AgBiS2半导体敏化太阳能电池
- 格式:ppt
- 大小:4.26 MB
- 文档页数:22
CdS敏化太阳能电池性能研究项目简介申报意义:面对能源的潜在危机和生态环境的不断恶化,基于能源及环境两方面的考虑,一种对环境友好的可再生能源的开发利用受到人们的关注。
鉴于常规能源供给的有限性和环保压力的增加,太阳能是各种可再生能源中最重要最丰富的清洁能源,世界上许多国家掀起了开发利用太阳能的研究热潮。
采用无机半导体纳米粒子作为敏化纳晶薄膜太阳能电池的光敏剂具有明显的优点:首先,无机半导体纳米粒子光吸性能可通过改变粒子尺寸来调节。
而改变无机纳米半导体材料的尺寸小需要改变材料的化学组成,因此具有操作简单、方便的特点。
其次,无机半导体材料通常具有比有机染料分子更大的消光系数及更好的(光)化学稳定性。
基于这些理论,无机半导体材料有望其成为一种可取代有机染料分予的光敏材料,而对无机纳米半导体敏化太阳能电池的研究对开发廉价有效的太阳能电池具有非常重要的意义。
背景:敏化太阳能电池是由一种通过在可见光区具有较强光吸收性能的有机或窄禁带无机半导体材料(敏化剂)吸收太阳光的光子能量后将光生电荷转移到另一种宽禁带半导体材料,从而实现太阳能光电转换的光电转换太阳能电池系统。
其中宽禁带半导体多为纳米多孔Ti02。
按照所用光敏化剂的种类不同,敏化太阳能电池可分为有机染料敏化太阳能电池和无机纳米材料敏化太阳能电池。
1991年,瑞士Gratzel研究小组研制出用羧酸联吡啶钌(II)染料敏化的Ti02纳米晶多孔膜的太阳能电池,称为Gratzel太阳能电池或染料敏化Ti02纳晶太阳能电池。
目前,在染料敏化太阳能电池中普遍使用的,也是效率较好的敏化剂为钌的多联吡啶络台物系列染料。
染料敏化纳米薄膜太阳能电池的制作方法简单,成本低,光电转换效率高,是目前广泛研究的太阳能电池系统。
但可用作高效太阳能电池敏化剂的染料为数不多,许多染料在近红外区的吸收很弱,其吸收光谱不能与太阳光谱很好的匹配。
因此大量的研究集中在合成能与太阳光谱很好的匹配的有机染料化合物。
《CuInS2基量子点太阳电池光阳极制备及敏化特性研究》篇一一、引言随着全球能源需求的不断增长和环境污染的日益严重,开发高效、清洁的可再生能源成为科学研究与工程应用的重点领域。
太阳能电池作为重要的新能源利用技术之一,备受人们的关注。
在众多太阳能电池中,基于CuInS2(铜铟硫)基量子点的太阳电池以其高效的光电转换性能和低廉的制造成本成为研究的热点。
本文将针对CuInS2基量子点太阳电池光阳极的制备及其敏化特性进行研究。
二、光阳极的制备(一)材料选择与前处理制备CuInS2基量子点太阳电池光阳极的关键是选择合适的材料并做好前处理工作。
本实验选用的材料为高纯度的Cu、In和S 源,并通过清洗、干燥等前处理过程去除杂质,以保证光阳极的质量。
(二)制备过程光阳极的制备过程包括量子点的合成和薄膜的制备两个步骤。
首先,在高温高真空条件下,将Cu、In和S源按照一定比例混合,合成出CuInS2量子点。
然后,将合成好的量子点溶液涂覆在导电玻璃基底上,通过旋涂或喷涂的方式制备出均匀的薄膜。
最后,对薄膜进行热处理,以提高其结晶性和稳定性。
三、敏化特性研究(一)光谱响应特性CuInS2基量子点因其独特的能级结构和纳米尺寸效应,具有优异的光吸收性能。
本部分研究了量子点太阳电池光阳极的光谱响应特性,通过测量不同波长下的光电流和光电压,分析了光阳极的光电转换效率及光谱响应范围。
(二)敏化效果分析敏化是指通过化学或物理方法将光敏材料与半导体材料结合,提高半导体材料的光吸收性能。
本部分研究了CuInS2基量子点对光阳极的敏化效果,通过对比敏化前后光阳极的光电性能参数,如开路电压、短路电流、填充因子等,分析了敏化对太阳电池性能的提升程度。
