Thermal degradation of poly(methyl methacrylate) polymers Kinetics and recovery of monomers using
- 格式:pdf
- 大小:441.95 KB
- 文档页数:7
NKC-9催化D4开环聚合制备高粘度二甲基硅油蔡天瑜;邓建国;周元林;马春彦;纪兰香;白小峰【摘要】报道了采用高活性、低腐蚀性的强酸性阳离子交换树脂(NKC-9)催化八甲基环四硅氧烷(D4)开环聚合,六甲基二硅氧烷(MM)封端,制备高粘度二甲基硅油的方法.探讨了聚合温度、聚合时间、催化剂量、封端剂用量等因素对聚合反应的影响.研究结果表明,当n(D4):n(MM)=75、催化剂量为7%(质量分数)、聚合温度80℃、聚合时间3.5 h时,获得的二甲基硅油产率为88.51%,粘度为23520 mPa·s.【期刊名称】《功能材料》【年(卷),期】2018(049)007【总页数】4页(P7166-7169)【关键词】强酸性阳离子交换树脂;高粘度;二甲基硅油;开环聚合【作者】蔡天瑜;邓建国;周元林;马春彦;纪兰香;白小峰【作者单位】西南科技大学材料科学与工程学院,四川绵阳 621010;中国工程物理研究院化工材料研究所,四川绵阳 621000;中国工程物理研究院化工材料研究所,四川绵阳 621000;西南科技大学材料科学与工程学院,四川绵阳 621010;中国工程物理研究院化工材料研究所,四川绵阳 621000;中国工程物理研究院化工材料研究所,四川绵阳 621000;中国工程物理研究院化工材料研究所,四川绵阳 621000【正文语种】中文【中图分类】TQ3140 引言二甲基硅油化学性质稳定,沸点高,凝固点低,表面张力低,还具有耐热、耐酸、润滑性好、抗剪切性、疏水性、电绝缘性等优良特性[1-2]。
可作为脱模剂、导热油、消泡剂、涂料助剂等广泛应用于建筑、制药、化工、食品等多个领域[3-4]。
二甲基硅油制备方法主要有酸催化聚合和碱催化聚合两种方式[5-6]。
传统酸催化主要以浓硫酸做催化剂,需要中和、水洗等繁琐的后处理过程,且硫酸严重腐蚀设备,生产成本高。
碱性催化剂一般选用四甲基氢氧化铵等暂时性催化剂[7-8],加热到135 ℃以上催化剂自动分解,省去了中和、水洗等后处理,但制得耐热性、透明性好的二甲基硅油,要严格控制氯和碱金属的含量,而这一点较难控制。
第三章Polymer StructureThis chapter is concerned with aspects of the structure of polymeric materials outside those of simple chemical composition. The main topics covered are polymer stereochemistry, crystallinity, and the character of amorphous polymers including the glass transition. These may be thought of as arising from the primary structure of the constituent molecules in ways that will become clearer as the chapter progresses.本章所关注的这些简单的化学成分之外的高分子材料的结构方面。
主要内容包括:聚合物立体化学,结晶,包括无定形聚合物的玻璃化转变的特征。
这些可能被认为是章进展变得更为清晰的方式,将组成分子的一级结构所产生的。
Before proceeding, a word on nomenclature is necessary. Polymer chemists, following the example of P.J. Flory, have tended to use the words configuration and conformation in a sense that differs from that conventionally employed within organic chemistry. In this book, by contrast, I intend to go along with F. W. Billmeyer, and use these words in the way that they apply more widely throughout chemistry. Thus configuration is the term given to an arrangement of atoms that cannot be altered except by breaking chemical bonds, while conformation is the term applied to the individual, recognisable arrangement of atoms that can be altered by simple rotation around a single bond. Configurations include head-to-tail arrangements, described in the previous chapter, conformations include trans versus gauche arrangements of successive carbon-carbon bonds along the backbone of an individual macromolecule.在继续之前,一个命名的话是必要的。
2,5-二甲基对苯醌二亚胺与烷氧基苯共聚物的合成及性能表征孟新涛;利晓东;石伟;张建平;司马义·努尔拉【摘要】通过金属配合物催化法,在1,3-双(二苯基膦)丙烷二氯化镍(1I)存在的条件下,合成了2,5-二甲基对苯醌二亚胺与不同碳数的碘代烷氧基苯的3种共聚物。
通过FT—IR、^1H—NMR、UV—Vis、循环伏安(CV)、XRD和凝胶渗透色谱(GPC)等测试手段对其进行了表征。
结果表明:3种共聚物在三氟乙酸(TFA)溶液中的紫外可见最大吸收波长分别在517、576、651nm处;该类共聚物均在-0.2~0.8V出现两对氧化还原峰;共聚物的规整度较高,衍射峰的位置在19.6v~23.5°。
%Using nickel( Ⅱ ) complex as catalyst, three type of copolymers which consisting 2,5-dimethyl- N, N1-p-benzoquinonediimine and Grignard reagent of iodo-alkoxy benzene with different carbon atoms were synthesized by metal comp FT-IR, 1H-NMR, UV-Vis, cycl exes catalyzed polymerization. These copolymers were characterized by c vohammogram (CV), XRD and GPC. Results show that the maximum UV-Vis absorption of these polymers appear at 517, 576, 651 nm in CF3COOH, respectively. The copoly- mers have two redox peaks in the range from -0.2 V to 0.8 V. The figures of copolymers have well cry- stallized, and the diffraction peaks in the range of 19.6°-23.5°.【期刊名称】《功能高分子学报》【年(卷),期】2012(025)004【总页数】5页(P369-373)【关键词】2,5-二甲基对苯醌二亚胺;格氏试剂;碘代烷氧基苯;镍(Ⅱ)配合物催化法【作者】孟新涛;利晓东;石伟;张建平;司马义·努尔拉【作者单位】新疆大学化学化工学院,功能高分子材料重点实验室,乌鲁木齐830046;新疆大学化学化工学院,功能高分子材料重点实验室,乌鲁木齐830046;新疆大学化学化工学院,功能高分子材料重点实验室,乌鲁木齐830046;新疆大学化学化工学院,功能高分子材料重点实验室,乌鲁木齐830046;新疆大学化学化工学院,功能高分子材料重点实验室,乌鲁木齐830046【正文语种】中文【中图分类】O63聚苯胺具有良好的导电性、热稳定性和容易成膜等特点,同时,又是良好的电磁屏蔽材料和电极材料[1-4]。
第34卷)4]GRASSIE N,MACFARLANE I G,FRANCEY K F.The thermal degradation of polysiloxanes一II.poly (methylphenylsiloxane))J].Eua Poly J,1979,15(5):415-422.)5]KOERNER G,SCHULZE M,WEIS J.Silicones chemis-ty and technology)M].Essen:Vulkan-Verlaa,1991. )6]KANG D W,YEO H G,LEE K S.Preparation andcharacterisation of liquid silicone rubbee nanocomposite containiny ultrafine magnesium ferrite powder[J].J In-ory Oryanomet Polym,2004,14(1):73-84.)7]BIRKEFELD A B,ECKERT H,PFLEIEERER B.A study of aging silicone breast implantr usiny29Si,1H relaxation and DSC measurement)J].Biomaterials, 2004,25(18):4405-4413.Preparation of Silicone Adhesive Penetrant forCurved Screen Mobile Phone FilmZHU Huai-jun(Guangdong Research Institute of Rare Metals,Guangdong Academy of Sciences,Guangzhou510651,Guangdong)Abstract:The long-chain alkyl silicone oil was synthesized from long-chain olefin,low hydrooen silicone oil and plainum catalyse,which