2016年成都中数学答案及解析
- 格式:doc
- 大小:5.92 MB
- 文档页数:12
成都市二○一六年高中阶段教育学校统一招生考试参考答案A 卷11.-2; 12.120; 13. >; 14. 3 3 三、解答题15.(1)解:()()3022sin 302016π-+-o ﹦-8+4-2×12 +1= -4-4+1= -4(2)解:∵ 关于x 方程2320x x m +-=没有实数根∴ 22-4×3×(-m )<0解得:m<13-16.解:22121x x xx x x -+⎛⎫-÷ ⎪-⎝⎭=21)(1)(1)(1)x x x x x x +--⋅-(=1x + 17.解:∵∠A =∠C =∠BEC =90°,∴ 四边形ABEC 为矩形 ∴ BE =AC =20, CE =AB =1.5 在Rt △BED 中,∴ tan ∠DBE =DE BE 即tan32°=DE 20∴ DE =20×tan32°≈12.4, CD =CE +DE ≈13.9.答:旗杆CD 的高度约为13.9 m .18由列表或树状图可知,两次抽取卡片的所有可能出现的结果有12种,分别为(A ,B ),(A ,C ),(A ,D ),(B ,A ),(B ,C ),(B ,D ),(C ,A ),(C ,B ),(C ,D ),(D ,A ),(D ,B ),(D ,C ).(2)由(1)知:所有可能出现的结果共有12种,其中抽到的两张卡片上的数都是勾股数的有(B ,C ),(B ,D ),(C ,B ),(C ,D ),(D ,B ),(D ,C )共6种. ∴ P (抽到的两张卡片上的数都是勾股数)=612=12.19.解:(1) ∵ 正比例函数y kx =的图象与反比例函数直线my x=的图象都经过点A(2,-2)., ∴ 2222k m =-⎧⎪⎨=-⎪⎩解得:14k m =-⎧⎨=-⎩∴ y =-x , y=- 4x(2) ∵ 直线BC 由直线OA 向上平移3个单位所得 ∴ B (0,3),k bc = k oa =-1 ∴ 设直线BC 的表达式为 y =-x +3由 43y x y x ⎧=-⎪⎨⎪=-+⎩解得1141x y =⎧⎨=-⎩,2214x y =-⎧⎨=⎩ ∵ 因为点C 在第四象限 ∴ 点C 的坐标为(4,-1)解法一:如图1,过A 作AD ⊥y 轴于D ,过C 作CE ⊥y 轴于E.∴ S △ABC =S △BEC +S 梯形ADEC -S △ADB =12×4×4+12(2+4) ×1-12×2×5=8+3-5=6解法二:如图2,连接OC.∵ OA ∥BC ,∴S △ABC =S △BOC =12⋅OB ⋅x c =12×3×4=620.(1) 证明:∵ DE 为⊙C 的直径 ∴∠DBE =90°又∵ ∠ABC =90°, ∴ ∠DBE +∠DBC =90°,∠CBE +∠DBC =90° ∴ ∠ABD =∠CBE又∵ CB =CE ∴ ∠CBE =∠E, ∴ ∠ABD =∠E. 又∵∠BAD =∠EAB, ∴△ABD ∽△AEB.(2)由(1)知,△ABD ∽△AEB ,∴BD BE =AB AE∵AB BC =43, ∴ 设 AB =4x ,则CE =CB =3x 在R t △ABC 中,AB =5x ,∴ AE =AC +CE =5x +3x =8 x ,BD BE =AB AE =4x 8x =12 .在R t △DBE 中,∴ tanE =BD BE =12. (3) 解法一:在R t △ABC 中,12AC ⋅BG =12AB ⋅BG 即12⋅5x ⋅BG =12⋅4x ⋅3x ,解得BG =125x .∵ AF 是∠BAC 的平分线,∴BF FE =AB AE =4x 8x =12如图1,过B 作BG ⊥AE 于G ,FH ⊥AE 于H ,∴ FH ∥BG ,∴ FH BG =EF BE =23∴ FH =23 BG =23×125x =85x又∵ tanE =12,∴ EH =2FH =165x ,AM =AE -EM =245x在R t △AHF 中,∴ AH 2+HF 2=AF 2即222248)()255x x +=(,解得x =108 ∴ ⊙C 的半径是3x =3108. 解法二:如图2过点A 作EB 延长线的垂线,垂足为点G.∵ AF 平分∠BAC ∴ ∠1=∠2 又∵ CB =CE ∴∠3=∠E 在△BAE 中,有∠1+∠2+∠3+∠E =180°-90°=90° ∴∠4=∠2+∠E =45° ∴ △GAF 为等腰直角三角形 由(2)可知,AE=8 x ,tanE =12∴AG =55AE =855 x∴AF =2AG =855 x=2 ∴x=108∴ ⊙C 的半径是3x =3108.解法三:如图3,作BH ⊥AE 于点H ,NG ⊥AE 于点G ,FM ⊥AE 于点M ,设BN =a ,∵ AF 是∠BAC 的平分线,∴NG =BN =a ∴CG =34a ,NC =54a ,∴BC =94a ,∴BH =95a∴ AB =3a ,AC =154a ,∴ AG =3a ∴ tan ∠NAC =NG AG =13,∴ sin ∠NAC =1010∴ 在Rt △AFM 中,FM =AF ·sin ∠NAC =2×1010=105,AM =3105∴ 在Rt △EFM 中,EM =FM tan E=2105∴AE =10 在Rt △DBE 中,∵BH =95a ,∴EH =185a ,DH =910a ,∴DE =92a ∴DC =94a ,∴AD =32a ,又∵AE +DE =AE ,∴32a +92a =10,∴a =106 ∴DC =94a =3108B 卷一、填空题21.解:“非常清楚”的居民占该辖区的百分比为:1-(30%+15%+90360×100%)=30% ∴ 可以估计其中慈善法“非常清楚”的居民约为:9000×30%=2700(人). 22.解:由题知: 323(1)327(2)a b b a -=⋅⋅⋅⋅⋅⋅⋅⋅⎧⎨-=-⋅⋅⋅⋅⋅⋅⎩由(1)+(2)得:a +b =-4,由(1)-(2)得:a -b =2,∴ ()()a b a b +-=-8.23.解:连结AO 并延长交⊙O 于E ,连结CE. ∵ AE 为⊙O 的直径,∴∠ACD=90°.又∵ AH ⊥BC ,∴∠AHB=90°.又∵ ∠B =∠D ,∴ sinB =sinD ,∴ AH AB =ACAD即 18AB =2426 ,解得:AB =39224.解:∵2AM BM AB =⋅,2BN AN AB =⋅∴ M 、N 为线段AB 的两个黄金分割点∴ 11()122AM AB b a ==-=33)322AN AB b a ==-=∴ 1)(34m n MN AM AN -==-=-=25. 解:如图③,由题意可知,∠MPN =90°,剪裁可知,MP =NP 所以△MPN 是等腰直角三角形 ∴ 欲求MN 最小,即是求PM 最小 ∴ 在图②中,AE 最小时,MN 最小易知AE 垂直于BD 最小,∴ AE 最小值易求得为655 , ∴ MN 的最小值为6105二、解答题26.解:(1)6005y x =-;(2) 设果园多种x 棵橙子树时,橙子的总产量为z 个.由题知: Z =(100+x )y =(100+x )(600-5x )=-5(x -10)2+60500 ∵ a =-5<0 ∴ 当x =10时,Z 最大=60500.∴ 果园多种10棵橙子树时,可以使橙子的总产量最大,最大为60500个.27.(1)证明:在Rt △AHB 中,∵∠ABC=45°,∴AH=BH又∵∠BHD =∠AHC =90°,DH =CH ,∴△BHD ≌△AHC (SAS ) ∴ BD =AC.(2) ( i) 在Rt △AHC 中,∵tanC =3,∴AHHC=3, 设CH =x ,则BH =AH=3x ,∵BC=4, ∴ 3x +x =4, ∴ x =1.AH =3, CH =1. 由旋转知:∠EHF =∠BHD =∠AHC =90°,EH =AH =3,CH =DH =FH.∴∠EHA =∠FHC ,EH AH =FHHC=1,∴△EHA ∽△FHC ,∴∠EAH =∠C ,∴tan ∠EAH =tanC=3如图②,过点H 作HP ⊥AE 于P ,则HP =3AP ,AE =2AP. 在Rt △AHP 中,AP 2+HP 2= AH 2, ∴AP 2+(3AP)2= 9,解得:AP =31010,AE =3105. ⅱ)由题意及已证可知,△AEH 和△FHC 均为等腰三角形 ∴∠GAH =∠HCG =30°,∴△AGQ ∽△CHQ , ∴AQ CQ =GQ HQ , ∴AQ GQ =CQHQ又∵∠AQC =∠GQE ∴△AQC ∽△GQH ∴EF HG =AC GH =AQ GQ =sin30°=1228.解:(1)∵ 抛物线()213y a x =+-与与y 轴交于点C (0,-83).∴ a -3=-83,解得:a =13,∴y =13(x +1)2-3当y =0时,有13(x +1)2-3=0,∴ X 1=2,X 2=-4 ∴A(-4,0),B(2,0).(2)∵ A(-4,0),B(2,0),C (0,-83),D(-1,-3)∴ S 四边形ABCD =S △AHD +S 梯形OCDH +S △BOC = 12×3×3+12(83 + 3) ×1+12×2×83=10.从面积分析知,直线l 只能与边AD 或BC 相交,所以有两种情况:① 当直线l 边AD 相交与点M 1时,则S △AHM1=310×10=3,∴12×3×(-y M1)=3∴ y M1=-2,点M 1(-2,-2),过点H (-1,0)和M 1(-2,-2)的直线l 的解析式为y =2x +2. ②当直线l 边BC 相交与点M 2时,同理可得点M 2(12,-2),过点H (-1,0)和M 2(12,-2)的直线l 的解析式为y =-43x -43.综上:直线l 的函数表达式为y =2x +2或y =-43x -43.(3)设P (x 1,y 1)、Q (x 2,y 2)且过点H (-1,0)的直线PQ 的解析式为y =k x +b,∴ -k +b =0,∴y =k x +k.由⎪⎩⎪⎨⎧-+=+=3832312x x y kkx y , ∴ 038)32(312=---+k x k x∴ x 1+x 2=-2+3k,y 1+y 2=kx 1+k+kx 2+k =3k 2, ∵点M 是线段PQ 的中点,∴由中点坐标公式的点M (32k -1,32k 2).假设存在这样的N 点如下图,直线DN ∥PQ ,设直线DN 的解析式为y =k x +k-3由⎪⎩⎪⎨⎧-+=-+=38323132x x y k kx y ,解得:x 1=-1, x 2=3k -1, ∴N (3k -1,3k 2-3) ∵ 四边形DMPN 是菱形,∴ DN =DM ,∴ 222222)323()23()3()3(++=+k k k k 整理得:3k 4-k 2-4=0,0)43)(1(22=-+k k ,∵ k 2+1>0,∴3k 2-4=0, 解得332±=k ,∵ k <0,∴332-=k , ∴P (-133-,6),M (-13-,2),N (-132-, 1)∴PM =DN =27,∴四边形DMPN 为菱形 ∴以DP 为对角线的四边形DMPN 能成为菱形,此时点N 的坐标为(-132-, 1).。
2016年四川省成都市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分1.(3分)在﹣3,﹣1,1,3四个数中,比﹣2小的数是()A.﹣3B.﹣1C.1D.32.(3分)如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.3.(3分)成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一.今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流纪录,这也是今年以来第四次客流纪录的刷新,用科学记数法表示181万为()A.18.1×105B.1.81×106C.1.81×107D.181×104 4.(3分)计算(﹣x3y)2的结果是()A.﹣x5y B.x6y C.﹣x3y2D.x6y25.(3分)如图,l1∥l2,∠1=56°,则∠2的度数为()A.34°B.56°C.124°D.146°6.(3分)平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为()A.(﹣2,﹣3)B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)7.(3分)分式方程=1的解为()A.x=﹣2B.x=﹣3C.x=2D.x=38.(3分)学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数(单位:分)及方差s2如表所示:甲乙丙丁7887 s21 1.21 1.8如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是()A.甲B.乙C.丙D.丁9.(3分)二次函数y=2x2﹣3的图象是一条抛物线,下列关于该抛物线的说法,正确的是()A.抛物线开口向下B.抛物线经过点(2,3)C.抛物线的对称轴是直线x=1D.抛物线与x轴有两个交点10.(3分)如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则的长为()A.πB.πC.πD.π二、填空题:本大题共4个小题,每小题4分,共16分11.(4分)已知|a+2|=0,则a=.12.(4分)如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=.13.(4分)已知P1(x1,y1),P2(x2,y2)两点都在反比例函数y=的图象上,且x1<x2<0,则y1y2(填“>”或“<”).14.(4分)如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为.三、解答题:本大题共6小题,共54分15.(12分)(1)计算:(﹣2)3+﹣2sin30°+(2016﹣π)0(2)已知关于x的方程3x2+2x﹣m=0没有实数解,求实数m的取值范围.16.(6分)化简:(x﹣)÷.17.(8分)在学习完“利用三角函数测高”这节内容之后,某兴趣小组开展了测量学校旗杆高度的实践活动,如图,在测点A处安置测倾器,量出高度AB=1.5m,测得旗杆顶端D的仰角∠DBE=32°,量出测点A到旗杆底部C的水平距离AC=20m,根据测量数据,求旗杆CD的高度.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)18.(8分)在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A,B,C,D表示);(2)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,求抽到的两张卡片上的数都是勾股数的概率.19.(10分)如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.20.(10分)如图,在Rt△ABC中,∠ABC=90°,以CB为半径作⊙C,交AC于点D,交AC的延长线于点E,连接BD,BE.(1)求证:△ABD∽△AEB;(2)当=时,求tan E;(3)在(2)的条件下,作∠BAC的平分线,与BE交于点F,若AF=2,求⊙C的半径.四、填空题:每小题4分,共20分21.(4分)第十二届全国人大四次会议审议通过的《中华人民共和国慈善法》将于今年9月1日正式实施,为了了解居民对慈善法的知晓情况,某街道办从辖区居民中随机选取了部分居民进行调查,并将调查结果绘制成如图所示的扇形图.若该辖区约有居民9000人,则可以估计其中对慈善法“非常清楚”的居民约有人.22.(4分)已知是方程组的解,则代数式(a+b)(a﹣b)的值为.23.(4分)如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=24,AH=18,⊙O的半径OC=13,则AB=.24.(4分)实数a,n,m,b满足a<n<m<b,这四个数在数轴上对应的点分别为A,N,M,B(如图),若AM2=BM•AB,BN2=AN•AB,则称m为a,b的“大黄金数”,n为a,b的“小黄金数”,当b﹣a=2时,a,b的大黄金数与小黄金数之差m﹣n =.25.(4分)如图,面积为6的平行四边形纸片ABCD中,AB=3,∠BAD=45°,按下列步骤进行裁剪和拼图.