四、实验结果与讨论(一)光阳极制备结果通过优化制备工艺,成功制备出均匀致密、结晶性良好的CuInS2基量子点太阳电池光阳极。
扫描电子显微镜(SEM)结果表明,量子点在薄膜中分布均匀,无明显的团聚现象。
太阳能电池第一、二、三代发展进程目前的电池片技术绝大部分(大概96%)是硅晶技术,不管是PERC还是TOPCon,还是HJT都是基于硅晶材料。
他的优势是量产成本低,光电转换效率高,是市场主流技术。
还有部分(4%左右)是薄膜电池,包括碲化镉,铜铟镓硒,钙钛矿等技术。
但他的成本较高,光电效率低,所以量很少。
晶硅/薄膜电池技术路线:光电转化效率:HJT+钙钛矿,是行业趋势。
技术发展史:→ 第1代:铝背场BSF电池 (2017年以前)→ 第2代:PERC电池 (2017年至今)→ 第2.5代:PERC+/TOPCon(隧穿氧化钝化电池)→ 第3代:HJT电池(也叫HIT电池,俗称异质结电池,全称晶体硅异质结太阳能电池)→ 第4代:HBC电池(也称IBC,即叉指式背接触电池,可能潜在方向)→ 第5代:钙钛矿叠层电池 (可能潜在方向)。
材料发展史:第一代太阳能电池——以单晶硅、多晶硅为代表的硅晶太阳能电池。
目前这技术发展成熟且应用最为广泛,目前面对的问题是单晶硅太阳能电池对原料要求太高,以及多晶硅太阳能电池生产工艺过于复杂等问题。
第二代太阳能电池——薄膜太阳能电池,以CdTe、GaAs及CIGS为代表的的太阳能电池。
该技术与晶硅电池相比,优势在于所需材料较少且容易大面积生产,成本方面优势较明显。
第三代太阳能电池——基于高效、绿色环保和先进纳米技术的新型薄膜太阳能电池,如染料敏化太阳能电池(DSSCs)、钙钛矿太阳能电池(PSCs)和量子点太阳能电池(QDSCs)等。
钙钛矿电池钙钛矿是一类陶瓷氧化物,其分子通式为ABO3 ,呈八面体形状,结构特性优异;此类氧化物最早被发现,是存在于钙钛矿石中的钛酸钙(CaTiO3)化合物,因此而得名。
钙钛矿晶体的制备工艺简单,光电转换效率高,在光伏、LED等领域应用广泛。
钙钛矿型太阳能电池(perovskite solar cells),又被称作新概念太阳能电池,是利用钙钛矿型的有机金属卤化物半导体作为吸光材料的太阳能电池,属于第三代太阳能电池。
第一章染料敏化纳米晶太阳能电池的历史发展及研究现状1-2法国科学家Henri Becquerel于1839年首次观察到光电转化现象3,但是直到1954年第一个可实用性的半导体太阳能电池的问世,“将太阳能转化成电能”的想法才真正成为现实4。
在太阳能电池的最初发展阶段,所使用的材料一般是在可见区有一定吸收的窄带隙半导体材料,因此这种太阳能电池又称为半导体太阳能电池。
尽管宽带隙半导体本身捕获太阳光的能力非常差,但将适当的染料吸附到半导体表面上,借助于染料对可见光的强吸收,也可以将太阳能转化为电能,这种电池就是染料敏化太阳能电池。
1991年,瑞士科学家Grätzel等人首次利用纳米技术将染料敏化太阳能电池中的转化效率提高到7%5。
从此,染料敏化纳米晶太阳能电池(即Grätzel电池)随之诞生并得以快速发展。
1.1 基本概念1.1.1大气质量数6对一个具体地理位置而言,太阳对地球表面的辐射取决于地球绕太阳的公转与自转、大气层的吸收与反射以及气象条件(阴、晴、雨)等。
距离太阳一个天文单位处,垂直辐射到单位面积上的辐照通量(未进入大气层前)为一常数,称之为太阳常数。
其值为1.338~1.418 kW·m-2,在太阳电池的计算中通常取1.353 kW·m-2。
太阳光穿过大气层到达地球表面,受到大气中各种成分的吸收,经过大气与云层的反射,最后以直射光和漫射光到达地球表面,平均能量约为1kW·m-2。
一旦光子进入大气层,它们就会由于水、二氧化碳、臭氧和其他物质的吸收和散射,使连续的光谱变成谱带。