was used as the penetrani of onevomponent room temperature vulconized (RTV-1)silicone rubbea la white edge filling of mobiie phones.Ineuences of the types of penetrani,hydragen ooneeneln hydeogen slolooneolo,eypesoioong c ohaln ooeiln,amouneoioaeaoyse,eempeeaeuee,eaelooiehe maeealais,elme,eheaaelooipeneeaaneand RTV1slilooneaubbeaon ehepeaioamanoeoiehewhleeedgeil i lng soiuelon ioamobliephonesweaeseudled.Theaesuiesshowehaewhen eheaaelooi1c h eaadeoeneand hydaogen silicone oil with an activv hydrooen mass fraction of0.1%was1.1:1,and the amount of catalyse(accounting fo the totai mass of1-hexadecene and hydrooen silicone oii)was2.0Z106,the long-chain alkyl silicone oil synthesized at150°C fo4houra had good solubility with RTV-silicone rubbea when the ratio was1:1.The filling liquid of the white edge for the mobiie phone is transparent,good permeabilita,and con penetrate inta the gap ta eeminte the white edge.Keywords:silicone,adhesivv,curved screen film,white edge,long chain alkyl silicone oilI研发动态I^^000000000000000陶氏公司推出首个无溶剂有机硅保形涂层陶氏化学2月4日在美国圣地亚哥举行的2020年国际化学品展览会上推出了一款无溶剂有机硅保形涂层DOWSII™CC-8030,它具有紫外光和湿气双重固化体系,可用于大批量电子制造。
PVC热稳定剂的研究摘要:聚氯乙烯(PVC)是产量仅次于聚乙烯(PE)的第二大通用塑料,具有强度高且可增塑、耐腐蚀、难燃、绝缘性好、透明性高等优点,通过加入适当的添加剂和使用适当的工艺和设备可生产出各式各样的塑料制品,包括板材、管材、管件、异型材等硬制品和膜、管、鞋、玩具、电缆料、人造革等软制品,广泛应用于工业建筑、农业、日用品、包装、电力、公用事业等领域。
但是聚氯乙烯及氯化石蜡等有机卤代物,由于其本身的结构缺陷,在受热使用过程中,会发生分解反应,产生卤化氢,导致卤代物的破坏和加工设备的损坏等严重后果,因此卤代物在受热使用过程中必须添加热稳定剂,以防止卤化氢及进一步的不利结果产生。
因此,热稳定剂是PVC加工的必须添加剂。
关键词:热稳定剂;聚氯乙烯(PVC);钙锌热稳定剂;稀土热稳定剂;有机热稳定剂Abstract:Polyvinyl chloride (PVC) is output second only to polyethylene (PE) of the second general plastics and has the advantages of high strength and plasticizing and corrosion resistant, flame retardant, good insulation, high transparency and advantages, by adding proper additive and using appropriate technology and equipment can produce various kinds of plastic products, including rigid sheet, pipe, pipe, profile, etc. products and films, tubes, shoes, toys, cable materials, artificial leather, soft - ware, widely used in industrial construction, agriculture, daily necessities, packaging, electric power, public utilities and other fields. But polyvinyl chloride and chlorinated paraffin, organic halogen substitute, because of its ownstructural defects, heat in the use process, decomposition reactions occur, generate hydrogen halides, resulting in halides destruction and processing equipment damage and other serious consequences, so halogenated compounds in heated using a process must be added to the heat stabilizer, to prevent the generation of hydrogen halide and further adverse results. Therefore, the heat stabilizer is the PVC process must be additive.Key words:polyvinyl chloride;heat stabilizer I calcium/zinc stabilizer;rare earth stabilizer;organic stabilizer正文:聚氯乙烯(PVC)是世界第三大通用塑料,产量仅次于聚乙烯(PE)和聚丙烯(PP)。
柠檬酸酯增塑剂的性能及应用研究李丹娜【摘要】随着增塑剂工业的快速发展,传统增塑剂邻苯二甲酸酯的毒性也受到人们的关注.绿色环保增塑剂柠檬酸酯具有无毒无味、增塑性能优良、降解性好等特点,被认为是邻苯二甲酸酯的理想替代品.介绍了柠檬酸酯的毒性、增塑性能及其在食品、医疗和儿童玩具等行业中的应用,市场前景良好.但由于价格较高限制了其大量应用.因此,降低生产成本,大力推广绿色无毒增塑剂是市场发展的必要趋势.【期刊名称】《广州化工》【年(卷),期】2017(045)024【总页数】3页(P20-22)【关键词】增塑剂;柠檬酸酯;性能;应用【作者】李丹娜【作者单位】河南应用技术职业学院,河南郑州 450042【正文语种】中文【中图分类】TQ32增塑剂是塑料加工助剂中生产和应用最大的一类助剂,随着聚氯乙烯(PVC)工业化的快速发展,增塑剂行业也显现出迅猛发展的势头。
邻苯二甲酸二辛酯(DOP)增塑剂由于具有良好的综合性能,挥发性小等特点,目前是塑料制品中应用最广泛的增塑剂。
随着DOP的应用越来越广泛,生产和消费量越来越大,人们对它的毒性也开始加以关注。
据报道,DOP有潜在的致癌毒性和生殖毒性,长期使用容易患贫血、血尿、孕妇畸胎等疾病,并影响肝细胞及白细胞[1]。
美国、欧盟和日本等一些国家已出台相关法律,禁止DOP增塑剂在医疗用品、食品包装和儿童玩具等塑料制品中的应用[2]。
我国也开始逐步限制邻苯二甲酸酯类增塑剂在食品包装、医疗用品以及儿童玩具等领域塑料制品方面的应用。
正因为传统增塑剂邻苯二甲酸酯的应用领域受到限制,目前增塑剂行业研究的重点是开发新型的无毒增塑剂。
研究表明,柠檬酸酯是一种绿色环保型增塑剂,具有增塑性能优良、相容性好、无毒无味、挥发性小等优点,可完全代替DOP等传统增塑剂。
天然柠檬酸最初由水果中提取,尤其是柑橘类水果中含量较多,因为具有爽口的酸味,常被作为食品添加剂。
随着柠檬酸应用范围的增大,19世纪末科学家成功研究出发酵法生产柠檬酸。
离子液体催化聚乳酸丁醇醇解反应宋修艳;王辉;张晓静;刘福胜;路家祥【摘要】以离子液体[Bmim][OAc]为反应介质和催化剂,对聚乳酸 (PLA)丁醇醇解反应进行了研究.考察了反应温度、反应时间、离子液体用量、丁醇(n-butanol)用量对反应结果的影响.得到较佳工艺条件为:反应温度为150℃、反应时间为3 h、m([Bmim][OAc]):m(PLA)=0.2:1、n(n-butanol):n(PLA)=5:1.在上述条件下,PLA 醇解反应转化率≥81%,乳酸正丁酯收率≥70%.采用 FT-IR 技术对产品的结构进行了表征. 离子液体的回用性能结果表明:[Bmim][OAc]重复利用6次后,PLA转化率和乳酸正丁酯收率无明显变化.%The butanolysis of poly(lactic acid) (PLA) was studied using ionic liquid [Bmim][OAc] as solvent and catalyst. The effects of reaction temperature, reaction time, ionic liquid dosage andn-butanol dosage were examined. It was indicated that the conversion of PLAwas≥81% and the yield ofn-butyl lactate was≥70% under the following conditions: reaction temperature 150℃, reaction time 3h,m([Bmim][OAc]):m(PLA)=0.2:1 andn(n-butanol):n(PLA)=5:1. Reusability of ionic liquid showed that [Bmim][OAc] could be reused up to 6 times without change in the conversion of PLA and yield ofn-butyl lactate.【期刊名称】《化工学报》【年(卷),期】2015(066)0Z1【总页数】5页(P187-191)【关键词】离子液体;聚乳酸;丁醇醇解;乳酸正丁酯【作者】宋修艳;王辉;张晓静;刘福胜;路家祥【作者单位】青岛科技大学化工学院,山东青岛 266042;青岛农业大学化学与药学院,山东青岛 266109;青岛科技大学化工学院,山东青岛 266042;青岛科技大学化工学院,山东青岛 266042;青岛科技大学化工学院,山东青岛 266042【正文语种】中文【中图分类】TQ323.41随着人口的增加、石油危机和石化基原料价格的持续上涨,以及人类对环境和健康等问题的重视,使得可再生资源的开发与利用越来越引起了人们的关注[1]。
