫函数的值域,值域是 的子集.2、函数的三要素: 为函数的三要素.两函数相同,当且仅当3、函数的表示法有 , 和 .4、映射的概念设A 、B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的 ,在集合B 中都有 的元素y 和它对应,那么就称:f A B →为从集合A 到集合B 的一个映射.5、函数定义域的求法:6、基本初等函数的值域:(一次函数、二次函数、反比例函数、指数函数、对数函数、三角函数)【真题演练】1、(2011 浙江)设函数20()0x x f x x x -≤⎧=⎨>⎩若()4f a =,则实数a =( )A.-4或-2B.-4或2C.-2或4D.-2或22、(2012 江西)下列函数中,与函数31y x=定义域相同的函数是( ) A.1sin y x = B.ln x y x = C.x y xe = D.sin x y x= 3、(2012 江西)设函数211()lg 1x x f x x x ⎧+≤=⎨>⎩若((10))f f =( ) A.lg101 B.2 C.1 D.04、(2012 安徽)下列函数中,不满足(2)2()f x f x =的是( )A.()||f x x =B.()||f x x x =-C.()1f x x =+D.()f x x =-5、(2012 江苏)函数6()12log f x x =-的定义域为6、(2010 江苏)已知函数210()10x x f x x ⎧+≥=⎨<⎩,则满足不等式2(1)(2)f x f x ->的x 的取值范围是【经典例题】一、函数的定义域:例1、(1)函数(1)y x x x =-+的定义域为 ; (2)函数02lg(2)(1)12x y x x x -=+-+-的定义域为 ;(3)已知函数()y f x =的定义域是[0,4],则2(1)(3)y f x f x x =++-的定义域是变式训练:1、若函数(1)y f x =+的定义域是[-2,3),则(21)y f x =-的定义域是2、若函数1()x f x e x m=-+的定义域是R ,则实数m 的取值范围是 二、函数的值域例2、分别求下列函数的值域(1)1y x =+ (2)22y x x =-+ (3)22([0,3])y x x x =-+∈ (4)213x y x +=- (5) (6)21y x x =+-变式训练:求下列函数的值域(1)246([1,5))y x x x =-+∈ (2)(0)cx d y a ax b+=≠+其中 (3)21y x x =-- (4)22225(12)1x x y x x x ++=≤≤++三、函数的解析式例3、(1)已知二次函数()f x 的最小值为4,且(2)(0)6f f ==,求()f x 的解析式(2)已知2(1)f x x x +=+,求()f x 的解析式;(3)已知2()()32f x f x x +-=+,求()f x 的解析式(4)已知函数2y x x =+与函数()y g x =的图象关于点(-2,3)对称,求()g x 的解析式(5)设()f x 是R 上的函数,且满足(0)1f =,并且对任意实数,x y 都有()()(21)f x y f x y x y -=--+,求()f x 的解析式变式训练:(1)已知2211()f x x x x +=+,求()f x ;(2)已知12()()3f x f x x+=,求()f x ;【作业】《胜券在握》P4页第1、2题;【上本作业】《胜券在握》P4页第3、4、5题.。
函数的概念、定义域及解析式函数的概念、定义域及解析式一.课题:函数的概念及解析式二.教学目标:了解映射的概念,在此基础上加深对函数概念的理解;能根据函数的三要素判断两个函数是否为同一函数;理解分段函数的意义.三.教学重点:函数是一种特殊的映射,而映射是一种特殊的对应;函数的三要素中对应法则是核心,定义域是灵魂.四.教学过程:(一)主要知识:1.对应、映射、像和原像、一一映射的定义;映射----设A、B是两个非空集合,如果按照某种对应法则f,对于集合A 中的任意一个元素X,在集合B中都有唯一确定的元素Y与之对应,那么这样的对应关系叫做从集合A到集合B的映射。