因此太阳光光谱在不同波长处存在许多尖峰,特别是在红外区域内。
现在通过太阳模拟器,在室内就能够得到模拟太阳光进行试验。
在太阳辐射的光谱中,99%的能量集中在276~4960nm之间。
由于太阳入射角不同,穿过大气层的厚度随之变化,通常用大气质量(air mass,AM)来表示。
并规定,太阳光在大气层外垂直辐照时,大气质量为AM0,太阳入射光与地面的夹角为90º时大气质量为AM1。
《CuInS2基量子点太阳电池光阳极制备及敏化特性研究》篇一CuInS<sub>2</sub>基量子点太阳电池光阳极制备及敏化特性研究一、引言随着能源危机的加剧和环保意识的提高,新型高效太阳能电池的研发已成为科技领域的热点。
其中,基于CuInS<sub>2</sub>(简称CIS)的量子点敏化太阳电池因具有低成本、高转换效率及优良的物理化学稳定性,成为了科研工作者的重点研究对象。
本论文针对CuInS<sub>2</sub>基量子点太阳电池的光阳极制备工艺及敏化特性进行了深入研究,旨在为太阳能电池的进一步发展提供理论支持和技术指导。
二、光阳极制备1. 材料选择与预处理本实验选用高纯度的Cu、In和S元素作为原料,通过气相沉积法制备CIS量子点。
在制备前,对基底材料进行清洗和预处理,以保证基底与量子点的良好结合。
2. 制备工艺采用溶胶-凝胶法结合旋涂技术制备光阳极。
首先,配置CIS 量子点的胶体溶液,并通过旋涂法将胶体均匀涂布在基底上,形成薄膜。
然后,对薄膜进行热处理,以增强其结晶性和附着力。
3. 工艺优化通过调整旋涂速度、热处理温度和时间等参数,优化光阳极的制备工艺,以提高量子点的分布均匀性和薄膜的致密性。
三、敏化特性研究1. 量子点的敏化作用CIS量子点具有较高的光吸收系数和良好的光稳定性,能够有效地吸收太阳光并产生光生电子。
敏化后的光阳极可以扩大光谱响应范围,提高太阳电池的光电转换效率。
2. 敏化过程及条件敏化过程包括量子点的合成、光阳极的制备和敏化剂的吸附等步骤。
通过控制敏化剂浓度、温度和时间等条件,实现量子点在光阳极上的均匀吸附和有效敏化。
3. 敏化特性分析通过紫外-可见光谱、电化学工作站等手段,对敏化前后的光阳极进行光谱响应测试和电化学性能分析。
结果表明,敏化后的光阳极具有更高的光吸收能力和更优的电子传输性能。
四、实验结果与讨论1. 光阳极制备结果通过扫描电子显微镜(SEM)观察光阳极的表面形貌,发现制备出的光阳极具有较好的均匀性和致密性。
染料敏化太阳能
染料敏化太阳能(Dye-sensitized solar cells,DSSCs),也被称为Grätzel电池,是一种第三代太阳能电池技术。
它是利用染料敏化半导体材料的原理来转化太阳能为电能的一种光伏技术。
DSSCs的工作原理是,利用染料吸收光能,将其转化为电荷,并通过半导体材料的导电带和导带的传导,最终产生电流。
DSSCs由四个主要组件构成:染料敏化层、电解质液体、阳极和阴极。
染料敏化层中的染料吸收光能,并将其转化为电子。
这些电子被注入到导电带中,并通过导电带传输到阳极。
电解质液体位于染料敏化层和阳极之间,起到电子传输的介质作用。
阴极通常是由导电材料构成的。
DSSCs具有许多优点,比如相对低成本、高光电转换效率、在光弱条件下仍有较高效率等。
此外,DSSCs还具有柔性、可透明、可定制等特点,可以应用在更多的场景中。
然而,DSSCs也存在一些挑战和限制,如染料的稳定性、耐久性以及在高温和潮湿条件下的表现等。
因此,虽然DSSCs有着广阔的应用前景,但仍需要进一步的研究和发展以提高其稳定性和可靠性。
总之,染料敏化太阳能作为一种新型的太阳能电池技术,具有许多潜力和优点。
随着技术的不断进步,它有望成为未来太阳能领域的重要组成部分。