尼龙12热稳定性研究汪艳;史玉升;黄树槐【摘要】采用热失重(TG)、质谱一气相色谱(GC-MS)等方法研究了尼龙12的热降解动力学和热降解机理.尼龙12在N2中的热降解活化能很高,为322.9 kJ/mol,热稳定性良好;在700℃高温下的裂解产物主要为环状单体十二内酰胺、环状二聚物及三聚物.探讨了尼龙12的热降解机理.【期刊名称】《武汉工程大学学报》【年(卷),期】2008(030)001【总页数】3页(P59-61)【关键词】尼龙12;热稳定性;热降解动力学;机理【作者】汪艳;史玉升;黄树槐【作者单位】武汉工程大学材料科学与工程学院,湖北武汉,430074;华中科技大学塑性成形模拟及模具技术国家重点实验室,湖北武汉,430074;华中科技大学塑性成形模拟及模具技术国家重点实验室,湖北武汉,430074【正文语种】中文【中图分类】TQ323.60 引言尼龙12具有力学性能优良、吸水率低、成型收缩率低等优点,是一种重要的选择性激光烧结材料[1~4].在激光烧结成形(SLS)过程中,尼龙12粉末烧结材料长时间处于较高的温度下,材料的热稳定性不仅影响烧结件的物理机械性能,还关系到未烧结的尼龙12粉末能否重复利用,因此,有必要对尼龙12的热稳定性进行深入研究.但国内外对尼龙12热稳定性的研究报道极少,本文采用热失重和质谱-气相色谱技术研究了尼龙12在惰性气体中的热降解动力学和热降解机理.1 实验部分1.1 主要原料与仪器尼龙12粉末:法国ATOFINA公司产.热重分析仪:TGA 7型,美国Perkin-Elmer公司;气相色谱-质谱分析仪:Trace GC-MS,美国Thermo Finnigan 公司.1.2 热失重(TG)分析取2 mg左右尼龙12粉末样品于坩埚中,在N2气氛中,分别以5、10、15、20 ℃/min的升温速率由室温升至550 ℃,测定TG曲线.1.3 GC-MS分析尼龙12粉末在50 ℃下停留1 min,以100 ℃/min的升温速度升至700 ℃,停留1 min.质量扫描范围50~1 000,离子源温度200 ℃,分析鉴定热裂解产物.2 结果与讨论2.1 尼龙12热降解动力学图1是尼龙12在N2中以不同速率升温测得的TG曲线.图1 尼龙12在N2中的TG曲线Fig.1 Thermogravimetry of nylon 12 in nitrogen从TG曲线可知,升温速率为5 ℃/min时,尼龙12热分解起始温度为340 ℃,随升温速率的增加,尼龙12热分解起始温度提高.在550 ℃时的热降解残留物为1%左右,表明尼龙12热降解主要产生挥发物.采用Kissinger法[5]对尼龙12热降解进行动力学研究,计算公式如式(1).(1)式(1)中,φ为升温速率;Tm为最大失重速率温度;R为气体常数;E为热降解活化能;A为常数;Wm为最大失重速率时的样品质量;n为表观反应级数.由式(1)可知,以不同升温速率下的对1/Tm作图可得一条直线,从直线斜率可计算出活化能E.这种方法的最大优点是不用预先假定反应级数,直接求得活化能.图2是利用Kissinger法处理得到的尼龙12在N2中热降解的对1/Tm曲线,该曲线为一直线,直线的斜率为38.84,由此可计算出活化能为322.9 kJ/mol.尼龙12在N2中热降解活化能很高,分解温度也很高,表明尼龙12在N2中有良好的稳定性.图2 尼龙12在N2中热降解的Kissinger曲线Fig.2 Kissinger plot of nylon 12 degraded in nitrogen by TG2.2 尼龙12热降解产物将尼龙12在700 ℃下进行热裂解,图3是裂解产物的MS谱图.图3中,质荷比 m/e197.8为环状单体十二内酰胺(M)分子离子峰;m/e394.1、395.6为十二内酰胺环状二聚物(M2)分子离子峰;m/e=591.2、592.77为十二内酰胺环状三聚物(M3)分子离子峰.m/e 170、155.9、141.9分别为环状单体十二内酰胺失去两个次甲基(M-28)、三个次甲基(M-42)和四个次甲基(M-56)后的离子峰;m/e353、311分别为二聚物失去三个次甲基(M2-42)、六个次甲基(M2-84) 后的离子峰.m/e55.1、83.1、97.1分别为相应丁烯、己烯、庚烯的碎片离子峰.由此可知,尼龙12在700 ℃高温下的裂解产物主要为环状单体十二内酰胺、环状二聚物及三聚物,这些环状单体和环状低聚物具有较高的热稳定性.图3 尼龙12裂解产物质谱图Fig.3 Mass spectrum of the pyrolysis productsof nylon 122.3 尼龙12热降解机理TG试验结果表明尼龙12在N2中具有较高的热稳定性,加热至550 ℃时的热降解残留物仅为1%左右,表明尼龙12热降解主要产生挥发物,极少产生交联结构,这与尼龙6的热降解有较大区别.而GC-MS证明热降解的挥发物主要是环状单体十二内酰胺、环状二聚物及三聚物.由此可以推断尼龙12的热降解机理为分子内交换形成环状单体和低聚物.反应式见(2)~(4)式.(2)(3)(4)3 结语尼龙12在N2气氛中发生热降解的起始温度为340 ℃左右,高温降解的主要产物为环状单体十二内酰胺、环状二聚物及三聚物,降解活化能高达322.9 kJ/mol,表明尼龙12在惰性气体中有良好的热稳定性.参考文献:[1]Tontowi A E, Childs T H C. Density prediction of crystalline polymer sintered parts at various powder bed temperatures[J]. Rapid Prototyping Journal, 2001, 7(3):180-184.[2]Childs T H C, Tontowi A E. Selective laser sintering of a crystalline and a glass-filled crystalline polymer: experiments and simulations[J]. Proceedings of Institution of Mechanical Engineering, 2001, 215(11):1481-1495.[3]Gill T J, Hon K K B. Experimental investigation into the selective laser sintering of silicon carbide polyamide composites[J]. Proceedings of Institution of Mechanical Engineering, 2004, 218:1249-1255.[4]汪艳, 史玉升, 黄树槐. 激光烧结制备塑料功能件[J]. 中国塑料, 2004,18(11):71-73.[5]Hirata T, Kashiwagi T, Brown J E. Thermal and oxidative degradation of poly(methylmethacrylate): weight loss[J]. Macromolecules, 1985,18(7):1410-1418.。
592010年 3月(上) 中国纤检标准·检验Standard & Inspection3 结论(1)得到了微波快速测定法测定苎麻脂蜡、水溶物、果胶及半纤维素的重复性限(r )和再现性限(R ),分别为0.02%、0.13%;0.68%、1.48%;0.57%、1.24%、0.86%、1.57%,并可作为相应测定参数的重复性限(r )和再现性限(R )。
(2)用微波快速测定法测定苎麻脂蜡、水溶物、果胶及半纤维素时,在重复性条件下获得的两次独立测试结果的绝对差值分别不应超过上述重复性限(r ),如果差值超过重复性限(r ),应舍弃试验结果并重新完成两次单个试验的测定;同理在再现性条件下获得的两次独立测试结果的绝对差值分别不应超过上述再现性限(R ),如果差值超过再现性限(R ),应舍弃试验结果并重新完成两次单个试验的测定。
参考文献:[1]冷鹃,程毅,肖爱平,等. 苎麻化学成分的微波快速测定法研究[J].中国纤检,2008(11):48-50.[2]GB/T 6379.1—2004测量方法与结果的准确度(正确度与精密度) 第一部分:总则与定义[S].[3]GB/T 6379.2—2004测量方法与结果的准确度(正确度与精密度) 第二部分:确定标准测量方法重复性与再现性的基本方法[S].(作者单位:中国农业科学院麻类研究所)摘要运用红外光谱和热裂解气相色谱质谱技术对芳香族聚酯纤维进行鉴别。
首先使用傅里叶变换红外光谱仪测试了两种纤维的红外光谱,对它们的特征峰进行了详细的解析,然后利用热裂解气相色谱质谱仪得到了两种纤维裂解后产物的结构和分布。
关键词:红外光谱;特征峰;热裂解;裂解气相质谱红外光谱和热裂解气相色谱质谱联用技术鉴别芳香族聚酯纤维Identi fi cation of Aromatic Polymer Fibers byFI-IR and Pr-Gc/ms文/刘文莉 赵乐 史可扬 冯泽强聚酯纤维是使用最为广泛的一种合成纤维,其中最著名的是涤纶纤维(聚对苯二甲酸乙二醇纤维,PET)。
聚对苯二甲酸乙二醇酯与聚对苯二甲酸丁二醇酯的热分解性能张静静;王颖;宋丹;国凤敏;陈超【摘要】采用多次线性回归统计法对聚对苯二甲酸乙二醇酯与聚对苯二甲酸丁二醇酯的非等温热分解性能进行了分析,并对二者的热分解情况进行了详细的比较。
计算得到热分解动力学参数(反应级数、活化能和指前因子),并运用动力学方程预估聚对苯二甲酸乙二醇酯与聚对苯二甲酸丁二醇酯在特定条件下的热分解行为,即热分解转化率、温度及时间之间的关系。
结果表明,聚对苯二甲酸乙二醇酯的初始分解温度高于聚对苯二甲酸丁二醇酯,但热分解速率较快,这主要与二者的链结构和热分解产生的物质有关。