第一步:如图①,将平行四边形纸片沿对角线BD剪开,得到△ABD和△BCD纸片,再将△ABD纸片沿AE剪开(E为BD上任意一点),得到△ABE和△ADE纸片;第二步:如图②,将△ABE纸片平移至△DCF处,将△ADE纸片平移至△BCG处;第三步:如图③,将△DCF纸片翻转过来使其背面朝上置于△PQM处(边PQ与DC重合,△PQM和△DCF在DC同侧),将△BCG纸片翻转过来使其背面朝上置于△PRN处,(边PR与BC重合,△PRN和△BCG在BC同侧).则由纸片拼成的五边形PMQRN中,对角线MN长度的最小值为.五、解答题:共3个小题,共30分26.(8分)某果园有100棵橙子树,平均每棵树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x棵橙子树.(1)直接写出平均每棵树结的橙子个数y(个)与x之间的关系;(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?27.(10分)如图①,△ABC中,∠ABC=45°,AH⊥BC于点H,点D在AH上,且DH =CH,连接BD.(1)求证:BD=AC;(2)将△BHD绕点H旋转,得到△EHF(点B,D分别与点E,F对应),连接AE.①如图②,当点F落在AC上时,(F不与C重合),若BC=4,tan C=3,求AE的长;②如图③,当△EHF是由△BHD绕点H逆时针旋转30°得到时,设射线CF与AE相交于点G,连接GH,试探究线段GH与EF之间满足的等量关系,并说明理由.28.(12分)如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2﹣3与x轴交于A,B 两点(点A在点B的左侧),与y轴交于点C(0,﹣),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧.(1)求a的值及点A,B的坐标;(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由.2016年四川省成都市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分1.(3分)在﹣3,﹣1,1,3四个数中,比﹣2小的数是()A.﹣3B.﹣1C.1D.3【答案】解:∵|﹣3|=3,|﹣2|=2,∴比﹣2小的数是:﹣3.故选:A.2.(3分)如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.【答案】解:从上面看易得横着的“”字,故选:C.3.(3分)成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一.今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流纪录,这也是今年以来第四次客流纪录的刷新,用科学记数法表示181万为()A.18.1×105B.1.81×106C.1.81×107D.181×104【答案】解:181万=181 0000=1.81×106,故选:B.4.(3分)计算(﹣x3y)2的结果是()A.﹣x5y B.x6y C.﹣x3y2D.x6y2【答案】解:(﹣x3y)2=x6y2.故选:D.5.(3分)如图,l1∥l2,∠1=56°,则∠2的度数为()A.34°B.56°C.124°D.146°【答案】解:∵l1∥l2,∴∠1=∠3,∵∠1=56°,∴∠3=56°,∵∠2+∠3=180°,∴∠2=124°,故选:C.6.(3分)平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为()A.(﹣2,﹣3)B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)【答案】解:点P(﹣2,3)关于x轴对称的点的坐标为(﹣2,﹣3).故选:A.7.(3分)分式方程=1的解为()A.x=﹣2B.x=﹣3C.x=2D.x=3【答案】解:去分母得:2x=x﹣3,解得:x=﹣3,经检验x=﹣3是分式方程的解,故选:B.8.(3分)学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数(单位:分)及方差s2如表所示:甲乙丙丁7887 s21 1.21 1.8如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是()A.甲B.乙C.丙D.丁【答案】解:因为乙组、丙组的平均数比甲组、丁组大,而丙组的方差比乙组的小,所以丙组的成绩比较稳定,所以丙组的成绩较好且状态稳定,应选的组是丙组.故选:C.9.(3分)二次函数y=2x2﹣3的图象是一条抛物线,下列关于该抛物线的说法,正确的是()A.抛物线开口向下B.抛物线经过点(2,3)C.抛物线的对称轴是直线x=1D.抛物线与x轴有两个交点【答案】解:A、a=2,则抛物线y=2x2﹣3的开口向上,所以A选项错误;B、当x=2时,y=2×4﹣3=5,则抛物线不经过点(2,3),所以B选项错误;C、抛物线的对称轴为直线x=0,所以C选项错误;D、当y=0时,2x2﹣3=0,此方程有两个不相等的实数解,所以D选项正确.故选:D.10.(3分)如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则的长为()A.πB.πC.πD.π【答案】解:∵∠OCA=50°,OA=OC,∴∠A=50°,∴∠BOC=2∠A=100°,∵AB=4,∴BO=2,∴的长为:=π.故选:B.二、填空题:本大题共4个小题,每小题4分,共16分11.(4分)已知|a+2|=0,则a=﹣2.【答案】解:由绝对值的意义得:a+2=0,解得:a=﹣2;故答案为:﹣2.12.(4分)如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=120°.【答案】解:∵△ABC≌△A′B′C′,∴∠C=∠C′=24°,∴∠B=180°﹣∠A﹣∠C=120°,故答案为:120°.13.(4分)已知P1(x1,y1),P2(x2,y2)两点都在反比例函数y=的图象上,且x1<x2<0,则y1>y2(填“>”或“<”).【答案】解:在反比例函数y=中k=2>0,∴x<0时,y的值随着x的增加而减小,∵x1<x2<0,∴y1>y2.故答案为:>.14.(4分)如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为3.【答案】解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵AE垂直平分OB,∴AB=AO,∴OA=AB=OB=3,∴BD=2OB=6,∴AD===3;故答案为:3.三、解答题:本大题共6小题,共54分15.(12分)(1)计算:(﹣2)3+﹣2sin30°+(2016﹣π)0(2)已知关于x的方程3x2+2x﹣m=0没有实数解,求实数m的取值范围.【答案】解:(1)(﹣2)3+﹣2sin30°+(2016﹣π)0=﹣8+4﹣1+1=﹣4;(2)∵3x2+2x﹣m=0没有实数解,∴b2﹣4ac=4﹣4×3(﹣m)<0,解得:m<﹣,故实数m的取值范围是:m<﹣.16.(6分)化简:(x﹣)÷.【答案】解:原式=•=•=x+1.17.(8分)在学习完“利用三角函数测高”这节内容之后,某兴趣小组开展了测量学校旗杆高度的实践活动,如图,在测点A处安置测倾器,量出高度AB=1.5m,测得旗杆顶端D的仰角∠DBE=32°,量出测点A到旗杆底部C的水平距离AC=20m,根据测量数据,求旗杆CD的高度.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)【答案】解:由题意得AC=20米,AB=1.5米,∵∠DBE=32°,∴DE=BE tan32°≈20×0.62=12.4米,∴CD=DE+CE=DE+AB=12.4+1.5≈13.9(米).答:旗杆CD的高度约13.9米.18.(8分)在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A,B,C,D表示);(2)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,求抽到的两张卡片上的数都是勾股数的概率.【答案】解:(1)画树状图为:共有12种等可能的结果数;(2)抽到的两张卡片上的数都是勾股数的结果数为6,所以抽到的两张卡片上的数都是勾股数的概率==.19.(10分)如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.【答案】解:(1)根据题意,将点A(2,﹣2)代入y=kx,得:﹣2=2k,解得:k=﹣1,∴正比例函数的解析式为:y=﹣x,将点A(2,﹣2)代入y=,得:﹣2=,解得:m=﹣4;∴反比例函数的解析式为:y=﹣;(2)直线OA:y=﹣x向上平移3个单位后解析式为:y=﹣x+3,则点B的坐标为(0,3),联立两函数解析式,解得:或,∴第四象限内的交点C的坐标为(4,﹣1),∵OA∥BC,∴S△ABC=S△OBC=×BO×x C=×3×4=6.20.(10分)如图,在Rt△ABC中,∠ABC=90°,以CB为半径作⊙C,交AC于点D,交AC的延长线于点E,连接BD,BE.(1)求证:△ABD∽△AEB;(2)当=时,求tan E;(3)在(2)的条件下,作∠BAC的平分线,与BE交于点F,若AF=2,求⊙C的半径.【答案】解:(1)∵∠ABC=90°,∴∠ABD=90°﹣∠DBC,由题意知:DE是直径,∴∠DBE=90°,∴∠E=90°﹣∠BDE,∵BC=CD,∴∠DBC=∠BDE,∴∠ABD=∠E,∵∠A=∠A,∴△ABD∽△AEB;(2)∵AB:BC=4:3,∴设AB=4,BC=3,∴AC==5,∵BC=CD=3,∴AD=AC﹣CD=5﹣3=2,由(1)可知:△ABD∽△AEB,∴==,∴AB2=AD•AE,∴42=2AE,∴AE=8,在Rt△DBE中tan E====;(3)过点F作FM⊥AE于点M,∵AB:BC=4:3,∴设AB=4x,BC=3x,∴由(2)可知;AE=8x,AD=2x,∴DE=AE﹣AD=6x,∵AF平分∠BAC,∴=,∴==,∵tan E=,∴cos E=,sin E=,∴=,∴BE=,∴EF=BE=,∴sin E==,∴MF=,∵tan E=,∴ME=2MF=,∴AM=AE﹣ME=,∵AF2=AM2+MF2,∴4=+,∴x=,∴⊙C的半径为:3x=.另解:由上述知tan∠F AM==,∵BC=DC=CE,=,∴AD:DC:CE=2:3:3,∵tan∠E==,设FM=a,则AM=3a,ME=2a,∴AE=5a,∴DC=AE=a,由勾股定理可知:AF=a,∵AF=2,∴a=,∴DC=四、填空题:每小题4分,共20分21.(4分)第十二届全国人大四次会议审议通过的《中华人民共和国慈善法》将于今年9月1日正式实施,为了了解居民对慈善法的知晓情况,某街道办从辖区居民中随机选取了部分居民进行调查,并将调查结果绘制成如图所示的扇形图.若该辖区约有居民9000人,则可以估计其中对慈善法“非常清楚”的居民约有2700人.【答案】解:根据题意得:9000×(1﹣30%﹣15%﹣×100%)=9000×30%=2700(人).答:可以估计其中对慈善法“非常清楚”的居民约有2700人.故答案为:2700.22.(4分)已知是方程组的解,则代数式(a+b)(a﹣b)的值为﹣8.【答案】解:把代入方程组得:,①×3+②×2得:5a=﹣5,即a=﹣1,把a=﹣1代入①得:b=﹣3,则原式=a2﹣b2=1﹣9=﹣8,故答案为:﹣823.(4分)如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=24,AH=18,⊙O的半径OC=13,则AB=.【答案】解:作直径AE,连接CE,∴∠ACE=90°,∵AH⊥BC,∴∠AHB=90°,∴∠ACE=∠AHB,∵∠B=∠E,∴△ABH∽△AEC,∴=,∴AB=,∵AC=24,AH=18,AE=2OC=26,∴AB==,故答案为:.24.(4分)实数a,n,m,b满足a<n<m<b,这四个数在数轴上对应的点分别为A,N,M,B(如图),若AM2=BM•AB,BN2=AN•AB,则称m为a,b的“大黄金数”,n为a,b的“小黄金数”,当b﹣a=2时,a,b的大黄金数与小黄金数之差m﹣n=2﹣4.【答案】解:由题意得:AB=b﹣a=2设AM=x,则BM=2﹣xx2=2(2﹣x)x=﹣1±x1=﹣1+,x2=﹣1﹣(舍)则AM=BN=﹣1∴MN=m﹣n=AM+BN﹣2=2(﹣1)﹣2=2﹣4故答案为:2﹣4.25.(4分)如图,面积为6的平行四边形纸片ABCD中,AB=3,∠BAD=45°,按下列步骤进行裁剪和拼图.第一步:如图①,将平行四边形纸片沿对角线BD剪开,得到△ABD和△BCD纸片,再将△ABD纸片沿AE剪开(E为BD上任意一点),得到△ABE和△ADE纸片;第二步:如图②,将△ABE纸片平移至△DCF处,将△ADE纸片平移至△BCG处;第三步:如图③,将△DCF纸片翻转过来使其背面朝上置于△PQM处(边PQ与DC重合,△PQM和△DCF在DC同侧),将△BCG纸片翻转过来使其背面朝上置于△PRN处,(边PR与BC重合,△PRN和△BCG在BC同侧).则由纸片拼成的五边形PMQRN中,对角线MN长度的最小值为.【答案】解:∵△ABE≌△CDF≌△PMQ,∴AE=DF=PM,∠EAB=∠FDC=∠MPQ,∵△ADE≌△BCG≌△PNR,∴AE=BG=PN,∠DAE=∠CBG=∠RPN,∴PM=PN,∵四边形ABCD是平行四边形,∴∠DAB=∠DCB=45°,∴∠MPN=90°,∴△MPN是等腰直角三角形,当PM最小时,对角线MN最小,即AE取最小值,∴当AE⊥BD时,AE取最小值,过D作DF⊥AB于F,∵平行四边形ABCD的面积为6,AB=3,∴DF=2,∵∠DAB=45°,∴AF=DF=2,∴BF=1,∴BD==,∴AE===,∴MN=AE=,故答案为:.五、解答题:共3个小题,共30分26.(8分)某果园有100棵橙子树,平均每棵树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x 棵橙子树.(1)直接写出平均每棵树结的橙子个数y(个)与x之间的关系;(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?【答案】解:(1)平均每棵树结的橙子个数y(个)与x之间的关系为:y=600﹣5x(0≤x<120);(2)设果园多种x棵橙子树时,可使橙子的总产量为w,则w=(600﹣5x)(100+x)=﹣5x2+100x+60000=﹣5(x﹣10)2+60500,∵a=﹣5<0,∴w的最大值是60500,则果园多种10棵橙子树时,可使橙子的总产量最大,最大为60500个.27.(10分)如图①,△ABC中,∠ABC=45°,AH⊥BC于点H,点D在AH上,且DH =CH,连接BD.(1)求证:BD=AC;(2)将△BHD绕点H旋转,得到△EHF(点B,D分别与点E,F对应),连接AE.①如图②,当点F落在AC上时,(F不与C重合),若BC=4,tan C=3,求AE的长;②如图③,当△EHF是由△BHD绕点H逆时针旋转30°得到时,设射线CF与AE相交于点G,连接GH,试探究线段GH与EF之间满足的等量关系,并说明理由.【答案】解:(1)在Rt△AHB中,∠ABC=45°,∴AH=BH,在△BHD和△AHC中,,∴△BHD≌△AHC,∴BD=AC,(2)①如图,在Rt△AHC中,∵tan C=3,∴=3,设CH=x,∴BH=AH=3x,∵BC=4,∴3x+x=4,∴x=1,∴AH=3,CH=1,由旋转知,∠EHF=∠BHD=∠AHC=90°,EH=AH=3,CH=DH=FH,∴∠EHF+∠AHF=∠AHC+∠AHF,∴∠EHA=∠FHC,,∴△EHA∽△FHC,∴∠EAH=∠C,∴tan∠EAH=tan C=3,过点H作HP⊥AE,∴HP=3AP,AE=2AP,在Rt△AHP中,AP2+HP2=AH2,∴AP2+(3AP)2=9,∴AP=,∴AE=;②方法1、如图1,∵△EHF是由△BHD绕点H逆时针旋转30°得到,∴HD=HF,∠AHF=30°∴∠CHF=90°+30°=120°,由①有,△AEH和△FHC都为等腰三角形,∴∠GAH=∠HCG=30°,∴CG⊥AE,∴点C,H,G,A四点共圆,∴∠CGH=∠CAH,设CG与AH交于点Q,∵∠AQC=∠GQH,∴△AQC∽△GQH,∴,∵△EHF是由△BHD绕点H逆时针旋转30°得到,∴EF=BD,由(1)知,BD=AC,∴EF=AC∴==2.即:EF=2HG.