记作f:A→B.其中X叫做Y的原象,Y叫做X的象。
映射是特殊的对应,只能一对一或多对一,不能一对多。
一一映射-----在集合A到集合B的映射中,若集合B中的任意一个元素在集合A中都有唯一的元素与之对应,那么就说这样的映射叫做从集合A到集合B的一一映射。
2.函数的概念函数的传统定义和近代定义;传统定义-------如果在某变化过程中有两个变量X、Y,对于X在某个范围内的每一个确定的值,按照某个对应法则f,Y都江堰市有唯一的值和它对应,那么Y就是X的函数。
记为Y=f(X)近代定义-----函数是由一个非空数集另一个非空数集的映射。
(或如果A、B 都是非空的数集,那么从A到B的映射f:A→B叫做A到B的函数。
原象的集合A叫做函数的定义域,象的集合C叫做函数的值域)。
函数是特殊的映射,只能是从非空数集到非空数集的映射。
3.函数的三要素及表示法.函数的三要素-----定义域、值域、对应法则。
(是判断两个是否为同一函数的依据)由于值域可由定义域和对应法则唯一确定,故也可说函数只有两要素,即判两个函数是否为同一函数可用定义域和对应法则来判断。
函数的表示法通常有:解析法、列表法、图象法。
4,函数的解析式:函数的解析式是指用运算符号和等号把数和表示数的字母连结而成的式子。
函数定义域与解析式【教学目标】一、函数定义域【知识点】1.函数是一种非空的数集组成的映射,是从自变量x 到应变量y 的对应关系;期中x 的范围叫做定义域;2.定义域的常见形式有分式,根式,指数,对数,复合函数以及抽象函数;【定义域常见类型】一 、具体函数定义域的常见类型:1.分式中分母不为零2.偶次根式非负3.零次幂底数非零4. 当题中出现多个函数的四则运算及复合时,注意考虑每一个函数定义域并取交集二 、抽象函数常见类型1.已知()f x 定义域求()()f g x 定义域2已知()()f g x 定义域求()f x 定义域3. 已知()()f g x 定义域求()()f h x 定义域(一)具体函数【例题讲解】★☆☆例题1:求函数11y x =+的定义域; 答案: {}|1x x ≠−解析: 10,1x x +≠≠−,{}|1x x ∴≠−★☆☆练习1.求函数2123y x x =−−的定义域; 答案:{}|13x x x ≠−≠且解析:2230x x −−≠()()310x x −+≠,{}|13x x x ∴≠−≠且★☆☆例题2. 求函数y答案:{}R|1x x ∈≥解析:,x x −≥≥101,{}R|1x x ∴∈≥★☆☆练习1:求函数y =答案:[)(,-],−∞⋃+∞13解析:2230x x −−≥,()()310x x −+≥13x x ≤−≥或,(][),,∴−∞−⋃+∞13 ★☆☆例题3.求函数()023y x =−的定义域 3,2⎫⎛⎫+∞⎪ ⎪⎭⎝⎭解析:230x −≠3,2⎫⎛⎫+∞⎪ ⎪⎭⎝⎭★☆☆练习1求函数0221x y x −⎛⎫= ⎪+⎝⎭的定义域 ()1,22,2⎫⎛⎫−+∞⎪ ⎪⎭⎝⎭()1,22,2⎫⎛⎫−+∞⎪ ⎪⎭⎝⎭★☆☆例题4..求函数y解析:1010x x −≥−≥且★☆☆练习1.求函数()04y x =−的定义域; 答案:(][)(),13,44,+−∞−∞解析:2230x x −−≥且40x −≠(][)(),13,44,+x ∴∈−∞−∞(二)抽象函数★☆☆例题5.已知()f x 定义域是[]1,3,求()21f x +的定义域答案:[]0,1解析: 因为()f x 的定义是[]1,3,即()f x 中,[]1,3x ∈,那么()21f x +中,[]211,3x +∈,得[]0,1x ∈则()21f x +中,[]0,1x ∈∴ ()21f x +的定义域是[]0,1★☆☆练习1.已知()f x 定义域是()0,1,求()2f x 的定义域答案: ()()1,00,1−解析:因为()f x 的定义是()0,1,即()f x 中,()0,1x ∈,那么()2f x 中, ()20,1x ∈,得()()1,00,1x ∈−则()2f x 中, ()()1,00,1x ∈−∴ ()2f x 的定义域是()()1,00,1x ∈−★☆☆例题6.