%Non⁃isothermal degradation properties of polyethylene terephthalate and polybutylene terephthalate were studied and compared by multiple linear regressions. Kinetic parameters, such as reaction order, activation energy and pre⁃exponential factor were calculated by kinetic analysis software. And on this basis, the relationship of the extent of conversion, temperature and time of polyethylene terephthalate and polybutylene terephthalate were predicted. The results show that polyethylene terephthalate exhibits good thermal stability, and has initial degradation temperature higher than polybutylene terephthalate at the same heating rate. However, its rate in thermal decomposition is faster. All of those are related with the chain structure and the oligomers produced in thermal degradation.【期刊名称】《纺织学报》【年(卷),期】2016(037)007【总页数】5页(P34-38)【关键词】聚对苯二甲酸乙二醇酯;聚对苯二甲酸丁二醇酯;热稳定性;非等温热分解动力学【作者】张静静;王颖;宋丹;国凤敏;陈超【作者单位】中国纺织科学研究院生物源纤维制造技术国家重点实验室,北京100025;中国纺织科学研究院生物源纤维制造技术国家重点实验室,北京 100025;中国纺织科学研究院生物源纤维制造技术国家重点实验室,北京 100025;中国纺织科学研究院生物源纤维制造技术国家重点实验室,北京 100025;中国纺织科学研究院生物源纤维制造技术国家重点实验室,北京 100025【正文语种】中文【中图分类】TQ325.1聚对苯二甲酸乙二醇酯(PET),是由对苯二甲酸二甲酯与乙二醇酯交换或以对苯二甲酸与乙二醇酯化先合成对苯二甲酸双羟乙酯,然后再进行缩聚反应制得。
Thermal degradation of poly(methyl methacrylate)polymers:Kinetics and recovery of monomers using a fluidized bed reactorBo-Sung Kang a ,Sang Guk Kim b ,Joo-Sik Kim a ,*aFaculty of Environmental Engineering,University of Seoul,90Jeonnong-Dong,Dongdaemun-Gu,Seoul 130-743,Republic of KoreabKorea Institute of Energy Research,Republic of KoreaReceived 20March 2007;accepted 3July 2007Available online 10July 2007AbstractPoly(methyl methacrylate)(PMMA)is a versatile transparent thermoplastic that is used in a wide range of fields and applications,such as in the lenses of exterior lights of automobiles,in electronics,in food containers and in artificial marble.When PMMA is subject to thermal degradation conditions,it degrades mainly into its monomer,methyl methacrylate (MMA).In this study,a virgin PMMA copolymer composed of 97.5%methyl methacrylate,2.5%methyl acrylate (MA)and PMMAwaste plastics were investigated.Kinetic measurements of the thermal degradation of the virgin copolymer were carried out with a TGA.The Chatterjee–Conrad (CC)and Freeman–Caroll (FC)models were applied to determine the pyrolysis kinetic parameters.Both models simulated the experimental DTG curves fairly well.In addition,pyrolysis of the virgin copolymer and the PMMA wastes was carried out using a fluidized bed reactor to recover the monomer.The reaction temperatures ranged from 450to 5008C.In each case,the rate of oil recovery was over 97%,and the content of the MMA in the oils was up to 98wt%.The MMA recovered from the experiments can be used as feedstock for the polymerization of PMMA.#2007Elsevier B.V .All rights reserved.Keywords:Thermal degradation;Fluidized bed;PMMA;Monomer;Kinetics1.IntroductionWaste plastics are usually disposed of in landfill sites or utilized energetically,as for instance,by incineration.Modern society,however,requires reasonable alternatives to cope effectively with needs for energy and environmental conserva-tion.Researchers consider the thermal degradation of waste plastics an alternative to traditional waste plastic management.In thermal degradation,plastic wastes can be converted into chemical feedstock,which can be used to produce valuable new products such as oils and gases of high caloric value.Thermal degradation of various plastics has been extensively investi-gated recently,for which various reactors have been used,such as vessels,autoclaves,rotary kilns and fluidized beds [1–3].Most researches have focused on the thermal degradation ofwidely used plastic wastes,such as polyolefins.There are few commercial applications because of the low heat transfer rates of the melting polymer and the low value of the product oils.In contrast,thermal degradation of PMMA can lead to economic feedstock recycling because of its specific degradation behavior to yield the monomer,methyl methacrylate (MMA).Above 4008C,it will be degraded almost into the monomer [4,5].The recovery of MMA from PMMA has been drawing much attention recently due to its high current cost of above 2000$/ton.Typical reactors for the degradation of PMMA are molten metal baths,extruders and fluidized bed reactors [6,7].The molten bath is composed essentially of tin and lead metal,but it can release hazardous organic metal compounds [8].The annual production of PMMA plastics in Korea amounts to 100,000tons.The PMMA that is mainly produced in Korea is a copolymer composed of MMA and methyl acrylate (MA)or ethyl acrylate (EA),to facilitate the processing of PMMA products.In this study,thermal degradation of a virgin PMMA and waste PMMA plastics is conducted in a fluidized bed/locate/jaapJ.Anal.Appl.Pyrolysis 81(2008)7–13*Corresponding author.Tel.:+82222105621;fax:+82222442245.E-mail address:joosik@uos.ac.kr (J.