方法2、如图③,取EF的中点K,连接GK,HK,由旋转知,∠EHF=90°,∴EK=HK=EF,由旋转知,∠CGE=∠AGC=90°,∴EK=GK=EF,∴HK=GK,∵EK=HK,∴∠FKG=2∠AEF,∵EK=GK,∴∠HKF=2∠HEF,由旋转知,∠AHF=30°,∴∠AHE=120°,由(1)知,BH=AH,∵BH=EH,∴AH=EH,∴∠AEH=30°,∴∠HKG=∠FKG+∠HKF=2∠AEF+2∠HEF=2∠AEH=60°,∴△HKG是等边三角形,∴GH=GK,∴EF=2GK=2GH,即:EF=2GH.28.(12分)如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2﹣3与x轴交于A,B 两点(点A在点B的左侧),与y轴交于点C(0,﹣),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧.(1)求a的值及点A,B的坐标;(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由.【答案】解:(1)∵抛物线与y轴交于点C(0,﹣).∴a﹣3=﹣,解得:a=,∴y=(x+1)2﹣3当y=0时,有(x+1)2﹣3=0,∴x1=2,x2=﹣4,∴A(﹣4,0),B(2,0).(2)∵A(﹣4,0),B(2,0),C(0,﹣),D(﹣1,﹣3)∴S四边形ABCD=S△ADH+S梯形OCDH+S△BOC=×3×3+(+3)×1+×2×=10.从面积分析知,直线l只能与边AD或BC相交,所以有两种情况:①当直线l边AD相交与点M1时,则=×10=3,∴×3×(﹣)=3∴=﹣2,点M1(﹣2,﹣2),过点H(﹣1,0)和M1(﹣2,﹣2)的直线l的解析式为y=2x+2.②当直线l边BC相交与点M2时,同理可得点M2(,﹣2),过点H(﹣1,0)和M2(,﹣2)的直线l的解析式为y=﹣x﹣.综上所述:直线l的函数表达式为y=2x+2或y=﹣x﹣.(3)设P(x1,y1)、Q(x2,y2)且过点H(﹣1,0)的直线PQ的解析式为y=kx+b,∴﹣k+b=0,∴b=k,∴y=kx+k.由,∴+(﹣k)x﹣﹣k=0,∴x1+x2=﹣2+3k,y1+y2=kx1+k+kx2+k=3k2,∵点M是线段PQ的中点,根据中点坐标公式得M(,),∴点M(k﹣1,k2).假设存在这样的N点如图,直线DN∥PQ,设直线DN的解析式为y=kx+k﹣3由,解得:x1=﹣1,x2=3k﹣1,∴N(3k﹣1,3k2﹣3)∵四边形DMPN是菱形,∴DN=DM,∴(3k)2+(3k2)2=()2+()2,整理得:3k4﹣k2﹣4=0,∵k2+1>0,∴3k2﹣4=0,解得k=±,∵k<0,∴k=﹣,∴P(﹣3﹣1,6),M(﹣﹣1,2),N(﹣2﹣1,1)∴PM=DN=2,∵PM∥DN,∴四边形DMPN是平行四边形,∵DM=DN,∴四边形DMPN为菱形,∴以DP为对角线的四边形DMPN能成为菱形,此时点N的坐标为(﹣2﹣1,1).。
年四川省成都市中考数学试卷(含答案)————————————————————————————————作者:————————————————————————————————日期:22016年四川省成都市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分1.(3分)(2016•成都)在﹣3,﹣1,1,3四个数中,比﹣2小的数是()A.﹣3 B.﹣1 C.1 D.32.(3分)(2016•成都)如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.3.(3分)(2016•成都)成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一.今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流纪录,这也是今年以来第四次客流纪录的刷新,用科学记数法表示181万为()A.18.1×105B.1.81×106C.1.81×107D.181×1044.(3分)(2016•成都)计算(﹣x3y)2的结果是()A.﹣x5y B.x6y C.﹣x3y2D.x6y25.(3分)(2016•成都)如图,l1∥l2,∠1=56°,则∠2的度数为()A.34°B.56°C.124°D.146°6.(3分)(2016•成都)平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为()A.(﹣2,﹣3)B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)7.(3分)(2016•成都)分式方程=1的解为()A.x=﹣2 B.x=﹣3 C.x=2 D.x=38.(3分)(2016•成都)学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数(单位:分)及方差s2如表所示:甲乙丙丁788 7s211.2 11.8如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是()A.甲B.乙C.丙D.丁9.(3分)(2016•成都)二次函数y=2x2﹣3的图象是一条抛物线,下列关于该抛物线的说法,正确的是()A.抛物线开口向下B.抛物线经过点(2,3)C.抛物线的对称轴是直线x=1 D.抛物线与x轴有两个交点10.(3分)(2016•成都)如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则的长为()A.π B.π C.πD.π二、填空题:本大题共4个小题,每小题4分,共16分11.(4分)(2016•成都)已知|a+2|=0,则a=.12.(4分)(2016•成都)如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=.13.(4分)(2016•成都)已知P1(x1,y1),P2(x2,y2)两点都在反比例函数y=的图象上,且x1<x2<0,则y1y2(填“>”或“<”).14.(4分)(2016•成都)如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为.三、解答题:本大共6小题,共54分15.(12分)(2016•成都)(1)计算:(﹣2)3+﹣2sin30°+(2016﹣π)0(2)已知关于x的方程3x2+2x﹣m=0没有实数解,求实数m的取值范围.16.(6分)(2016•成都)化简:(x﹣)÷.17.(8分)(2016•成都)在学习完“利用三角函数测高”这节内容之后,某兴趣小组开展了测量学校旗杆高度的实践活动,如图,在测点A处安置测倾器,量出高度AB=1.5m,测得旗杆顶端D的仰角∠DBE=32°,量出测点A到旗杆底部C的水平距离AC=20m,根据测量数据,求旗杆CD的高度.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)18.(8分)(2016•成都)在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A,B,C,D表示);(2)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,求抽到的两张卡片上的数都是勾股数的概率.19.(10分)(2016•成都)如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.20.(10分)(2016•成都)如图,在Rt△ABC中,∠ABC=90°,以CB为半径作⊙C,交AC于点D,交AC的延长线于点E,连接ED,BE.(1)求证:△ABD∽△AEB;(2)当=时,求tanE;(3)在(2)的条件下,作∠BAC的平分线,与BE交于点F,若AF=2,求⊙C的半径.四、填空题:每小题4分,共20分21.(4分)(2016•成都)第十二届全国人大四次会议审议通过的《中华人民共和国慈善法》将于今年9月1日正式实施,为了了解居民对慈善法的知晓情况,某街道办从辖区居民中随机选取了部分居民进行调查,并将调查结果绘制成如图所示的扇形图.若该辖区约有居民9000人,则可以估计其中对慈善法“非常清楚”的居民约有人.22.(4分)(2016•成都)已知是方程组的解,则代数式(a+b)(a﹣b)的值为.23.(4分)(2016•成都)如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=24,AH=18,⊙O的半径OC=13,则AB=.24.(4分)(2016•成都)实数a,n,m,b满足a<n<m<b,这四个数在数轴上对应的点分别为A,N,M,B(如图),若AM2=BM•AB,BN2=AN•AB,则称m为a,b的“大黄金数”,n为a,b的“小黄金数”,当b﹣a=2时,a,b的大黄金数与小黄金数之差m﹣n=.25.(4分)(2016•成都)如图,面积为6的平行四边形纸片ABCD中,AB=3,∠BAD=45°,按下列步骤进行裁剪和拼图.第一步:如图①,将平行四边形纸片沿对角线BD剪开,得到△ABD和△BCD纸片,再将△ABD纸片沿AE剪开(E为BD上任意一点),得到△ABE和△ADE纸片;第二步:如图②,将△ABE纸片平移至△DCF处,将△ADE纸片平移至△BCG处;第三步:如图③,将△DCF纸片翻转过来使其背面朝上置于△PQM处(边PQ与DC重合,△PQM和△DCF在DC同侧),将△BCG纸片翻转过来使其背面朝上置于△PRN处,(边PR与BC重合,△PRN和△BCG在BC同侧).则由纸片拼成的五边形PMQRN中,对角线MN长度的最小值为.五、解答题:共3个小题,共30分26.(8分)(2016•成都)某果园有100颗橙子树,平均每颗树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x棵橙子树.(1)直接写出平均每棵树结的橙子个数y(个)与x之间的关系;(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?27.(10分)(2016•成都)如图①,△ABC中,∠ABC=45°,AH⊥BC于点H,点D在AH 上,且DH=CH,连结BD.(1)求证:BD=AC;(2)将△BHD绕点H旋转,得到△EHF(点B,D分别与点E,F对应),连接AE.①如图②,当点F落在AC上时,(F不与C重合),若BC=4,tanC=3,求AE的长;②如图③,当△EHF是由△BHD绕点H逆时针旋转30°得到时,设射线CF与AE相交于点G,连接GH,试探究线段GH与EF之间满足的等量关系,并说明理由.28.(12分)(2016•成都)如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2﹣3与x 轴交于A,B两点(点A在点B的左侧),与y轴交于点C(0,﹣),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧.(1)求a的值及点A,B的坐标;(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由.2016年四川省成都市中考数学试卷参考答案一、选择题1.A2.C3.B4.D5.C6.A7.B8.C9.D10.B二、填空题11.﹣212.120°13.>14.3三、解答题15.m<16.解:原式=•=•=x+1.17.解:由题意得AC=20米,AB=1.5米,∵∠DBE=32°,∴DE=BEtan32°≈20×0.62=12.4米,∴CD=DE+CE=DE+AB=12.4+1.5≈13.9(米).答:旗杆CD的高度约13.9米.18.解:(1)画树状图为:共有12种等可能的结果数;(2)抽到的两张卡片上的数都是勾股数的结果数为6,所以抽到的两张卡片上的数都是勾股数的概率==.19.解:(1)根据题意,将点A(2,﹣2)代入y=kx,得:﹣2=2k,解得:k=﹣1,∴正比例函数的解析式为:y=﹣x,将点A(2,﹣2)代入y=,得:﹣2=,解得:m=﹣4;∴反比例函数的解析式为:y=﹣;(2)直线OA:y=﹣x向上平移3个单位后解析式为:y=﹣x+3,则点B的坐标为(0,3),联立两函数解析式,解得:或,∴第四象限内的交点C的坐标为(4,﹣1),∴S△ABC=×(1+5)×4﹣×5×2﹣×2×1=6.20.解:(1)∵∠ABC=90°,∴∠ABD=90°﹣∠DBC,由题意知:DE是直径,∴∠DBE=90°,∴∠E=90°﹣∠BDE,∵BC=CD,∴∠DBC=∠BDE,∴∠ABD=∠E,∵∠A=∠A,∴△ABD∽△AEB;(2)∵AB:BC=4:3,∴设AB=4,BC=3,∴AC==5,∵BC=CD=3,∴AD=AC﹣CD=5﹣3=2,由(1)可知:△ABD∽△AEB,∴==,∴AB2=AD•AE,∴42=2AE,∴AE=8,在Rt△DBE中tanE====;(3)过点F作FM⊥AE于点M,∵AB:BC=4:3,∴设AB=4x,BC=3x,∴由(2)可知;AE=8x,AD=2x,∴DE=AE﹣AD=6x,∵AF平分∠BAC,∴=,∴==,∵tanE=,∴cosE=,sinE=,∴=,∴BE=,∴EF=BE=,∴sinE==,∴MF=,∵tanE=,∴ME=2MF=,∴AM=AE﹣ME=,∵AF2=AM2+MF2,∴4=+,∴x=,∴⊙C的半径为:3x=.四、填空题21.解:根据题意得:9000×(1﹣30%﹣15%﹣×100%)=9000×30%=2700(人).答:可以估计其中对慈善法“非常清楚”的居民约有2700人.故答案为:2700.22.﹣823..24.﹣4.25..五、解答题26.解:(1)y=600﹣5x(0≤x<120);(2)设果园多种x棵橙子树时,可使橙子的总产量为w,则w=(600﹣5x)(100+x)=﹣5x2+100x+60000=﹣5(x﹣10)2+60500,则果园多种10棵橙子树时,可使橙子的总产量最大,最大为60500个.27.解:(1)在Rt△AHB中,∠ABC=45°,∴AH=BH,在△BHD和△AHC中,,∴△BHD≌△AHC,∴BD=AC,(2)①如图,在Rt△AHC中,∵tanC=3,∴=3,设CH=x,∴BH=AH=3x,∵BC=4,∴3x+x=4,∴x=1,∴AH=3,CH=1,由旋转知,∠EHF=∠BHD=∠AHC=90°,EH=AH=3,CH=DH=FH,∴∠EHA=∠FHC,,∴△EHA≌△FHC,∴∠EAH=∠C,∴tan∠EAH=tanC=3,过点H作HP⊥AE,∴HP=3AP,AE=2AP,在Rt△AHP中,AP2+HP2=AH2,∴AP2+(3AP)2=9,∴AP=,∴AE=;②由①有,△AEH和△FHC都为等腰三角形,∴∠GAH=∠HCG=90°,∴△AGQ∽△CHQ,∴,∴,∵∠AQC=∠GQE,∴△AQC∽△GQH,∴=sin30°=.28.解:(1)∵抛物线与y轴交于点C(0,﹣).∴a﹣3=﹣,解得:a=,∴y=(x+1)2﹣3当y=0时,有(x+1)2﹣3=0,∴x1=2,x2=﹣4,∴A(﹣4,0),B(2,0).(2)∵A(﹣4,0),B(2,0),C(0,﹣),D(﹣1,﹣3)∴S四边形ABCD=S△ADH+S梯形OCDH+S△BOC=×3×3+(+3)×1+×2×=10.从面积分析知,直线l只能与边AD或BC相交,所以有两种情况:①当直线l边AD相交与点M1时,则S=×10=3,∴×3×(﹣y)=3∴y=﹣2,点M 1(﹣2,﹣2),过点H(﹣1,0)和M1(﹣2,﹣2)的直线l的解析式为y=2x+2.②当直线l边BC相交与点M2时,同理可得点M2(,﹣2),过点H(﹣1,0)和M2(,﹣2)的直线l的解析式为y=﹣x﹣.综上所述:直线l的函数表达式为y=2x+2或y=﹣x﹣.(3)设P(x1,y1)、Q(x2,y2)且过点H(﹣1,0)的直线PQ的解析式为y=kx+b,∴﹣k+b=0,∴b=k,∴y=kx+k.由,∴+(﹣k)x﹣﹣k=0,∴x1+x2=﹣2+3k,y1+y2=kx1+k+kx2+k=3k2,∵点M是线段PQ的中点,∴由中点坐标公式的点M(k﹣1,k2).假设存在这样的N点如图,直线DN∥PQ,设直线DN的解析式为y=kx+k﹣3由,解得:x1=﹣1,x2=3k﹣1,∴N(3k﹣1,3k2﹣3)∵四边形DMPN是菱形,∴DN=DM,∴(3k)2+(3k2)2=()2+()2,整理得:3k4﹣k2﹣4=0,∵k2+1>0,∴3k2﹣4=0,解得k=±,∵k<0,∴k=﹣,∴P(﹣3﹣1,6),M(﹣﹣1,2),N(﹣2﹣1,1)∴PM=DN=2,∵PM∥DN,∴四边形DMPN是平行四边形,∵DM=DN,∴四边形DMPN为菱形,∴以DP为对角线的四边形DMPN能成为菱形,此时点N的坐标为(﹣2﹣1,1).。
成都市二○一六年高中阶段教育学校统一招生考试(含成都市初三毕业会考)数 学注意事项:1. 全卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟.2. 在作答前,考生务必将自己的姓名、准考证号涂写在试卷和答题卡规定的地方,考试结束,监考人员将试卷和答题卡一并收回。