已知()1f x −定义域是[]3,3−,求()f x 的定义域.答案:[]4,2−.解析:∵()1f x −的定义域为[]3,3−,即33x −≤≤∴412x −≤−≤即函数()f x 定义域为[]4,2−.★☆☆练习1已知)2f 定义域是[]4,9,求()f x 的定义域答案:[]0,1即函数()f x 定义域为[]0,1.★☆☆例题7.已知()21f x +定义域是()3,5,求()41f x −的定义域答案:()2,3.解析:∵(21)f x +定义域为()3,5,即35x <<,∴72111x <+< ,则()f x 定义域为()7,11,∴(41)f x −定义域为74111x <−<,∴23x <<.即()41f x −的定义域为()2,3.★☆☆练习1已知()1f x +定义域是()2,3−,求()222f x −的定义域2,32⎫⎛⎪ ⎪ ⎭⎝解析:∵()1f x +定义域为()2,3−,即23x −<<,∴114x −<+< ,则()f x 定义域为()1,4−,∴()222f x −定义域为21224x −<−<, 2,32⎫⎛⎪ ⎪ ⎭⎝2,32⎫⎛⎪ ⎪ ⎭⎝★☆☆例题8.若函数()f x = 的定义域为R ,则实数a 的取值范围.答案:(],0−∞解析:偶次根号下非负,当x 的范围为R 时,20x a −≥在R 上恒成立,等价于2a x ≤在R 上恒成立求出a 的范围为0a ≤,(],0a ∴∈−∞★☆☆练习1若函数()212f x x ax a=−+ 的定义域为R ,则实数a 的取值范围. 答案:()0,1解析:分式型函数分母不为零,当x 的范围为R 时,220x ax a −+≠恒成立;2(2)40a a ∆=−−<即01a <<; 所以a 的取值范围是()0,1.知识点要点总结:一 具体函数定义域的常见类型:1.分式中分母不为零2.偶次根式非负3.零次幂底数非零4. 当题中出现多个函数的四则运算及复合时,注意考虑每一个函数定义域并取交集5. 实际问题中除考虑函数解析式有意义外,还应考虑实际问题本身的要求.二.抽象函数的定义域问题(1)若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域.二、函数的解析式【知识点】求函数解析式的四种常用方法1. 拼凑法:将等号右侧的式子拼凑成关于f 后括号内东西的表达式,然后将其直接写成x .2. 换元法:已知复合函数(())f g x 的解析式,可用换元法,此时要注意新元的取值范围.3.待定系数法:已知函数类型.①正比例函数:(0)y kx k =≠; ②反比例函数:(0)k y k x=≠; ③一次函数:(0)y kx b k =+≠;④二次函数:2(0)y ax bx c a =++≠.4.方程组法:两个f ,将题目中的x 换成另一个括号内的东西构造方程组.比如:若给出()f x 和()f x −,或()f x 和1()f x 的一个方程,则可以x 代换x −(或1x),构造出另一个方程,解此方程组,消去()f x −(或1()f x)即可求出()f x 的表达式。
第2章 第2讲时间:60分钟 满分:100分一、选择题(8×5=40分)1.(2010·四川自贡第三次诊断)函数y =2x -2+(x -4)0的定义域为( ) A.{x |x ≥0} B.{x |x ≥0且x ≠4} C.{x |x ≥1} D.{x |x ≥1且x ≠4}解析:由⎩⎪⎨⎪⎧2x -2≥0,x -4≠0,则x ≥1且x ≠4.答案:D2.(2010·河北邯郸一模)函数f (x )对于任意实数x 均满足条件f (x +2)=1f (x ),若f (1)=-5,则f [f (5)]等于( )A.2B.5C.-5D.-15解析:由f (x +2)=1f (x ),∴f (x +4)=1f (x +2)=f (x ).∴T =4.∴f (5)=f (1)=-5.∴f [f (5)]=f (-5)=f (-1)=f (3)=f (1+2)=1f (1)=-15.答案:D3.