-S.Kim).0165-2370/$–see front matter #2007Elsevier B.V .All rights reserved.doi:10.1016/j.jaap.2007.07.001pyrolysis plant to obtain the optimal reaction temperature for a high yield of monomer.In addition,the kinetic characteristics of the thermal degradation of a virgin PMMA copolymer were also investigated using a TGA.Some researchers have already carried out kinetic experiments on the degradation of PMMA [9,10].In this study,the Chatterjee–Conrad (CC)and Freeman–Caroll (FC)models were applied to determine the kinetic parameters.2.Experimental methodology 2.1.MaterialsThe virgin PMMA copolymer was supplied by the company LG MMA.It was the bead type and was composed of 97.5%methyl methacrylate (MMA)and 2.5%methyl acrylate (MA).It was radically polymerized in emulsion and its weight-average molecular weight was about 100,000g/mol.The waste PMMA plastics used in the experiments were automobile taillight lenses and light guide plates.They were collected from scrapped cars and an electronic waste separation facility,respectively.They were then pretreated with a grinder to transform them into the proper size for the feeding system.The size of the PMMA plastics ranged from 1to 1.5mm.The specifications of the PMMA plastics are listed in Table 1.2.2.Kinetic experiment conditionsThe thermogravimetric analyzer used in the thermal degradation kinetic experiment was a TA instrument SDT 2960,and the experiments were conducted at room tempera-tures of up to 6008C and at heating rates of 5,10,15and 208C/min.The sample was 14–21mg of a virgin PMMA bead,and nitrogen gas was used as the purge gas,at a rate of 100ml/min.For the kinetic work,we used TGA curves and DTG curves.A TGA curve measures the change in weight of a sample as a function of temperature,and a DTG curve obtained shows the change in weight with time as a function of temperature or time.2.3.Pyrolysis plant and reaction conditionsThe pyrolysis experiments were carried out in a plant that had a fluidized bed with a capacity of up to 1kg/h.A schematic diagram of the plant is given in Fig.1.The key part of the plant was the fluidized bed,which was made up of sus-304.It was heated indirectly by an electric heater.The PMMA entered the reactor directly into the sand that was used as the bed material,with the help of two screw feeders,after which it was pyrolyzed.There were three thermocouples in the reactor.One was in the freeboard and the others were in the sand.The reaction temperature is defined as the average value taken from these thermocouples.A cyclone and a hot filter constituted the solid particle separation system.A series of quenching columns,operated with cool water and ethanol to a minimum temperature of À308C,was applied to cool the product gas efficiently and quickly.Part of the product gas was either burned in a stack to regulate the pressure in the plant or was used for gas sampling.Most of the product gas was circulated into the fluidized bed by a compressor.In each experiment,the product gas served as a fluidizing medium.Quartz sand (1.5kg)was used as the fluidized bed material.It had a mean particle size of ca.0.4mm.The feed rate of each experiment was around 200g/h.The calculated residence time of the product vapor in the reactor was around 0.5s in each of the experiments.Because of the relatively uniform residence time and feed rate in each of the experiments,it was possible to relatively easily compare the influence of the reaction temperature on the product spectrum.The reaction conditions are summarized in Table 2.2.4.AnalysisIn each of the experiments,gas,oil and solid residues were obtained as products.A fraction of the product oil from each run was distilled in a bench-scale apparatus under reduced pressure (2108C and 13kPa)to obtain a light fraction of oil and a distillation residue.The pyrolysis gas was analyzed with GCs using TCD and FID,and with helium as the carrier gas.The applied columns were a Carboxen 1000(TCD)and an HP-plot Al 2O 3/KCl (FID).The light fraction of oil from the distillation was analyzed with a GC–MS system using a column HP-5.3.Results and discussion3.1.Thermal degradation of the virgin PMMA and waste PMMA plastics in a TGAThe TGA curve for the thermal degradation of the virgin PMMA is shown in Fig.2;of the automobile taillight lens,in Fig.3;and of the waste light guide plate,in Fig.4.The fractional conversion is as follows:x =(m 0Àm )/(m 0Àm 1),in which m 0is the initial sample weight,m 1is the residual weight at infinite time,and m is the residual sample weight at time t .As the heating rate increased,the temperature range at which weight loss took place moved to a higher-temperature region.The main thermal degradation took place at the temperature range of 350–4008C,but as the heating rate increased,the thermal degradation continued up to slightly over 4008C.The TGA curve of the automobile taillight lens at the heating rate of 208C/min shows ingredients that are degradable at a temperature range of 450–5508C.In Fig.2,the onset ofTable 1Specifications of the PMMA plastics Compositions (wt%)Virgin PMMA Automobile taillight lens Light guide plate V olatiles 99.9899.9699.94Ashes 0.020.040.06Elemental analysis Virgin Automobile taillight lens Light guide plate C 59.759.459.6H 8.08.08.0O32.332.632.4B.