3.选择题部分必须使用2B 铅笔填涂;非选择题部分必须使用0.5毫米黑色墨水签字笔书写,字体工整、笔迹清楚。
4.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
5.保持答题卡清洁,不得折叠、污染、破损等。
A 卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1. 在-3,-1,1,3四个数中,比-2小的数是( )(A) -3 (B) -1 (C) 1 (D) 32.如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是( )3. 成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一,今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流记录,这也是今年以来第四次客流记录的刷新,用科学记数法表示181万为( )(A) 18.1×105(B) 1.81×106(C) 1.81×107(D) 181×1044. 计算()23x y -的结果是( )(A) 5x y - (B) 6x y (C) 32x y - (D) 62x y 5. 如图,2l l 1∥,∠1=56°,则∠2的度数为( )(A) 34° (B) 56° (C) 124° (D) 146°6. 平面直角坐标系中,点P (-2,3)关于x 轴对称的点的坐标为( )(A)(-2,-3) (B)(2,-3) (C)(-3,2) (D)(3, -2) 7. 分式方程213xx =-的解为( ) (A) x=-2 (B) x=-3 (C) x=2 (D) x=38.学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数x (单位:分)及方差2s 如下表所示:甲 乙 丙 丁 x7 8 8 7 2s11.211.8如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是( ) (A) 甲 (B) 乙 (C) 丙 (D) 丁9. 二次函数223y x =-的图象是一条抛物线,下列关于该抛物线的说法,正确的是( ) (A) 抛物线开口向下(B) 抛物线经过点(2,3)(C) 抛物线的对称轴是直线x=1 (D) 抛物线与x 轴有两个交点10.如图,AB 为⊙O 的直径,点C 在⊙O 上,若∠OCA=50°,AB=4,则BC ︵的长为( )(A) 103π (B) 109π (C) 59π (D) 518π第Ⅱ卷(非选择题,共70分)二、填空题 (本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11. 已知|a+2|=0,则a = ______.12. 如图,△ABC ≌△'''A B C ,其中∠A =36°,∠C ′=24°,则∠B=___°. 13. 已知P 1(x 1,y 1),P 2(x 2 ,y 2)两点都在反比例函数2y x=的图象上,且x 1< x 2< 0,则y 1 ____ y 2.(填“>”或“<”)14. 如图,在矩形ABCD 中,AB=3,对角线AC ,BD 相交于点O ,AE 垂直平分OB 于点E ,则AD 的长为_________.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15. (本小题满分12分,每题6分)(1)计算:()()32162sin302016π-+-+-o(2)已知关于x 的方程2320x x m +-=没有实数根,求实数m 的取值范围.16.(本小题满分6分)化简:22121x x x x x x -+⎛⎫-÷ ⎪-⎝⎭17.(本小题满分8分)在学习完“利用三角函数测高”这节内容之后,某兴趣小组开展了测量学校旗杆高度的实践活动,如图,在测点A 处安置测倾器,量出高度AB =1.5m ,测得旗杆顶端D 的仰角∠DBE =32°,量出测点A 到旗杆底部C 的水平距离AC =20m. 根据测量数据,求旗杆CD 的高度。
2016年四川省成都市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分1.在﹣3,﹣1,1,3四个数中,比﹣2小的数是()A.﹣3 B.﹣1 C.1 D.32.如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.3.成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一.今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流纪录,这也是今年以来第四次客流纪录的刷新,用科学记数法表示181万为()A.18.1×105B.1.81×106C.1.81×107D.181×1044.计算(﹣x3y)2的结果是()A.﹣x5y B.x6y C.﹣x3y2D.x6y25.如图,l1∥l2,∠1=56°,则∠2的度数为()A.34°B.56°C.124°D.146°6.平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为()A.(﹣2,﹣3)B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)7.分式方程=1的解为()A.x=﹣2 B.x=﹣3 C.x=2 D.x=38.学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数(单位:分)及方差s2如表所示:甲乙丙丁7 8 8 7s2 1 1.2 1 1.8如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是()A.甲B.乙C.丙D.丁9.二次函数y=2x2﹣3的图象是一条抛物线,下列关于该抛物线的说法,正确的是()A.抛物线开口向下B.抛物线经过点(2,3)C.抛物线的对称轴是直线x=1 D.抛物线与x轴有两个交点10.如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则的长为()A.πB.πC.πD.π二、填空题:本大题共4个小题,每小题4分,共16分11.已知|a+2|=0,则a=.12.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=.13.已知P1(x1,y1),P2(x2,y2)两点都在反比例函数y=的图象上,且x1<x2<0,则y1y2(填“>”或“<”).14.如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为.三、解答题:本大共6小题,共54分15.(1)计算:(﹣2)3+﹣2sin30°+0(2)已知关于x的方程3x2+2x﹣m=0没有实数解,求实数m的取值范围.16.化简:(x﹣)÷.17.在学习完“利用三角函数测高”这节内容之后,某兴趣小组开展了测量学校旗杆高度的实践活动,如图,在测点A处安置测倾器,量出高度AB=1.5m,测得旗杆顶端D的仰角∠DBE=32°,量出测点A到旗杆底部C的水平距离AC=20m,根据测量数据,求旗杆CD 的高度.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)18.在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A,B,C,D表示);(2)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,求抽到的两张卡片上的数都是勾股数的概率.19.如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.20.如图,在Rt△ABC中,∠ABC=90°,以CB为半径作⊙C,交AC于点D,交AC的延长线于点E,连接ED,BE.(1)求证:△ABD∽△AEB;(2)当=时,求tanE;(3)在(2)的条件下,作∠BAC的平分线,与BE交于点F,若AF=2,求⊙C的半径.四、填空题:每小题4分,共20分21.第十二届全国人大四次会议审议通过的《中华人民共和国慈善法》将于今年9月1日正式实施,为了了解居民对慈善法的知晓情况,某街道办从辖区居民中随机选取了部分居民进行调查,并将调查结果绘制成如图所示的扇形图.若该辖区约有居民9000人,则可以估计其中对慈善法“非常清楚”的居民约有人.22.已知是方程组的解,则代数式(a+b)(a﹣b)的值为.23.如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=24,AH=18,⊙O的半径OC=13,则AB=.24.实数a,n,m,b满足a<n<m<b,这四个数在数轴上对应的点分别为A,N,M,B (如图),若AM2=BM•AB,BN2=AN•AB,则称m为a,b的“大黄金数”,n为a,b的“小黄金数”,当b﹣a=2时,a,b的大黄金数与小黄金数之差m﹣n=.25.如图,面积为6的平行四边形纸片ABCD中,AB=3,∠BAD=45°,按下列步骤进行裁剪和拼图.第一步:如图①,将平行四边形纸片沿对角线BD剪开,得到△ABD和△BCD纸片,再将△ABD纸片沿AE剪开(E为BD上任意一点),得到△ABE和△ADE纸片;第二步:如图②,将△ABE纸片平移至△DCF处,将△ADE纸片平移至△BCG处;第三步:如图③,将△DCF纸片翻转过来使其背面朝上置于△PQM处(边PQ与DC重合,△PQM和△DCF在DC同侧),将△BCG纸片翻转过来使其背面朝上置于△PRN处,(边PR与BC重合,△PRN和△BCG在BC同侧).则由纸片拼成的五边形PMQRN中,对角线MN长度的最小值为.五、解答题:共3个小题,共30分26.某果园有100颗橙子树,平均每颗树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x棵橙子树.(1)直接写出平均每棵树结的橙子个数y(个)与x之间的关系;(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?27.如图①,△ABC中,∠ABC=45°,AH⊥BC于点H,点D在AH上,且DH=CH,连结BD.(1)求证:BD=AC;(2)将△BHD绕点H旋转,得到△EHF(点B,D分别与点E,F对应),连接AE.①如图②,当点F落在AC上时,(F不与C重合),若BC=4,tanC=3,求AE的长;②如图③,当△EHF是由△BHD绕点H逆时针旋转30°得到时,设射线CF与AE相交于点G,连接GH,试探究线段GH与EF之间满足的等量关系,并说明理由.28.如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2﹣3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C(0,﹣),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧.(1)求a的值及点A,B的坐标;(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由.2016年四川省成都市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分1.在﹣3,﹣1,1,3四个数中,比﹣2小的数是()A.﹣3 B.﹣1 C.1 D.3【考点】有理数大小比较.【分析】利用两个负数,绝对值大的其值反而小,进而得出答案.【解答】解:∵|﹣3|=3,|﹣2|=2,∴比﹣2小的数是:﹣3.故选:A.2.如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得横着的“”字,故选C.3.成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一.今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流纪录,这也是今年以来第四次客流纪录的刷新,用科学记数法表示181万为()A.18.1×105B.1.81×106C.1.81×107D.181×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:181万=181 0000=1.81×106,故选:B.4.计算(﹣x3y)2的结果是()A.﹣x5y B.x6y C.﹣x3y2D.x6y2【考点】幂的乘方与积的乘方.【分析】首先利用积的乘方运算法则化简求出答案.【解答】解:(﹣x3y)2=x6y2.故选:D.5.如图,l1∥l2,∠1=56°,则∠2的度数为()A.34°B.56°C.124°D.146°【考点】平行线的性质.【分析】根据平行线性质求出∠3=∠1=50°,代入∠2+∠3=180°即可求出∠2.【解答】解:∵l1∥l2,∴∠1=∠3,∵∠1=56°,∴∠3=56°,∵∠2+∠3=180°,∴∠2=124°,故选C.6.平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为()A.(﹣2,﹣3)B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)【考点】关于x轴、y轴对称的点的坐标.【分析】直接利用关于x轴对称点的性质,横坐标不变,纵坐标互为相反数,进而得出答案.【解答】解:点P(﹣2,3)关于x轴对称的点的坐标为(﹣2,﹣3).故选:A.7.分式方程=1的解为()A.x=﹣2 B.x=﹣3 C.x=2 D.x=3【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x=x﹣3,解得:x=﹣3,经检验x=﹣3是分式方程的解,故选B.8.学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数(单位:分)及方差s2如表所示:甲乙丙丁7 8 8 7s2 1 1.2 1 1.8如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是()A.甲B.乙C.丙D.丁【考点】方差;算术平均数.【分析】先比较平均数得到乙组和丙组成绩较好,然后比较方差得到丙组的状态稳定,于是可决定选丙组去参赛.【解答】解:因为乙组、丙组的平均数比甲组、丁组大,而丙组的方差比乙组的小,所以丙组的成绩比较稳定,所以丙组的成绩较好且状态稳定,应选的组是丙组.故选C.9.二次函数y=2x2﹣3的图象是一条抛物线,下列关于该抛物线的说法,正确的是()A.抛物线开口向下B.抛物线经过点(2,3)C.抛物线的对称轴是直线x=1 D.抛物线与x轴有两个交点【考点】二次函数的性质.【分析】根据二次函数的性质对A、C进行判断;根据二次函数图象上点的坐标特征对B进行判断;利用方程2x2﹣3=0解的情况对D进行判断.【解答】解:A、a=2,则抛物线y=2x2﹣3的开口向上,所以A选项错误;B、当x=2时,y=2×4﹣3=5,则抛物线不经过点(2,3),所以B选项错误;C、抛物线的对称轴为直线x=0,所以C选项错误;D、当y=0时,2x2﹣3=0,此方程有两个不相等的实数解,所以D选项正确.故选D.10.如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则的长为()A.πB.πC.πD.π【考点】弧长的计算;圆周角定理.【分析】直接利用等腰三角形的性质得出∠A的度数,再利用圆周角定理得出∠BOC的度数,再利用弧长公式求出答案.【解答】解:∵∠OCA=50°,OA=OC,∴∠A=50°,∴∠BOC=100°,∵AB=4,∴BO=2,∴的长为:=π.故选:B.二、填空题:本大题共4个小题,每小题4分,共16分11.已知|a+2|=0,则a=﹣2.【考点】绝对值.【分析】根据绝对值的意义得出a+2=0,即可得出结果.【解答】解:由绝对值的意义得:a+2=0,解得:a=﹣2;故答案为:﹣2.12.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=120°.【考点】全等三角形的性质.【分析】根据全等三角形的性质求出∠C的度数,根据三角形内角和定理计算即可.【解答】解:∵△ABC≌△A′B′C′,∴∠C=∠C′=24°,∴∠B=180°﹣∠A﹣∠B=120°,故答案为:120°.13.