(2010·河北唐山一模)已知f (x )=⎩⎪⎨⎪⎧x 2+4x +3,x ≤0,3-x ,x >0,则方程f (x )+1=0的实根个数为( )A.0B.1C.2D.3解析:①若x ≤0,f (x )=x 2+4x +3,则f (x )+1=x 2+4x +4=0,解得x =-2;②若x >0,f (x )=3-x ,则f (x )+1=3-x +1=0,解得x =4.故实根个数为2.4.(2010·湖北省大冶实验中学月考)已知函数f (x )是偶函数,当x >0时,f (x )=1+2x -x 2,当x <0时,f (x )=( )A.1+2x -x 2B.1-2x -x 2C.1+2x +x 2D.1-2x +x 2解析:当x <0时,f (x )=f (-x )=1+2(-x )-(-x )2=1-2x -x 2,故选B. 答案:B5.(2009·重庆市高三联合诊断性考试(第一次))已知函数f (x )=⎩⎪⎨⎪⎧log 2x (x >0)3x (x ≤0),则f [f (14)]的值是( )A.-19B.-9C.19D.9解析:依题意得f (14)=log 214=-2,f [f (14)]=f (-2)=3-2=19,选C.答案:C6.设y =f (x )的定义域为A =[4,+∞).给出下列函数:y =f (2x -4),y =f (x 24),y =f (2x ),y =f (-16x),其中定义域仍是A 的有( )A.1个B.2个C.3个D.4个解析:∵2x -4≥4,∴x ≥4,因此y =f (2x -4)的定义域仍为A .同理可知y =f (2x )的定义域仍为A .故选B.答案:B7.下图(a ),在直角梯形ABCD 中,∠B =90°,DC ∥AB ,动点P 从B 点出发,由B C D A 沿边运动,设点P 运动的路程为x ,△ABP 的面积为y ,如果关于x 的函数y 的图象如下图(b ),则△ABC 的面积等于( )A.10B.16D.32解析:由题可知,BC =4,CD =5,AD =5,∴AB =3+5=8,∴S △ABC =12×8×4=16,故选B.答案:B8.(2012·原创题)设f (x )是定义域在R 上的偶函数,它的图象关于直线x =2对称,已知x ∈[-2,2]时,函数f (x )=-x 2+1,则x ∈[-6,-2]时,f (x )等于( )A.-(x +4)2+1B.-(x -4)2+1C.-(x -4)2-1D.-(x +4)2-1解析:∵f (x )是R 上的偶函数,它的图象关于直线x =2对称.∴f (-x )=f (x ),f (x +4)=f (-x )∴f (x )=f (x +4).当x ∈[-6,-2]时,x +4∈[-2,2]. 则f (x )=f (x +4)=-(x +4)2+1,故选A. 答案:A二、填空题(4×5=20分)9.(2009·北京,12)已知函数f (x )=⎩⎪⎨⎪⎧3x, x ≤1,-x ,x >1.若f (x )=2,则x = .解析:依题意得,当x ≤1时,3x =2,∴x =log 32, 当x >1时,-x =2,x =-2(舍去),故x =log 32. 答案:log 3210.已知函数f (x )是定义在x ∈(-e,0)∪(0,e )上的奇函数,当x ∈(-e,0)时,f (x )=ax +ln(-x ),则当x ∈(0,e )时,f (x )= .解析:当x ∈(0,e )时,-x ∈(-e,0),f (x )=-f (-x )=-[a (-x )+ln x ]=ax -ln x ,故填ax -ln x .答案:ax -ln x11.已知函数f (x )=mx 2-6mx +m +8的定义域为R ,则实数m 的取值范围为 . 解析:依照m 是否为零进行分类讨论. (1)当m =0时,f (x )=8,其定义域为R ;(2)当m ≠0时,要使mx 2-6mx +m +8≥0在x ∈R 的情况下均成立,必须满足⎩⎪⎨⎪⎧m >0△=36m 2-4m (m +8)≤0,解得0<m ≤1. 综合(1)、(2)可知m 的取值范围为[0,1].答案:[0,1]12.