-S.Kang et al./J.Anal.Appl.Pyrolysis 81(2008)7–138degradation appears around3008C.It is difficult to observe typical two small mass losses below3008C in the thermal degradation of radical polymerized PMMA[11].This can indicate very small amount of head to head linkage and terminal vinyl bond in the virgin PMMA.It is also interesting that Fig.2 shows(for108C/min)a half degradation temperature of about 360–3708C,whereas Fig.3gives nearly at4008C(at the same heating rate)and Fig.4at3808C.This tendency may be either due to the difference of the initial molecular weight between the virgin PMMA and PMMA wastes produced by variousfirms or due to the effect of thermal stabilizers in PMMA wastes.In Fig.4we can see two mass losses at about300–3508C and thereafter.The degradation region about300–3508C may be the degradation of additives in the PMMA waste.The earlier onset of degradation with PMMA wastes may result from the difference in initial molecular weight between the virgin PMMA and the PMMA wastes,because PMMA with the highest molecular weight degrades more at lower temperatures than PMMA with the lowest molecular weight[12].3.2.Kinetics of the thermal degradation of the PMMA copolymerThe differential method–the Chatterjee–Conrad(CC) method–and the difference method–the Freeman–Caroll(FC) method–were used to obtain the kinetic parameters with the virgin PMMA.The simulation of the DTG curves was based on the kinetic law commonly used for a single weight loss,as follows:d xd t¼bd xd T¼A eÀE=RT fðxÞ(1)Fig.1.Schematic diagram of the pyrolysis plant.Table2Pyrolysis conditionsVirgin PMMA Automobile taillight lens Light guide plateRun1Run2Run3Run4Run5Run6Run7Run8Run9Run10Run11 Temperature(8C)440450460470450470500450470480500 Flow rate(NL/min)3131303031302931303029 Input(g)95599197379599498910001000100010001000 Duration(min)240290290220190290310290260290270B.-S.Kang et al./J.Anal.Appl.Pyrolysis81(2008)7–139in which A is the pre-exponential factor,E the activation energy,R the gas constant,T the temperature,t the time,and f (x )is the model function.If b is the constant heating rate,d T =b d t .The pyrolysis kinetic parameters of the PMMA obtained using the CC and FC methods are shown in Table 3.The FC method was chosen to compare the experimental DTG curve and the kinetic model prediction DTG curve,since this method can provide three kinetic parameters (n ,A and E ).To obtain the DTG curve via model prediction,it is necessary tointegrate the kinetic equation (1):Zx0d xð1Àx Þn¼ZTA bexpÀE RTd T (2)For convenience,u =ÀE /RT .The initial temperature,T 0,can be assumed to be zero,since it is very low compared to the pyrolysis temperature.Eq.(2)thus becomes (1/(1Àn ))(1Àx )1Àn =(AE /b R )p (u ),in which p ðu Þ¼R ðe u =u 2Þd u .To calculate p (u ),for which there is no analytical solution,Lyon’s approximation,p (u )=e u /(u (u À2)),is applied.As the initial temperature can be assumed to be zero without appreciable error,the p (u )at low temperatures can be ignored,since the p (u )at low temperatures is quite small,compared to the p (u )at pyrolysis temperatures.When Lyon’s approximation is applied,the fractional conversion,x ,is as follows:x ¼1ÀAE b R e uu ðu À2Þðn À1Þþ11=1Àn(3)Figs.5and 6show the experimental DTG curve and the model-predicted DTG curve at the heating rates of 108C/min and 208C/min,respectively.There is fairly good agreement between the experimental and model-predicted DTG curves.Table 3Apparent kinetic parameters for the thermal degradation of the virgin PMMA MethodHeating rate (8C/min)Activation energy (J/mol)ln A (min À1)Reaction order,n Chatterjee–Conrad5102,46118.11110118,49421.34115103,82218.91120139,50225.361Freeman–Caroll5331,59461.73 1.6710206,33437.75 1.2515263,48448.40 1.4220256,94847.001.39parison of the experimental and model-predicted DTG curves at the heating rate of 108C/min.Fig.4.The TGA curve for the thermal degradation of the light guideplate.Fig.3.The TGA curve for the thermal degradation of the automobile taillightlens.Fig.2.The TGA curve for the thermal degradation of the virgin PMMA.B.