已知P1(x1,y1),P2(x2,y2)两点都在反比例函数y=的图象上,且x1<x2<0,则y1>y2(填“>”或“<”).【考点】反比例函数图象上点的坐标特征;反比例函数的性质.【分析】根据一次函数的系数k的值可知,该函数在x<0内单调递减,再结合x1<x2<0,即可得出结论.【解答】解:在反比例函数y=中k=2>0,∴该函数在x<0内单调递减.∵x1<x2<0,∴y1>y2.故答案为:>.14.如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为3.【考点】矩形的性质;线段垂直平分线的性质;等边三角形的判定与性质.【分析】由矩形的性质和线段垂直平分线的性质证出OA=AB=OB=3,得出BD=2OB=6,由勾股定理求出AD即可.【解答】解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵AE垂直平分OB,∴AB=AO,∴OA=AB=OB=3,∴BD=2OB=6,∴AD===3;故答案为:3.三、解答题:本大共6小题,共54分15.(1)计算:(﹣2)3+﹣2sin30°+0(2)已知关于x的方程3x2+2x﹣m=0没有实数解,求实数m的取值范围.【考点】实数的运算;根的判别式;特殊角的三角函数值.【分析】(1)直接利用有理数的乘方运算法则以及特殊角的三角函数值和零指数幂的性质分别化简求出答案;(2)直接利用根的判别式进而求出m的取值范围.【解答】解:(1)(﹣2)3+﹣2sin30°+0=﹣8+4﹣1+1=﹣4;(2)∵3x2+2x﹣m=0没有实数解,∴b2﹣4ac=4﹣4×3(﹣m)<0,解得:m<,故实数m的取值范围是:m<.16.化简:(x﹣)÷.【考点】分式的混合运算.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=•=•=x+1.17.在学习完“利用三角函数测高”这节内容之后,某兴趣小组开展了测量学校旗杆高度的实践活动,如图,在测点A处安置测倾器,量出高度AB=1.5m,测得旗杆顶端D的仰角∠DBE=32°,量出测点A到旗杆底部C的水平距离AC=20m,根据测量数据,求旗杆CD 的高度.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)【考点】解直角三角形的应用-仰角俯角问题.【分析】根据题意得AC=20米,AB=1.5米,过点B做BE⊥CD,交CD于点E,利用∠DBE=32°,得到DE=BEtan32°后再加上CE即可求得CD的高度.【解答】解:由题意得AC=20米,AB=1.5米,∵∠DBE=32°,∴DE=BEtan32°≈20×0.62=12.4米,∴CD=DE+CE=DE+AB=12.4+1.5≈13.9(米).答:旗杆CD的高度约13.9米.18.在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A,B,C,D表示);(2)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,求抽到的两张卡片上的数都是勾股数的概率.【考点】列表法与树状图法;勾股数.【分析】(1)利用树状图展示12种等可能的结果数;(2)根据勾股数可判定只有A卡片上的三个数不是勾股数,则可从12种等可能的结果数中找出抽到的两张卡片上的数都是勾股数的结果数,然后根据概率公式求解.【解答】解:(1)画树状图为:共有12种等可能的结果数;(2)抽到的两张卡片上的数都是勾股数的结果数为6,所以抽到的两张卡片上的数都是勾股数的概率==.19.如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)将点A坐标(2,﹣2)分别代入y=kx、y=求得k、m的值即可;(2)由题意得平移后直线解析式,即可知点B坐标,联立方程组求解可得第四象限内的交点C得坐标,割补法求解可得三角形的面积.【解答】解:(1)根据题意,将点A(2,﹣2)代入y=kx,得:﹣2=2k,解得:k=﹣1,∴正比例函数的解析式为:y=﹣x,将点A(2,﹣2)代入y=,得:﹣2=,解得:m=﹣4;∴反比例函数的解析式为:y=﹣;(2)直线OA:y=﹣x向上平移3个单位后解析式为:y=﹣x+3,则点B的坐标为(0,3),联立两函数解析式,解得:或,∴第四象限内的交点C的坐标为(4,﹣1),∴S△ABC=×(1+5)×4﹣×5×2﹣×2×1=6.20.如图,在Rt△ABC中,∠ABC=90°,以CB为半径作⊙C,交AC于点D,交AC的延长线于点E,连接ED,BE.(1)求证:△ABD∽△AEB;(2)当=时,求tanE;(3)在(2)的条件下,作∠BAC的平分线,与BE交于点F,若AF=2,求⊙C的半径.【考点】圆的综合题.【分析】(1)要证明△ABD∽△AEB,已经有一组对应角是公共角,只需要再找出另一组对应角相等即可.(2)由于AB:BC=4:3,可设AB=4,BC=3,求出AC的值,再利用(1)中结论可得AB2=AD•AE,进而求出AE的值,所以tanE==.(3)设设AB=4x,BC=3x,由于已知AF的值,构造直角三角形后利用勾股定理列方程求出x的值,即可知道半径3x的值.【解答】解:(1)∵∠ABC=90°,∴∠ABD=90°﹣∠DBC,由题意知:DE是直径,∴∠DBE=90°,∴∠E=90°﹣∠BDE,∵BC=CD,∴∠DBC=∠BDE,∴∠ABD=∠E,∵∠A=∠A,∴△ABD∽△AEB;(2)∵AB:BC=4:3,∴设AB=4,BC=3,∴AC==5,∵BC=CD=3,∴AD=AC﹣CD=5﹣3=2,由(1)可知:△ABD∽△AEB,∴==,∴AB2=AD•AE,∴42=2AE,∴AE=8,在Rt△DBE中tanE====;(3)过点F作FM⊥AE于点M,数学试卷及试题∵AB:BC=4:3,∴设AB=4x,BC=3x,∴由(2)可知;AE=8x,AD=2x,∴DE=AE﹣AD=6x,∵AF平分∠BAC,∴=,∴==,∵tanE=,∴cosE=,sinE=,∴=,∴BE=,∴EF=BE=,∴sinE==,∴MF=,∵tanE=,∴ME=2MF=,∴AM=AE﹣ME=,∵AF2=AM2+MF2,∴4=+,∴x=,∴⊙C的半径为:3x=.四、填空题:每小题4分,共20分21.第十二届全国人大四次会议审议通过的《中华人民共和国慈善法》将于今年9月1日正式实施,为了了解居民对慈善法的知晓情况,某街道办从辖区居民中随机选取了部分居民进行调查,并将调查结果绘制成如图所示的扇形图.若该辖区约有居民9000人,则可以估计其中对慈善法“非常清楚”的居民约有2700人.【考点】扇形统计图;用样本估计总体.【分析】先求出非常清楚所占的百分百,再乘以该辖区的总居民,即可得出答案.【解答】解:根据题意得:9000×(1﹣30%﹣15%﹣×100%)=9000×30%=2700(人).答:可以估计其中对慈善法“非常清楚”的居民约有2700人.故答案为:2700.22.已知是方程组的解,则代数式(a+b)(a﹣b)的值为﹣8.【考点】二元一次方程组的解.【分析】把x与y的值代入方程组求出a与b的值,代入原式计算即可得到结果.【解答】解:把代入方程组得:,①×3+②×2得:5a=﹣5,即a=﹣1,把a=﹣1代入①得:b=﹣3,则原式=a2﹣b2=1﹣9=﹣8,故答案为:﹣823.如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=24,AH=18,⊙O的半径OC=13,则AB=.【考点】三角形的外接圆与外心.【分析】首先作直径AE,连接CE,易证得△ABH∽△AEC,然后由相似三角形的对应边成比例,即可求得⊙O半径.【解答】解:作直径AE,连接CE,∴∠ACE=90°,∵AH⊥BC,∴∠AHB=90°,∴∠ACE=∠ADB,∵∠B=∠E,∴△ABH∽△AEC,∴=,∴AB=,∵AC=24,AH=18,AE=2OC=26,∴AB==,故答案为:.24.实数a,n,m,b满足a<n<m<b,这四个数在数轴上对应的点分别为A,N,M,B (如图),若AM2=BM•AB,BN2=AN•AB,则称m为a,b的“大黄金数”,n为a,b的“小黄金数”,当b﹣a=2时,a,b的大黄金数与小黄金数之差m﹣n=﹣4.【考点】实数与数轴.【分析】先把各线段长表示出来,分别代入到AM2=BM•AB,BN2=AN•AB中,列方程组;两式相减后再将b﹣a=2和m﹣n=x整体代入,即可求出.【解答】解:由题意得:AM=m﹣a,BM=b﹣m,AB=b﹣a,BN=b﹣n,AN=n﹣a,代入AM2=BM•AB,BN2=AN•AB得:,②﹣①得:(b﹣n)2﹣(m﹣a)2=(b﹣a)(n﹣a﹣b+m),设m﹣n=x,则(b﹣n+m﹣a)(b﹣n﹣m+a)=2(n﹣a﹣b+m),2+x=﹣2,x=﹣4,则m﹣n=﹣4.故答案为:﹣4.25.如图,面积为6的平行四边形纸片ABCD中,AB=3,∠BAD=45°,按下列步骤进行裁剪和拼图.第一步:如图①,将平行四边形纸片沿对角线BD剪开,得到△ABD和△BCD纸片,再将△ABD纸片沿AE剪开(E为BD上任意一点),得到△ABE和△ADE纸片;第二步:如图②,将△ABE纸片平移至△DCF处,将△ADE纸片平移至△BCG处;第三步:如图③,将△DCF纸片翻转过来使其背面朝上置于△PQM处(边PQ与DC重合,△PQM和△DCF在DC同侧),将△BCG纸片翻转过来使其背面朝上置于△PRN处,(边PR与BC重合,△PRN和△BCG在BC同侧).则由纸片拼成的五边形PMQRN中,对角线MN长度的最小值为.【考点】平移的性质.【分析】根据平移和翻折的性质得到△MPN是等腰直角三角形,于是得到当PM最小时,对角线MN最小,即AE取最小值,当AE⊥BD时,AE取最小值,过D作DF⊥AB于F,根据平行四边形的面积得到DF=2,根据等腰直角三角形的性质得到AF=DF=2,由勾股定理得到BD==,根据三角形的面积得到AE===,即可得到结论.【解答】解:∵△ABE≌△CDF≌△PMQ,∴AE=DF=PM,∠EAB=∠FDC=∠MPQ,∵△ADE≌△BCG≌△PNR,∴AE=BG=PN,∠DAE=∠CBG=∠RPN,∴PM=PN,∵四边形ABCD是平行四边形,∴∠DAB=∠DCB=45°,∴∠MPN=90°,∴△MPN是等腰直角三角形,当PM最小时,对角线MN最小,即AE取最小值,∴当AE⊥BD时,AE取最小值,过D作DF⊥AB于F,∵平行四边形ABCD的面积为6,AB=3,∴DF=2,∵∠DAB=45°,∴AF=DF=2,∴BF=1,∴BD==,∴AE===,∴MN=AE=,故答案为:.五、解答题:共3个小题,共30分26.某果园有100颗橙子树,平均每颗树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x棵橙子树.(1)直接写出平均每棵树结的橙子个数y(个)与x之间的关系;(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?【考点】二次函数的应用.【分析】(1)根据每多种一棵树,平均每棵树就会少结5个橙子列式即可;(2)根据题意列出函数解析式,利用配方法把二次函数化为顶点式,根据二次函数的性质进行解答即可.【解答】解:(1)平均每棵树结的橙子个数y(个)与x之间的关系为:y=600﹣5x(0≤x <120);(2)设果园多种x棵橙子树时,可使橙子的总产量为w,则w==﹣5x2+100x+60000=﹣5(x﹣10)2+60500,则果园多种10棵橙子树时,可使橙子的总产量最大,最大为60500个.27.如图①,△ABC中,∠ABC=45°,AH⊥BC于点H,点D在AH上,且DH=CH,连结BD.(1)求证:BD=AC;(2)将△BHD绕点H旋转,得到△EHF(点B,D分别与点E,F对应),连接AE.①如图②,当点F落在AC上时,(F不与C重合),若BC=4,tanC=3,求AE的长;②如图③,当△EHF是由△BHD绕点H逆时针旋转30°得到时,设射线CF与AE相交于点G,连接GH,试探究线段GH与EF之间满足的等量关系,并说明理由.【考点】几何变换综合题.【分析】(1)先判断出AH=BH,再判断出△BHD≌△AHC即可;(2)①先根据tanC=3,求出AH=3,CH=1,然后根据△EHA≌△FHC,得到,HP=3AP,AE=2AP,最后用勾股定理即可;②先判断出△AGQ∽△CHQ,得到,然后判断出△AQC∽△GQH,用相似比即可.【解答】解:(1)在Rt△AHB中,∠ABC=45°,∴AH=BH,在△BHD和△AHC中,,∴△BHD≌△AHC,∴BD=AC,(2)①如图,在Rt△AHC中,∵tanC=3,∴=3,设CH=x,∴BH=AH=3x,∵BC=4,∴3x+x=4,∴x=1,∴AH=3,CH=1,由旋转知,∠EHF=∠BHD=∠AHC=90°,EH=AH=3,CH=DH=FH,∴∠EHA=∠FHC,,∴△EHA≌△FHC,∴∠EAH=∠C,∴tan∠EAH=tanC=3,过点H作HP⊥AE,∴HP=3AP,AE=2AP,在Rt△AHP中,AP2+HP2=AH2,∴AP2+(3AP)2=9,∴AP=,∴AE=;②由①有,△AEH和△FHC都为等腰三角形,∴∠GAH=∠HCG=90°,∴△AGQ∽△CHQ,∴,∴,∵∠AQC=∠GQE,∴△AQC∽△GQH,∴=sin30°=.28.如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2﹣3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C(0,﹣),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧.(1)求a的值及点A,B的坐标;(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由.【考点】二次函数综合题.【分析】(1)把点C代入抛物线解析式即可求出a,令y=0,列方程即可求出点A、B坐标.(2)先求出四边形ABCD面积,分两种情形:①当直线l边AD相交与点M1时,根据S=×10=3,求出点M1坐标即可解决问题.②当直线l边BC相交与点M2时,同理可得点M2坐标.(3)设P(x1,y1)、Q(x2,y2)且过点H(﹣1,0)的直线PQ的解析式为y=kx+b,得到b=k,利用方程组求出点M坐标,求出直线DN解析式,再利用方程组求出点N坐标,列出方程求出k,即可解决问题.【解答】解:(1)∵抛物线与y轴交于点C(0,﹣).∴a ﹣3=﹣,解得:a=,∴y=(x+1)2﹣3当y=0时,有(x+1)2﹣3=0,∴x 1=2,x 2=﹣4,∴A (﹣4,0),B (2,0).(2)∵A (﹣4,0),B (2,0),C (0,﹣),D (﹣1,﹣3)∴S 四边形ABCD =S △ADH +S 梯形OCDH +S △BOC =×3×3+(+3)×1+×2×=10. 从面积分析知,直线l 只能与边AD 或BC 相交,所以有两种情况:①当直线l 边AD 相交与点M 1时,则S=×10=3, ∴×3×(﹣y )=3 ∴y =﹣2,点M 1(﹣2,﹣2),过点H (﹣1,0)和M 1(﹣2,﹣2)的直线l 的解析式为y=2x+2.②当直线l 边BC 相交与点M 2时,同理可得点M 2(,﹣2),过点H (﹣1,0)和M2(,﹣2)的直线l 的解析式为y=﹣x ﹣.综上所述:直线l 的函数表达式为y=2x+2或y=﹣x ﹣.(3)设P (x 1,y 1)、Q (x 2,y 2)且过点H (﹣1,0)的直线PQ 的解析式为y=kx+b , ∴﹣k+b=0,∴b=k ,∴y=kx+k .由, ∴+(﹣k )x ﹣﹣k=0,∴x 1+x 2=﹣2+3k ,y 1+y 2=kx 1+k+kx 2+k=3k 2,∵点M 是线段PQ 的中点,∴由中点坐标公式的点M (k ﹣1, k 2).假设存在这样的N 点如图,直线DN ∥PQ ,设直线DN 的解析式为y=kx+k ﹣3 由,解得:x 1=﹣1,x 2=3k ﹣1,∴N (3k ﹣1,3k 2﹣3)∵四边形DMPN 是菱形,∴DN=DM ,∴(3k)2+(3k2)2=()2+()2,整理得:3k4﹣k2﹣4=0,∵k2+1>0,∴3k2﹣4=0,解得k=±,∵k<0,∴k=﹣,∴P(﹣3﹣1,6),M(﹣﹣1,2),N(﹣2﹣1,1)∴PM=DN=2,∵PM∥DN,∴四边形DMPN是平行四边形,∵DM=DN,∴四边形DMPN为菱形,∴以DP为对角线的四边形DMPN能成为菱形,此时点N的坐标为(﹣2﹣1,1).数学试卷及试题2016年6月21日。
成都市2016 年高中阶段教育学校统一招生考试(含成都市初三毕业会考)数学注意事项:1. 全卷分A 卷和B 卷,A 卷满分100 分,B 卷满分50 分;考试时间120 分钟.2. 在作答前,考生务必将自己的姓名、准考证号涂写在试卷和答题卡规定的地方,考试结束,监考人员将试卷和答题卡一并收回。