(2010·浙江温州模拟)某出租车公司规定“打的”收费标准如下:3千米以内为起步价8元(即行程不超过3千米,一律收费8元),若超过3千米除起步价外,超过部分再按1.5元/千米收费计价,若某乘客再与司机约定按四舍五入以元计费不找零钱,该乘客下车时乘车里程数为7.4,则乘客应付的车费是 元.(结果保留整数)解析:车费为8+(7.4-3)×1.5=14.6≈15(元). 答案:15三、解答题(4×10=40分)13.(1)求函数f (x )=lg(x 2-2x )9-x 2的定义域;(2)已知函数f (2x )的定义域是[-1,1],求f (log 2x )的定义域. 解析:(1)要使函数有意义,则只需要:⎩⎪⎨⎪⎧ x 2-2x >09-x 2>0,即⎩⎪⎨⎪⎧x >2或x <0-3<x <3, 解得-3<x <0或2<x <3. 故函数的定义域是(-3,0)∪(2,3). (2)∵y =f (2x )的定义域是[-1,1], 即-1≤x ≤1,∴12≤2x ≤2.∴函数y =f (log 2x )中12≤log 2x ≤2.即log 22≤log 2x ≤log 24,∴2≤x ≤4. 故函数f (log 2x )的定义域为[2,4].14.(2010·云南曲靖模拟)已知函数f (x )和g (x )的图象关于原点对称,且f (x )=x 2+2x . (1)求g (x )的解析式; (2)解不等式g (x )≥f (x )-|x -1|.解答:(1)设函数y =f (x )的图象上任一点Q (x 0,y 0)关于原点的对称点为P (x ,y ), 则⎩⎨⎧x 0+x2=0,y 0+y2=0,即⎩⎪⎨⎪⎧x 0=-x ,y 0=-y . ∵点Q (x 0,y 0)在函数y =f (x )的图象上, ∴-y =x 2-2x ,即y =-x 2+2x , 故g (x )=-x 2+2x .(2)由g (x )≥f (x )-|x -1|可得:2x 2-|x -1|≤0.当x ≥1时,2x 2+x -1≤0,此时不等式无解. 当x <1时,2x 2-x +1≤0,∴-1≤x ≤12.因此,原不等式的解集为[-1,12].15.(2010·清远一模)某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少? 解析:(1)当每辆车的月租金定为3600元时,未租出的车辆数为3600-300050=12,所以这时租出了88辆车.(2)设每辆车的月租金定为x 元,则租赁公司的月收益为f (x )=(100-x -300050)(x -150)-x -300050×50整理得f (x )=-x 250+162x -21000=-150(x -4050)2+307050.所以,当x =4050时,f (x )最大,最大值为f (4050)=307050.即当每辆车的月租金定为4050元时,租赁公司的月收益最大,最大月收益为307050元.16.(2009·贵州兴义第一学期联考)已知g (x )=-x 2-3,f (x )是二次函数,当x ∈[-1,2]时,f (x )的最小值为1,且f (x )+g (x )为奇函数,求函数f (x )的表达式.解析:设f (x )=ax 2+bx +c (a ≠0), 则f (x )+g (x )=(a -1)x 2+bx +c -3, 又f (x )+g (x )为奇函数,∴a =1,c =3. ∴f (x )=x 2+bx +3,对称轴x =-b 2.当-b2≥2,即b ≤-4时,f (x )在[-1,2]上为减函数,∴f (x )的最小值为f (2)=4+2b +3=1. ∴b =-3.∴此时无解. 当-1<-b2<2,即-4<b <2时,f (x )min =f (-b 2)=3-b 24=1,∴b =±2 2.∴b =-22,此时f (x )=x 2-22x +3,当-b2≤-1,即b ≥2时,f (x )在[-1,2]上为增函数,∴f (x )的最小值为f (-1)=4-b =1. ∴b =3.∴f (x )=x 2+3x +3.综上所述,f (x )=x 2-22x +3,或f (x )=x 2+3x +3.。