-S.Kang et al./J.Anal.Appl.Pyrolysis 81(2008)7–13103.3.Pyrolysis of the PMMA plastics in the plantThe mass balance of each of the experiments is shown in Table 4.The main product was oil,the yield of which amounted to up to 99wt%of the product.In the experiments with thewaste PMMA plastics,the amount of oil was slightly lower.Some additives of the plastic wastes seem to have been converted into gas.It can be seen that an increase in the reaction temperature leads to a decrease in oil production.A strong decrease in oil production,however,was not observed in the experiments.The gas and char production in each of the experiments was very small,with values under 3wt%.A strong increase in gas production has been observed at reaction temperatures of above 5008C [13].Reaction temperatures of around 4508C seem to be optimal for a high oil yield,but the operation of the pyrolysis process at these temperatures was not easy in this study due to the coagulation of sand and the melted PMMA.Regarding facile operation and high oil yield,reaction temperatures of 470–5008C would be appropriate for the fluidized bed pyrolysis of PMMA plastics.The product gas was composed mainly of CO,CO 2,CH 4and other hydrocarbons.The CO and CO 2originated mainly from the oxygen constituent in the PMMA.Table 5shows the quantitative and qualitative analysis of the product oil obtained from the GCs and a GC–MS.The main component of the product oils was MMA,the yield of whichTable 4Mass balance of the pyrolysis experiments with different PMMA polymers wt(%)Virgin PMMA Automobile taillight lens Light guide plate Run1(4408C)Run2(4508C)Run3(4608C)Run4(4708C)Run5(4508C)Run6(4708C)Run7(5008C)Run8(4508C)Run9(4708C)Run10(4808C)Run11(5008C)Oil 99.399.298.198.397.898.497.398.497.598.096.8Gas 0.50.6 1.8 1.6 2.1 1.5 2.4 1.5 2.4 1.9 3.1Char0.20.20.10.10.10.10.30.10.10.10.1Table 5Analysis of product oil wt(%)Virgin PMMA Automobile taillight lens Light guide plate Run1(4408C)Run2(4508C)Run3(4608C)Run4(4708C)Run5(4508C)Run6(4708C)Run7(5008C)Run8(4508C)Run9(4708C)Run10(4808C)Run11(5008C)MA 1.76 1.41 1.83 1.69 1.39 1.31 1.670.96 1.27 1.07 1.05MMA97.3496.7897.2396.3096.5995.6596.5397.2996.3896.9696.76Methyl isobutyrate 0.200.180.230.200.240.250.360.170.180.160.22Ethyl acrylate ––––0.570.770.16––––Butyl acrylate–––––––0.180.240.230.252-Butenoic acid methyl ester –––––0.20–––––Methylene-Butanedioic acid dimethyl ester––––0.180.33–––––1,2-Cyclopentanedicarboxylic acid dimethyl ester0.300.270.31–0.290.400.37–0.300.200.222-Methyl-3-furancarboxylic acid methyl ester 0.220.30––0.22––––––2,5-Diethylthiophene––––0.14––––––Methacrylic acid ethyl ester –0.19–0.21–––0.180.190.17–Diethyl phthalate–0.27–0.30–0.33–––––1-Naphthalenecarboxylic acid methyl ester –––––––0.26–––Cyclopropanecarboxylic acid methyl ester––––––––0.29–0.202-Naphthalenecarboxylic acid methyl ester –––––––––0.22–Benzene ––––––––––0.15(–):notdetected.parison of the experimental and model-predicted DTG curves at the heating rate of 208C/min.B.-S.Kang et al./J.Anal.Appl.Pyrolysis 81(2008)7–1311amounted to up to 98wt%of the oil.MA,which is commonly used as comonomer of PMMA plastics in Korea,was also identified in each of the experiments.The amount of MA in the oils reached up to about 2wt%of the product oil.The identification of the EA in the pyrolysis of the automobile taillight lens is unique in the oil analysis,which exhibits that the material contained EA as a comonomer.In the pyrolysis of the light guide plate,butyl acrylate (BA)was also solely identified,which indicates that the material can be a copolymer of MMA and BA.In the pyrolysis of pure PMMA carried out by Kaminsky [7],the content of MMA in the pyrolysis oil was 99wt%.Our work with the MMA content of 98wt%confirms the Kaminsky’s work.The high yield of MMA is based on the radial degradation mechanism of PMMA.At first,a PMMA molecule is broken by random scission,and then two radicals,the isobutyryl macromolecule radical and the primary macro-molecule radical,are formed [14].The isobutyryl macro-molecule radical is then degraded easily to yield the monomer MMA.On the other hand,the primary macromolecule radical istransformed into the isobutyryl macromolecule radical via a PMMA molecule with a methallyl end group,and is then degraded to produce an MMA unit [15].Along with the characteristic degradation mechanism of PMMA,the fluidized bed reactor also contributes to the high yield of MMA reducing side reactions via its inherently excellent heat transfer and the short residence time of the product gases in the reactor.The existence of MA or EA in the coploymer is likely to block the unzip degradation reaction of the pure PMMA to produce a somewhat lower MMA yield.This can be mainly due to the less stable secondary radicals formed on the MA or EA unit,compared with the tertiary radicals formed in the degradation of the pure PMMA.From the experiments,however,the extent of the unzip reaction from the tertiary radicals did not strongly