3.选择题部分必须使用2B 铅笔填涂;非选择题部分必须使用0.5 毫米黑色墨水签字笔书写,字体工整、笔迹清楚。
4.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
5.保持答题卡清洁,不得折叠、污染、破损等。
A 卷(共100 分)第I卷(选择题,共30分)一、选择题(本大题共10 个小题,每小题3分,共30 分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1. 在-3,-1,1,3四个数中,比-2 小的数是( )(A) -3 (B) -1 (C) 1 (D) 32.如图所示的几何体是由5 个大小相同的小立方块搭成,它的俯视图是( )11. 已知 |a+2|=0,贝U a = ____ .12. 如图,△ ABC ◎△ A'B'C',其中/ A = 36° / C = 24° 则/ B=8. 学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的 平时成绩的平均数 x (单位:分)及方差 s 2如下表所示:甲 乙 丙 丁 x7 8 8 7 2s11.211.8如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是( )(A )甲(B )乙 (C )丙 (D ) 丁29.二次函数y 2x 3的图象是一条抛物线,下列关于该抛物线的说法,正确的是()第口卷(非选择题,共70 分)、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)3 24•计算 x y 的结果是() 56 3 2(A) x y(B) x y (C) x y5.如图,\J 12,/ 1=56°,则/ 2的度数为( ) (A) 34 (B) 56 (C) 124(D) 1466.平面直角坐标系中,点 P (-2, 3)关于x 轴对称的点的坐标为((A )(-2,-3) (B )(2, -3)7.分式方程竺 1的解为() x 3(C)( -3,2)(D)( 3, -2)(A) x=-2(B) x=-3 (C) x=2 (D) x=3(A )抛物线开口向下(B )抛物线经过点(2,3) (C )抛物线的对称轴是直线 x=1(D )抛物线与x 轴有两个交点10.如图, AB 为O O 的直径,点 C 在O O 上,若/ OCA=50 °, AB=4 ,则BC 的长为(A)10(B)10 9 5 (C) 9(D)_5 18(D)6 2)ii6.(本小题满分6分)化简:x -xi7.(本小题满分8分)”这节内容之后,某兴趣小组开展了测量学校旗杆高度的实践活 动,如图,在测点 A 处安置测倾器,量出高度 AB = i.5m ,测得旗杆顶端 D 的仰角/ DBE = 32°量出测点A 到旗杆底部C 的水平距离AC = 20m.根据测量数据,求旗杆 CD 的高度。
2016年四川省成都市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分1.(3分)(2016•成都)在﹣3,﹣1,1,3四个数中,比﹣2小的数是()A.﹣3 B.﹣1 C.1 D.32.(3分)(2016•成都)如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.3.(3分)(2016•成都)成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一.今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流纪录,这也是今年以来第四次客流纪录的刷新,用科学记数法表示181万为()A.18.1×105B.1.81×106C.1.81×107D.181×1044.(3分)(2016•成都)计算(﹣x3y)2的结果是()A.﹣x5y B.x6y C.﹣x3y2D.x6y25.(3分)(2016•成都)如图,l1∥l2,∠1=56°,则∠2的度数为()A.34° B.56°C.124°D.146°6.(3分)(2016•成都)平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为()A.(﹣2,﹣3)B.(2,﹣3) C.(﹣3,﹣2)D.(3,﹣2)7.(3分)(2016•成都)分式方程=1的解为()A.x=﹣2 B.x=﹣3 C.x=2 D.x=38.(3分)(2016•成都)学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加2甲乙丙丁7s2 1A.甲B.乙C.丙D.丁9.(3分)(2016•成都)二次函数y=2x2﹣3的图象是一条抛物线,下列关于该抛物线的说法,正确的是()A.抛物线开口向下B.抛物线经过点(2,3)C.抛物线的对称轴是直线x=1 D.抛物线与x轴有两个交点10.(3分)(2016•成都)如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则的长为()A.πB.πC.π D.π二、填空题:本大题共4个小题,每小题4分,共16分11.(4分)(2016•成都)已知|a+2|=0,则a=.12.(4分)(2016•成都)如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=.13.(4分)(2016•成都)已知P1(x1,y1),P2(x2,y2)两点都在反比例函数y=的图象上,且x1<x2<0,则y1y2(填“>”或“<”).14.(4分)(2016•成都)如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为.三、解答题:本大共6小题,共54分15.(12分)(2016•成都)(1)计算:(﹣2)3+﹣2sin30°+(2016﹣π)0(2)已知关于x的方程3x2+2x﹣m=0没有实数解,求实数m的取值范围.16.(6分)(2016•成都)化简:(x﹣)÷.17.(8分)(2016•成都)在学习完“利用三角函数测高”这节内容之后,某兴趣小组开展了测量学校旗杆高度的实践活动,如图,在测点A处安置测倾器,量出高度AB=1.5m,测得旗杆顶端D的仰角∠DBE=32°,量出测点A到旗杆底部C的水平距离AC=20m,根据测量数据,求旗杆CD的高度.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)18.(8分)(2016•成都)在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A,B,C,D表示);(2)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,求抽到的两张卡片上的数都是勾股数的概率.19.(10分)(2016•成都)如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.20.(10分)(2016•成都)如图,在Rt△ABC中,∠ABC=90°,以CB为半径作⊙C,交AC于点D,交AC的延长线于点E,连接ED,BE.(1)求证:△ABD∽△AEB;(2)当=时,求tanE;(3)在(2)的条件下,作∠BAC的平分线,与BE交于点F,若AF=2,求⊙C的半径.四、填空题:每小题4分,共20分21.(4分)(2016•成都)第十二届全国人大四次会议审议通过的《中华人民共和国慈善法》将于今年9月1日正式实施,为了了解居民对慈善法的知晓情况,某街道办从辖区居民中随机选取了部分居民进行调查,并将调查结果绘制成如图所示的扇形图.若该辖区约有居民9000人,则可以估计其中对慈善法“非常清楚”的居民约有人.22.(4分)(2016•成都)已知是方程组的解,则代数式(a+b)(a﹣b)的值为.23.(4分)(2016•成都)如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=24,AH=18,⊙O的半径OC=13,则AB=.24.(4分)(2016•成都)实数a,n,m,b满足a<n<m<b,这四个数在数轴上对应的点分别为A,N,M,B(如图),若AM2=BM•AB,BN2=AN•AB,则称m为a,b的“大黄金数”,n为a,b的“小黄金数”,当b﹣a=2时,a,b的大黄金数与小黄金数之差m﹣n=.25.(4分)(2016•成都)如图,面积为6的平行四边形纸片ABCD中,AB=3,∠BAD=45°,按下列步骤进行裁剪和拼图.第一步:如图①,将平行四边形纸片沿对角线BD剪开,得到△ABD和△BCD纸片,再将△ABD纸片沿AE剪开(E为BD上任意一点),得到△ABE和△ADE纸片;第二步:如图②,将△ABE纸片平移至△DCF处,将△ADE纸片平移至△BCG处;第三步:如图③,将△DCF纸片翻转过来使其背面朝上置于△PQM处(边PQ与DC重合,△PQM和△DCF在DC同侧),将△BCG纸片翻转过来使其背面朝上置于△PRN处,(边PR与BC重合,△PRN和△BCG在BC同侧).则由纸片拼成的五边形PMQRN中,对角线MN长度的最小值为.五、解答题:共3个小题,共30分26.(8分)(2016•成都)某果园有100颗橙子树,平均每颗树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x棵橙子树.(1)直接写出平均每棵树结的橙子个数y(个)与x之间的关系;(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?27.(10分)(2016•成都)如图①,△ABC中,∠ABC=45°,AH⊥BC于点H,点D在AH上,且DH=CH,连结BD.(1)求证:BD=AC;(2)将△BHD绕点H旋转,得到△EHF(点B,D分别与点E,F对应),连接AE.①如图②,当点F落在AC上时,(F不与C重合),若BC=4,tanC=3,求AE的长;②如图③,当△EHF是由△BHD绕点H逆时针旋转30°得到时,设射线CF与AE相交于点G,连接GH,试探究线段GH与EF之间满足的等量关系,并说明理由.28.(12分)(2016•成都)如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2﹣3与x 轴交于A,B两点(点A在点B的左侧),与y轴交于点C(0,﹣),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧.(1)求a的值及点A,B的坐标;(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由.2016年四川省成都市中考数学试卷参考答案一、选择题1.A2.C3.B4.D5.C6.A7.B8.C9.D10.B二、填空题11.﹣212.120°13.>14.3三、解答题15.m<16.解:原式=•=•=x+1.17.解:由题意得AC=20米,AB=1.5米,∵∠DBE=32°,∴DE=BEtan32°≈20×0.62=12.4米,∴CD=DE+CE=DE+AB=12.4+1.5≈13.9(米).答:旗杆CD的高度约13.9米.18.解:(1)画树状图为:共有12种等可能的结果数;(2)抽到的两张卡片上的数都是勾股数的结果数为6,所以抽到的两张卡片上的数都是勾股数的概率==.19.解:(1)根据题意,将点A(2,﹣2)代入y=kx,得:﹣2=2k,解得:k=﹣1,∴正比例函数的解析式为:y=﹣x,将点A(2,﹣2)代入y=,得:﹣2=,解得:m=﹣4;∴反比例函数的解析式为:y=﹣;(2)直线OA:y=﹣x向上平移3个单位后解析式为:y=﹣x+3,则点B的坐标为(0,3),联立两函数解析式,解得:或,∴第四象限内的交点C的坐标为(4,﹣1),∴S△ABC=×(1+5)×4﹣×5×2﹣×2×1=6.20.解:(1)∵∠ABC=90°,∴∠ABD=90°﹣∠DBC,由题意知:DE是直径,∴∠DBE=90°,∴∠E=90°﹣∠BDE,∵BC=CD,∴∠DBC=∠BDE,∴∠ABD=∠E,∵∠A=∠A,∴△ABD∽△AEB;(2)∵AB:BC=4:3,∴设AB=4,BC=3,∴AC==5,∵BC=CD=3,∴AD=AC﹣CD=5﹣3=2,由(1)可知:△ABD∽△AEB,∴==,∴AB2=AD•AE,∴42=2AE,∴AE=8,在Rt△DBE中tanE====;(3)过点F作FM⊥AE于点M,∵AB:BC=4:3,∴设AB=4x,BC=3x,∴由(2)可知;AE=8x,AD=2x,∴DE=AE﹣AD=6x,∵AF平分∠BAC,∴=,∴==,∵tanE=,∴cosE=,sinE=,∴=,∴BE=,∴EF=BE=,∴sinE==,∴MF=,∵tanE=,∴ME=2MF=,∴AM=AE﹣ME=,∵AF2=AM2+MF2,∴4=+,∴x=,∴⊙C的半径为:3x=.四、填空题21.解:根据题意得:9000×(1﹣30%﹣15%﹣×100%)=9000×30%=2700(人).答:可以估计其中对慈善法“非常清楚”的居民约有2700人.故答案为:2700.22.﹣823..24.﹣4.25..五、解答题26.解:(1)y=600﹣5x(0≤x<120);(2)设果园多种x棵橙子树时,可使橙子的总产量为w,则w=(600﹣5x)(100+x)=﹣5x2+100x+60000=﹣5(x﹣10)2+60500,则果园多种10棵橙子树时,可使橙子的总产量最大,最大为60500个.27.解:(1)在Rt△AHB中,∠ABC=45°,∴AH=BH,在△BHD和△AHC中,,∴△BHD≌△AHC,∴BD=AC,(2)①如图,在Rt△AHC中,∵tanC=3,∴=3,设CH=x,∴BH=AH=3x,∵BC=4,∴3x+x=4,∴x=1,∴AH=3,CH=1,由旋转知,∠EHF=∠BHD=∠AHC=90°,EH=AH=3,CH=DH=FH,∴∠EHA=∠FHC,,∴△EHA≌△FHC,∴∠EAH=∠C,∴tan∠EAH=tanC=3,过点H作HP⊥AE,∴HP=3AP,AE=2AP,在Rt△AHP中,AP2+HP2=AH2,∴AP2+(3AP)2=9,∴AP=,∴AE=;②由①有,△AEH和△FHC都为等腰三角形,∴∠GAH=∠HCG=90°,∴△AGQ∽△CHQ,∴,∴,∵∠AQC=∠GQE,∴△AQC∽△GQH,∴=sin30°=.28.解:(1)∵抛物线与y轴交于点C(0,﹣).∴a﹣3=﹣,解得:a=,∴y=(x+1)2﹣3当y=0时,有(x+1)2﹣3=0,∴x1=2,x2=﹣4,∴A(﹣4,0),B(2,0).(2)∵A(﹣4,0),B(2,0),C(0,﹣),D(﹣1,﹣3)∴S四边形ABCD=S△ADH+S梯形OCDH+S△BOC=×3×3+(+3)×1+×2×=10.从面积分析知,直线l只能与边AD或BC相交,所以有两种情况:①当直线l边AD相交与点M 1时,则S=×10=3,∴×3×(﹣y)=3∴y=﹣2,点M1(﹣2,﹣2),过点H(﹣1,0)和M1(﹣2,﹣2)的直线l的解析式为y=2x+2.②当直线l边BC相交与点M2时,同理可得点M2(,﹣2),过点H(﹣1,0)和M2(,﹣2)的直线l的解析式为y=﹣x﹣.综上所述:直线l的函数表达式为y=2x+2或y=﹣x﹣.(3)设P(x1,y1)、Q(x2,y2)且过点H(﹣1,0)的直线PQ的解析式为y=kx+b,∴﹣k+b=0,∴b=k,∴y=kx+k.由,∴+(﹣k)x﹣﹣k=0,∴x1+x2=﹣2+3k,y1+y2=kx1+k+kx2+k=3k2,∵点M是线段PQ的中点,∴由中点坐标公式的点M(k﹣1,k2).假设存在这样的N点如图,直线DN∥PQ,设直线DN的解析式为y=kx+k﹣3由,解得:x1=﹣1,x2=3k﹣1,∴N(3k﹣1,3k2﹣3)∵四边形DMPN是菱形,∴DN=DM,∴(3k)2+(3k2)2=()2+()2,整理得:3k4﹣k2﹣4=0,∵k2+1>0,∴3k2﹣4=0,解得k=±,∵k<0,∴k=﹣,∴P(﹣3﹣1,6),M(﹣﹣1,2),N(﹣2﹣1,1)∴PM=DN=2,∵PM∥DN,∴四边形DMPN是平行四边形,∵DM=DN,∴四边形DMPN为菱形,∴以DP为对角线的四边形DMPN能成为菱形,此时点N的坐标为(﹣2﹣1,1).。
2016年四川省成都市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分) 1.在-3,-1,1,3四个数中,比-2小的数是( ) A .-3B .-1C .1D .32.如图的几何体是由5个大小相同的小立方块搭成的,它的俯视图是( )(第2题图)A B C D3.成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一.今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流记录,这也是今年以来第四次客流记录的刷新,用科学记数法表示181万为( ) A .18.1×105B .1.81×106C .1.81×107D .181×1044.计算(-x 3y )2的结果是( ) A .-x 5y B .x 6yC .-x 3y 2D .x 6y 25.如图,l 1∥l 2,若∠1=56°,则∠2的度数为( )(第5题图)A .34°B .56°C .124°D .146°6.平面直角坐标系中,点P (-2,3)关于x 轴对称的点的坐标为( ) A .(-2,-3) B .(2,-3) C .(-3,-2)D .(3,-2)7.分式方程32 x x=1的解为( ) A .x =-2 B .x =-3 C .x =2 D .x =38.学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数x (单位长度:分)及方差s 2如下表:甲 乙 丙 丁 x7 8 8 7 s 211.211.8如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是( ) A .甲B .乙C .丙D .丁9.二次函数y =2x 2-3的图像是一条抛物线,下列关于该抛物线的说法,正确的是( ) A .抛物线开口向下B .抛物线经过点(2,3)C .抛物线的对称轴是直线x =1D .抛物线与x 轴有两个交点10.如图,AB 为⊙O 的直径,点C 在⊙O 上,若∠OCA =50°,AB =4,则BC 的长为( )(第10题图)A .310π B .910π C .95π D .185π 二、填空题(本题共4小题,每小题4分,共16分) 11.若|a +2|=0,则a = .12.如图,若△ABC ≌△A′B′C′,其中∠A =36°,∠C′=24°,则∠B = .(第12题图)13.若P 1(x 1,y 1),P 2(x 2,y 2)两点都在反比例函数y =x2的图像上,且x 1<x 2<0,则 y 1 y 2(填“>”或“<”).14.如图,在矩形ABCD 中,AB =3,对角线AC ,BD 相交于点O ,AE 垂直平分OB 于点E ,则AD 的长为 .(第13题图)三、解答题(本题共6小题,共54分)15.(12分)(1)计算:(-2)3+16-2sin 30°+(2 016-π)0.(2)已知关于x 的方程3x 2+2x -m =0没有实数解,求实数m 的取值范围. 16.(6分)化简:(x -x 1)÷x xx x -+-2212.17.(8分)在学习完“利用三角函数测高”这节内容之后,某兴趣小组开展了测量学校旗杆高度的实践活动,如图,在测点A 处安置测倾器,量出高度AB =1.5 m ,测得旗杆顶端D 的仰角∠DBE =32°,量出测点A 到旗杆底部C 的水平距离AC =20 m ,根据测量数据,求旗杆CD 的高度.(参考数据:sin 32°≈0.53,cos 32°≈0.85,tan 32°≈0.62)(第17题图)18.(8分)在四张编号为A ,B ,C ,D 的卡片(除编号外,其余完全相同)的正面分别写上如图的正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(第18题图)(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A ,B ,C ,D 表示);(2)我们知道,满足a 2+b 2=c 2的三个正整数a ,b ,c 成为勾股数,求抽到的两张卡片上的数都是勾股数的概率.19.(10分)如图,在平面直角坐标系xOy 中,正比例函数y =kx 的图像与反比例函数y =xm的图像都经过点A (2,-2). (1)分别求这两个函数的表达式;(2)将直线OA 向上平移3个单位长度后与y 轴交于点B ,与反比例函数图像在第四象限内的交点为C ,连接AB ,AC ,求点C 的坐标及△ABC 的面积.(第19题图)20.(10分)如图,在Rt △ABC 中,∠ABC =90°,以CB 为半径作⊙C ,交AC 于点D ,交AC 的延长线于点E ,连接BD ,BE . (1)求证:△ABD ∽△AEB . (2)当BC AB =34时,求tan E . (3)在(2)的条件下,作∠BAC 的平分线,与BE 交于点F ,若AF =2,求⊙C 的半径.(第20题图)四、填空题(本题共5小题,每小题4分,共20分)21.第十二届全国人大四次会议审议通过的《中华人民共和国慈善法》将于今年9月1日正式实施,为了了解居民对慈善法的知晓情况,某街道办从辖区居民中随机选取了部分居民进行调查,并将调查结果绘制成如图的扇形图.若该辖区约有居民9 000人,则可以估计其中对慈善法“非常清楚”的居民有 人.(第21题图)22.若⎩⎨⎧-==23y x ,是方程组⎩⎨⎧-=+=+73ay bx by ax ,的解,则代数式(a +b )(a -b )的值为 . 23.如图,△ABC 内接于⊙O ,AH ⊥BC 于点H ,若AC =24,AH =18,⊙O 的半径OC =13,则AB = .(第23题图)24.实数a ,n ,m ,b 满足a <n <m <b ,这四个数在数轴上对应的点分别为A ,N ,M ,B (如图),若AM 2 =BM • AB ,BN 2 =AN • AB ,则称m 为a ,b 的“大黄金数”,n 为a ,b 的“小黄金数”,当b -a =2时,a ,b 的大黄金数与小黄金数之差m -n = .(第24题图)25.如图,在面积为6的平行四边形纸片ABCD 中,AB =3,∠BAD =45°,按下列步骤进行裁剪和拼图.① ② ③(第25题图)第一步:如图①,将平行四边形纸片沿对角线BD 剪开,得到△ABD 和△BCD 纸片,再将△ABD 纸片沿AE 剪开(E 为BD 上任意一点),得到△ABE 和△ADE 纸片;第二步:如图②,将△ABE 纸片平移至△DCF 处,将△ADE 纸片平移至△BCG 处; 第三步:如图③,将△DCF 纸片翻转过来使其背面朝上置于△PQM 处(边PQ 与DC 重合,△PQM 和△DCF 在DC 同侧),将△BCG 纸片翻转过来使其背面朝上置于△PRN 处(边PR 与BC 重合,△PRN 和△BCG 在BC 同侧).则由纸片拼成的五边形PMQRN 中,对角线MN 长度的最小值为 . 五、解答题(本题共3小题,共30分)26.(8分)某果园有100棵橙子树,平均每棵树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x 棵橙子树. (1)直接写出平均每棵树结的橙子个数y (个)与x 之间的关系.(2)当果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?27.(10分)如图①,在△ABC 中,∠ABC =45°,AH ⊥BC 于点H ,点D 在AH 上,且DH =CH ,连接BD .① ② ③(第27题图)(1)求证:BD =AC .(2)将△BHD 绕点H 旋转,得到△EHF (点B ,D 分别与点E ,F 对应),连接AE . ①如图②,当点F 落在AC 上时(点F 不与点C 重合),若BC =4,tan C =3,求AE 的长; ②如图③,当△EHF 是由△BHD 绕点H 逆时针旋转30°得到时,设射线CF 与AE 相交于点G ,连接GH ,试探究线段GH 与EF 之间满足的等量关系,并说明理由.28.(12分)如图,在平面直角坐标系xOy 中,抛物线y =a (x +1)2-3与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C (0,-38),顶点为D ,对称轴与x 轴交于点H ,过点H 的直线l 交抛物线于P ,Q 两点,点Q 在y 轴的右侧. (1)求a 的值及点A ,B 的坐标.(2)当直线l 将四边形ABCD 分为面积比为3:7的两部分时,求直线l 的函数表达式.(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由.(第28题图)参考答案一、1.A 【分析】∵|-3|=3,|-2|=2,3<2,∴比-2小的数是-3.故选A.2.C 【分析】从上面看易得俯视图是.故选C.3.B 【分析】181万=1 810 000=1.81×106.故选B.4.D 【分析】(-x3y)2=x6y2.故选D.5.C 【分析】如答图,∵l1∥l2,∴∠1=∠3.∵∠1=56°,∴∠3=56°.∵∠2+∠3=180°,∴∠2=124°.故选C.(第5题答图)6.A 【分析】点P(-2,3)关于x轴对称的点的坐标为(-2,-3).故选A.7.B 【分析】去分母,得2x=x-3.解得x=-3.经检验,x=-3是分式方程的解.所以分式方程的解是x =-3.故选B .8.C 【分析】因为乙组、丙组的平均数比甲组、丁组大,而丙组的方差比乙组的小,所以丙组的成绩比较稳定,所以丙组的成绩较好且状态稳定,应选的组是丙组.故选C . 9.D 【分析】A .a =2,则抛物线y =2x 2-3的开口向上,故错误;B .当x =2时,y =2×4-3=5,则抛物线不经过点(2,3),故错误;C .抛物线的对称轴为直线x =0,故错误;D .当y =0时,2x 2-3=0,此方程有两个不相等的实数解,所以抛物线与x 轴有两个交点,故正确.故选D .10.B 【分析】∵∠OCA =50°,OA =OC ,∴∠A =50°,∴∠BOC =100°.∵AB =4,∴BO =2. ∴BC 的长为1802π100⨯=910π.故选B . 二、11.-2 【分析】由绝对值的意义,得a +2=0,解得a =-2.12.120° 【分析】∵△ABC ≌△A′B′C′,∴∠C =∠C′ =24°,∴∠B =180°-∠A -∠C =120°. 13.> 【分析】∵在反比例函数y =x2中,k =2>0,∴该函数在x <0内单调递减.∵x 1<x 2<0, ∴y 1>y 2.14.33 【分析】∵四边形ABCD 是矩形,∴OB =OD ,OA =OC ,AC =BD ,∴OA =OB .∵AE 垂直平分OB ,∴AB =AO ,∴OA =AB =OB =3,∴BD =2OB =6,∴AD =AB BD -22=3622-= 33.三、15.解:(1)(-2)3+16-2sin 30°+(2 016-π)0 =-8+4-1+1 =-4.(2)∵3x 2+2x -m =0没有实数解, ∴b 2-4ac =4-4×3(-m )<0, 解得m <-31.故实数m 的取值范围是m <-31.16.解:原式=x x 12-•1222+--x xx x =x x x )1)(1(-+•)1()1(2--x x x =x +1. 17.解:由题意,得AC =20 m ,AB =1.5 m . ∵∠DBE =32°,∴DE =BE • tan 32°≈20×0.62=12.4(m ), ∴CD =DE +CE =DE +AB ≈12.4+1.5≈13.9(m ). 答:旗杆CD 的高度约为13.9 m . 18.解:(1)画树状图如答图.(第18题答图)共有12种等可能的结果数.(2)抽到的两张卡片上的数都是勾股数的结果数为6, 所以抽到的两张卡片上的数都是勾股数的概率为36=21. 19.解:(1)根据题意,将点A (2,-2)代入y =kx , 得-2=2k ,解得k =-1.∴正比例函数的表达式为y =-x . 将点A (2,-2)代入y =xm,得-2=2m ,解得m =-4.∴反比例函数的表达式为y =-x4. (2)将直线OA :y =-x 向上平移3个单位长度后的表达式为y =-x +3, 则点B 的坐标为(0,3).联立两个函数的表达式,得34y x y x =-+⎧⎪⎨=-⎪⎩,,解得⎩⎨⎧=-=41y x ,或⎩⎨⎧-==.14y x ,∴第四象限内的交点C 的坐标为(4,-1). ∵OA ∥BC , ∴S △ABC = S △OBC =21BO • x C =21×3×4=6. 20.(1)证明:∵∠ABC =90°,∴∠ABD =90°-∠DBC . 由题意知,DE 是⊙C 的直径, ∴∠DBE =90°,∴∠E =90°-∠BDE .∵BC =CD ,∴∠DBC =∠BDE ,∴∠ABD =∠E . 又∵∠A =∠A ,∴△ABD ∽△AEB .(2)解:∵AB :BC =4:3,∴设AB =4,BC =3,∴AC =BC AB +22=5. ∵BC =CD =3,∴AD =AC -CD =5-3=2. 由(1)可知,△ABD ∽△AEB , ∴BEBDAB AD AE AB ==,∴AB 2 =AD • AE , 即42=2AE ,解得AE =8. 在Rt △DBE 中,tan E =2184===AE AB BE BD . (3)解:如答图,过点F 作FM ⊥AE 于点M . ∵AB :BC =4:3,∴设AB =4x ,BC =3x . 由(2)可知,AE =8x ,AD =2x , ∴DE =AE -AD =6x . ∵AF 平分∠BAC ,∴AE AB EF BF ==x x 84=21. ∵tan E =21,∴cos E =552,sin E =55. ∴DE BF =552,∴BE =5512x , ∴EF =32BE =558x .∴sin E =EF MF =55,∴MF =58x . ∵tan E =21,∴ME =2MF =516x , ∴AM =AE -ME =524x . ∵AF 2 =AM 2 + MF 2,∴4=(524x )2+(58x )2, 解得x =810. ∴⊙C 的半径为3x =8103.(第20题答图)四、21.2 700 【分析】根据题意,可以估计其中对慈善法“非常清楚”的居民有 9 000×(1 -30% -15% -36090×100%)= 9 000×30%=2 700(人). 22.-8 【分析】把⎩⎨⎧-==23y x ,代入方程组,得⎩⎨⎧-=-=-.②723①323a b b a ,由①×3+②×2,得5a =-5,即a =-1.把a =-1代入①,得b =-3.则(a +b )(a -b )=a 2-b 2=1-9=-8.23.239 【分析】如答图,作直径AE ,连接CE ,则∠ACE =90°.∵AH ⊥BC ,∴∠AHB =90°, ∴∠ACE =∠AHB .∵∠B =∠E ,∴△ABH ∽△AEC ,∴AC AH AE AB =,∴AB =ACAE AH ∙.∵AC =24,AH =18,AE =2OC =26,∴AB =242618⨯=239.(第23题答图) 24. 25-4 【分析】由题意,得AB =b -a =2.设AM =x ,则BM =2-x .∴x 2=2(2-x ), 解得x 1=-1+5,x 2=-1-5(舍去),∴AM =BN =5-1.∴MN =m -n =AM +BN -2=2(5-1)-2=25-4. 25.5106 【分析】∵△ABE ≌△CDF ≌△PMQ ,∴AE =DF =PM ,∠EAB =∠FDC = ∠MPQ .∵△ADE ≌△BCG ≌△PRN ,∴AE =BG =PN ,∠DAE =∠CBG =∠RPN ,∴PM =PN . ∵四边形ABCD 是平行四边形,∴∠DAB =∠DCB =45°,∴∠MPN =90°,∴△MPN 是等腰直角三角形.当PM 最小时,对角线MN 最小,即AE 取最小值,∴当AE ⊥BD 时,AE 取最小值.如答图,过点D 作DF ⊥AB 于点F .∵平行四边形ABCD 的面积为6,AB =3,∴DF =2.∵∠DAB =45°,∴AF =DF =2,∴BF =1,∴BD =BF DF +22=5,∴AE =BD AB DF ∙=532⨯=556,∴MN =2AE =5106.(第25题答图) 五、26.解:(1)平均每棵树结的橙子个数y (个)与x 之间的关系为y =600-5x (0≤x <120).(2)设果园多种x 棵橙子树时,可使橙子的总产量为w ,则w =(600-5x )(100+x )=-5x 2+100x +60 000=-5(x -10)2+60 500.∵a =-5<0,∴w 的最大值是60 500.答:当果园多种10棵橙子树时,可使橙子的总产量最大,最大为60 500个.27.(1)证明:在Rt △AHB 中,∠ABC =45°,∴AH =BH .在△BHD 和△AHC 中,⎪⎩⎪⎨⎧=︒=∠=∠=,,,CH DH AHC BHD BH AH 90∴△BHD ≌△AHC ,∴BD =AC .(2)解:①如答图①.在Rt △AHC 中,∵tan C =3,∴CHAH =3. 设CH =x ,则BH =AH =3x .∵BC =4,∴3x +x =4,解得x =1.∴AH =3,CH =1.