diminish with a small amount of MA or EA in the molecular backbones.Fig.7shows the boiling point distribution of a light fraction of the product oil obtained after the distillation.The boiling point of the main component was just above 1008C,which means that MMA (bp:1018C)was the main component of the oil,comprising at least more than 96wt%of it.Table 6shows the mass balance of the experiments,which refers to the total organic input.The table also shows the distillation residue,the amount of which was only up to 1wt%of the organic products.The MMA yield from the virgin PMMA ranged from 95to 97wt%.In contrast,the pyrolysis of the PMMA waste plastics produced MMA in the range of 94and 96wt%.The total yield of the typical comonomers (MMA,MA and EA)ranged from 97to 98wt%in the case of the virgin PMMA,and from 95to 97wt%in the case of the PMMA waste plastics.4.ConclusionThe thermogravimetric analysis shows that the main thermal degradation took place at the temperature range of 350–4008C.At a higher heating rate,the temperature range at which weight loss took place moved to a higher-temperatureTable 6Organic mass balance of the pyrolysis experiments wt(%)Virgin PMMA Automobile taillight lens Light guide plate Run1(4408C)Run2(4508C)Run3(4608C)Run4(4708C)Run5(4508C)Run6(4708C)Run7(5008C)Run8(4508C)Run9(4708C)Run10(4808C)Run11(5008C)MA 1.7 1.4 1.8 1.7 1.4 1.3 1.6 1.0 1.2 1.1 1.0MMA96.796.095.495.094.494.193.995.793.995.093.6Methyl isobutyrate 0.20.20.20.20.20.30.30.20.20.20.2Ethyl acrylate ––––0.60.80.2––––Butyl acrylate –––––––0.20.20.30.2Other oils0.50.90.30.50.8 1.30.30.40.80.60.6Distillation residue 0.20.60.40.9 1.00.70.90.9 1.10.7 1.1CO 0.20.20.50.40.50.30.60.60.80.7 1.1CO 20.20.30.70.90.20.7 1.00.40.80.60.9CH 40.040.10.20.10.20.10.20.20.30.30.5Other gases 0.10.10.40.20.60.30.70.30.60.40.7Char 0.20.20.10.10.10.10.30.10.10.10.1Total100100100100100100100100100100100(–):notdetected.Fig.7.Boiling point distribution of a light fraction of the product oil from Run2.B.-S.Kang et al./J.Anal.Appl.Pyrolysis 81(2008)7–1312region.The Freeman–Carroll method was used to compare the experimental DTG curve and the kinetic-model-predicted DTG curve.Lyon’s approximation was chosen to calculate the fractional conversion.There was fairly good agree-ment between the experimental results and the model prediction.A virgin PMMA copolymer and waste PMMA plastics were pyrolyzed in afluidized bed reactor to obtain a high monomer yield.The reaction temperatures selected ranged from440to5008C,based on the TGA experiments.The influence of the reaction temperature in the region on the oil yield was not so strong,but a higher reaction temperature showed a negative effect.The oil yield ranged from97to 99wt%of the product.The gas and char yields were very small,with values of almost under3wt%,taken together.The main component of the product oil was MMA.With MA and EA,the total monomer yield reached up to98wt%on the organic input base.The high yield of MMA in the experiments is generally coincident with results of other previous works on the pyrolysis of PMMA.The experiments show that the pyrolysis of PMMA seems to be an economical route to the recycling of PMMA.One prerequisite,however, for the recycling of PMMA wastes via pyrolysis is the sorting out of PMMA from other plastic wastes.The electrostatic sorting method would be efficient for this due to the+ charging ability of the PMMA.Furthermore,if PMMA wastes can be collected efficiently from engineering plastic waste streams,the pyrolysis of PMMA will be a more attractive tool for the treatment of PMMA wastes.AcknowledgmentThis study is supported by the Ministry of Environment of Korea as‘‘The Eco-technopia21Project.’’References[1]G.J.Baumgaertel,J.Anal.Appl.Pyrol.27(1993)15.[2]J.Brandrup,M.Bittner,W.Michaeli,G.Menges(Eds.),Recycling andRecovery of Plastics,Hansa Publisher,New York,1996,p.448.[3]W.Kaminsky,Angew.Makromol.Chem.232(1995)151.[4]S.L.Madorsky,J.Polym.Sci.9(1952)133.[5]W.Kaminsky,J.Frank,J.Anal.Appl.Pyrol.19(1991)311.[6]W.Michaeli,K.Breyer,Kunststoffe87(1997)183.[7]W.Kaminsky,C.Eger,J.Anal.Appl.Pyrol.58/59(2001)781.[8]G.Grause,M.Predel,W.Kaminsky,J.Anal.Appl.Pyrol.75(2006)236.[9]M.Ferriol,A.Gentilhomme,M.Cochez,N.Oget,J.L.Mieloszynski,Polym.Degrad.Stabil.79(2003)271.[10]Z.Gao,T.Kaneko,D.Hou,M.Nakada,Polym.Degrad.Stabil.84(2004)399.[11]T.Kashiwagi,A.Inaba,J.E.Brown,K.Hatada,T.Kitayama,E.Masuda,Macromolecules19(1986)2160.[12]L.E.Manring,D.Y.Sogah,G.M.Cohen,Macromolecules22(1989)4652.[13]G.Grause,Dissertation,University of Hamburg,2003.[14]O.Chiantore,M.P.Luda di Cortemiglia,M.Guaita,Polym.Degrad.Stabil.24(1989)113.[15]L.E.Manring,Macromolecules24(1991)3304.B.-S.Kang et al./J.Anal.Appl.Pyrolysis81(2008)7–1313。