由旋转知,∠EHF =∠BHD =∠AHC =90°,EH =AH =3,CH =DH =FH ,∴∠EHF +∠AHF =∠AHC +∠AHF ,∴∠EHA =∠FHC ,HC FH AH EH ==1, ∴△EHA ∽△FHC ,∴∠EAH =∠C ,∴tan ∠EAH =tan C =3.过点H 作HP ⊥AE ,则HP =3AP ,AE =2AP .在Rt △AHP 中,∵AP 2+HP 2=AH 2,∴AP 2+(3AP )2=9,解得AP =10103, ∴AE =10103. ②(方法一)如答图②,∵△EHF 是由△BHD 绕点H 逆时针旋转30°得到的,∴HD =HF ,∠AHF =30°,∴∠CHF =90°+30°=120°.由①知,△AEH 和△FHC 都为等腰三角形,∴∠GAH =∠HCG =30°,∴CG ⊥AE ,∴C ,H ,G ,A 四点共圆,∴∠CGH =∠CAH .设CG 与AH 交于点Q .∵∠AQC =∠GQH ,∴△AQC ∽△GQH , ∴︒==30sin 1GQ AQ HG AC =2. ∵△EHF 是由△BHD 绕点H 逆时针旋转30°得到的,∴EF =BD .由(1)知,BD =AC ,∴EF =AC , ∴︒===30sin 1GQ AQ GH AC HG EF =2, 即EF =2HG .(方法二)如答图③,取EF 的中点K ,连接GK ,HK .由旋转知,∠EHF =90°,∴EK =HK =21EF . 由旋转知,∠CGE =∠AGC =90°,∴EK =GK =21EF . ∴HK =GK .∵EK =HK ,∴∠FKG =2∠AEF .∵EK =GK ,∴∠HKF =2∠HEF .由旋转知,∠AHF =30°,∴∠AHE =120°.由(1)知,BH =AH .∵BH =EH ,∴AH =EH ,∴∠AEH =30°,∴∠HKG =∠FKG +∠HKF =2∠AEF +2∠HEF =2∠AEH =60°,∴△HKG 是等边三角形,∴GH =GK ,∴EF =2GK =2GH ,即EF =2GH .① ② ③(第27题答图)28.解:(1)∵抛物线与y 轴交于点C (0,-38), ∴a -3=-38,解得a =31,∴y =31(x +1)2-3. 当y =0时,有31(x +1)2-3=0, 解得x 1=2,x 2=-4,∴A (-4,0),B (2,0).(2)∵A (-4,0),B (2,0),C (0,-38),D (-1,-3), ∴S 四边形ABCD = S △ADH + S 梯形OCDH + S △BOC =21×3×3+21×(38+3)×1+21×2×38=10. 从面积分析知,直线l 只能与边AD 或BC 相交,所以有两种情况:①当直线l 与边AD 相交于点M 1时,1AHM S =103×10=3, ∴21×3×(-y M 1)=3, ∴y M 1=-2,∴M 1(-2,-2).过点H (-1,0)和M 1(-2,-2)的直线l 的表达式为y =2x +2.②当直线l 与边BC 相交于点M 2时,同理可知,点M 2(21,-2). 过点H (-1,0)和M 2(21,-2)的直线l 的表达式为y =-34x -34. 综上所述,直线l 的函数表达式为y =2x +2或y =-34x -34. (3)设P (x 1,y 1),Q (x 2,y 2)且过点H (-1,0)的直线PQ 的表达式为y =kx +b , ∴-k +b =0,∴b =k ,∴y =kx +k .由⎪⎩⎪⎨⎧-+=+=,,3832312x x y k kx y 得31x 2+(32-k )x -38-k =0, ∴x 1+x 2=-2+3k ,y 1+y 2=kx 1+k +kx 2+k =3k 2.∵点M 是线段PQ 的中点,∴M (23k -1,23k 2). 假设存在这样的点N ,如答图,直线DN ∥PQ ,设直线DN 的表达式为y =kx +k -3. 由⎪⎩⎪⎨⎧-+=-+=,,38323132x x y k kx y 解得12131x x k =-⎧⎨=-⎩,. ∴N (3k -1,3k 2-3).∵四边形DMPN 是菱形,∴DN =DM ,∴(3k )2+(3k 2)2=(23k )2+(k 223+3)2, 整理,得3k 4-k 2-4=0.∵k 2+1>0,∴3k 2-4=0,解得k =±332. ∵k <0,∴k =-332. ∴P (-33-1,6),M (-3-1,2),N (-23-1,1),∴PM =DN =27.∵PM ∥DN ,∴四边形DMPN 是平行四边形.∵DM =DN ,∴四边形DMPN 为菱形,∴以DP 为对角线的四边形DMPN 能成为菱形,此时点N 的坐标为(-23-1,1).(第28题答图)。
成都市二O—六年高中阶段教育学校统一招生考试(含成都市初三毕业会考)数学A卷(共100分)第I卷(选择题,共30分)一、选择题 (本大题共10 个小题,每小题 3 分,共30 分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1. 在-3,-1,1,3 四个数中,比-2 小的数是( )(A) -3 (B) -1 (C) 1 (D) 3答案:A解析:本题考查数大小的比较。
两个负数比较,绝对值大的反而小,故—3V —2,选A。
2.如图所示的几何体是由5 个大小相同的小立方块搭成,它的俯视图是( )答案:C解析:本题考查三视图。
俯视图是物体向下正投影得到的视图,上面往下看,能看到四个小正方形,故选C。
3. 成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一,今年 4 月29 日成都地铁安全运输乘客约181 万乘次,又一次刷新客流记录,这也是今年以来第四次客流记录的刷新,用科学记数法表示181 万为( )(A) 18.1 X 105(B) 1.81 X 106(C) 1.81 X 107(D) 181 X 104答案:B解析:本题考查科学记数法。
科学记数的表示形式为a 10n形式,其中1 |a| 10,n为整数,181万=1810000 =1.81 X 106。
故选B。
24.计算x3y的结果是()56 3 26(A) x y(B) x y(C) x y(D) x y 答案:D解析:考察积的乘方,2x y =(3\2 2 6 2x ) y = x y5•如图,I1//I2,/仁56 °,则/ 2的度数为() ?/5X L(A) 34 °(B) 56 °y 2 /打________ N _______(C) 124 °(D)146 °答案:C解析:两直线平行,同旁内角互补,/ 1的对顶角与/ 2互补,所以/ 2 = 180°—56°= 124°6. 平面直角坐标系中,点P (-2, 3)关于x轴对称的点的坐标为( )(A) (-2, -3) (B) (2, -3) (C) (-3, 2) (D) ( 3, -2)答案:A解析:关于x轴对称,横坐标不变,纵坐标变为相反数,故选A。
数学试卷 第1页(共24页) 数学试卷 第2页(共24页)绝密★启用前四川省成都市2016年高中阶段教育学校统一招生考试数 学本试卷满分150分,考试时间120分钟.A 卷(共100分) 第Ⅰ卷(选择题 共30分)一、选择题(本大题共10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在3-,1-,1,3四个数中,比2-小的数是( ) A .3-B .1-C .1D .32.如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是( )ABCD3.成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一.2016年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流记录,这也是2016年以来第四次客流记录的刷新.用科学记数法表示181万为( ) A .518.110⨯B .61.8110⨯C .71.8110⨯ D .418110⨯ 4.计算32()x y -的结果是( ) A .5x y -B .6x yC .32x y -D .62x y5.如图,12l l ∥,156∠=,则2∠的度数为( )A .34B .56C .124D .1466.平面直角坐标系中,点3()2,P -关于x 轴对称的点的坐标为( ) A .(2,3)--B .(2,)3-C .()3,2-D .(3,)2- 7.分式方程213xx =-的解为( ) A .2x =-B .3x =-C .2x =D .3x =8.学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛.x 2如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是( )A .甲B .乙C .丙D .丁9.二次函数223y x =-的图象是一条抛物线.下列关于该抛物线的说法,正确的是( ) A .抛物线开口向下B .抛物线经过点(2,3)C .抛物线的对称轴是直线1x =D .抛物线与x 轴有两个交点10.如图,AB 为O 的直径,点C 在O上,若OCA ∠=50,=4AB ,则BC 的长为( )A .10π3B .10π9C .5π9D .5π18第Ⅱ卷(非选择题 共70分)二、填空题(本大题共4个小题,每小题4分,共16分,请把答案填在题中的横线上)-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第3页(共24页) 数学试卷 第4页(共24页)11.已知|2|0a +=,则a = .12.如图,ABC A B C '''≅△△,其中36=A ∠,=24C '∠,则=B ∠.13.已知111(,)P x y ,222(,)P x y 两点都在反比例函数2y x=的图象上,且120x x <<,则1y 2y (填“>”或“<”).14.如图,在矩形ABCD 中,3AB =,对角线AC ,BD 相交于点O ,AE 垂直平分OB 于点E ,则AD 的长为 .三、解答题(本大题共6个小题,共54分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分,每题6分)(1)计算:30(2)2sin30(2016π)-+-.(2)已知关于x 的方程2320x x m +-=没有实数根,求实数m 的取值范围.16.(本小题满分6分)化简:2212+1()x x x x x x --÷-.17.(本小题满分8分)在学习完“利用三角函数测高”这节内容之后,某兴趣小组开展了测量学校旗杆高度的实践活动.如图,在测点A 处安置测倾器,量出高度=1.5m AB ,测得旗杆顶端D 的仰角32DBE ∠=,量出测点A 到旗杆底部C 的水平距离=20cm AC .根据测量数据,求旗杆CD 的高度.(参考数据:sin 320.53≈,cos320.85≈,tan320.62≈)18.(本小题满分8分)在四张编号为A ,B ,C ,D 的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好.现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用画树状图或列表的方法表示两次抽取卡片的所有可能出现的结果;(卡片用A ,B ,C ,D 表示)(2)我们知道,满足222a b c +=的三个正整数a ,b ,c 称为勾股数.求抽到的两张卡片上的数都是勾股数的概率.19.(本小题满分10分)如图,在平面直角坐标系xOy 中,正比例函数y kx =的图象与反比例函数my x=的图象都经过点(2,2)A -.(1)分别求这两个函数的表达式;(2)将直线OA 向上平移3个单位长度后与y 轴相交于点B ,与反比例函数的图象在第四象限内的交点为C ,连接AB ,AC ,求点C 的坐标及ABC △的面积.数学试卷 第5页(共24页) 数学试卷 第6页(共24页)20.(本小题满10分)如图,在Rt ABC △中,90ABC ∠=,以CB 为半径作C ,交AC 于点D ,交AC 的延长线于点E ,连接BD ,BE . (1)求证:ABD AEB △∽△; (2)当43AB BC =时,求tan E ; (3)在(2)的条件下,作BAC ∠的平分线,与BE 交于点F .若2AF =,求C 的半径.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分.请把答案填在题中的横线上) 21.第十二届全国人大四次会议审议通过的《中华人民共和国慈善法》将于2016年9月1日正式实施.为了了解居民对慈善法的知晓情况,某街道办从辖区居民中随机选取了部分居民进行调查,并将调查结果绘制成如图所示的扇形统计图.若该辖区约有居民9 000人,则可以估计其中对慈善法“非常清楚”的居民约有 人.22.已知3,2x y =⎧⎨=-⎩是方程组3,7ax by bx ay +=⎧⎨+=-⎩的解,则代数式()()a b a b +-的值为 .23.如图,ABC △内接于O ,AH BC ⊥于点H .若24AC =,18AH =,O 的半径13OC =,则AB = .24.实数a ,n ,m ,b 满足a n m b <<<,这四个数在数轴上对应的点分别为A ,N ,M ,B (如图),若2AM BM AB =,2BN AN AB =则称m 为a ,b 的“大黄金数”,n 为a ,b 的“小黄金数”.当2b a -=时,a ,b 的大黄金数与小黄金数之差m n -= .25.如图,面积为6的平行四边形纸片ABCD 中,3AB =,45BAD ∠=,按下列步骤进行裁剪和拼图.第一步:如图1,将平行四边形纸片沿对角线BD 剪开,得到ABD △和BCD △纸片,再将ABD △纸片沿AE 剪开(E 为BD 上任意一点),得到ABE △和ADE △纸片; 第二步:如图2,将ABE △纸片平移至DCF △处,将ADE △纸片平移至BCG △处; 第三步:如图3,将DCF △纸片翻转过来使其背面朝上置于PQM △处(边PQ 与DC 重合,PQM △与DCF △在CD 同侧),将BCG △纸片翻转过来使其背面朝上置于PRN △处(边PR 与BC 重合,PRN △与BCG △在BC 同侧).则由纸片拼成的五边形PMQRN 中,对角线MN 长度的最小值为 .二、解答题(本大题共3个小题,共30分,解答应写出必要的文字说明、证明过程或演算步骤)26.(本小题满分8分)某果园有100棵橙子树,平均每棵树结600个橙子.现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.假设果园多种x棵橙子-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共24页) 数学试卷 第8页(共24页)树.(1)直接写出平均每棵树结的橙子数y (个)与x 之间的关系式;(2)果园多种多少棵橙子树时,可以使橙子的总产量最大?最大为多少个?27.(本小题满分10分)如图1,ABC △中,45ABC ∠=,AH BC ⊥于点H ,点D 在AH 上,且DH CH =,连接BD .(1)求证:BD AC =;(2)将BHD △绕点H 旋转,得到EHF △(点B ,D 分别与点E ,F 对应),连接AE . ⅰ)如图2,当点F 落在AC 上时(F 不与C 重合),若4BC =,tan 3C =,求AE 的长; ⅱ)如图3,当EHF △是由BHD △绕点H 逆时针旋转30得到时,设射线CF 与AE 相交于点G ,连接GH .试探究线段GH 与EF 之间满足的等量关系,并说明理由.28.(本小题满分12分)如图,在平面直角坐标系xOy 中,抛物线2(1)3y a x =+-与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点8(0,)3C -,顶点为D ,对称轴与x 轴交于点H .过点H 的直线l 交抛物线于P ,Q 两点,点Q 在y 轴的右侧.(1)求a 的值及点A ,B 坐标;(2)当直线l 将四边形ABCD 分为面积比为3:7的两部分时,求直线l 的函数表达式;(3)当点P 位于第二象限时,设PQ 的中点为M ,点N 在抛物线上,则以DP 为对角线的四边形DMPN能否数学试卷 第9页(共24页) 数学试卷 第10页(共24页)四川省成都市2016年高中阶段教育学校统一招生考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】比2-小的数只有3-,故选A .【提示】利用两个负数,绝对值大的其值反而小,进而得出答案.【考点】有理数大小比较 2.【答案】C【解析】从上面看易得横着的“”字,故选C .【提示】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中. 【考点】简单组合体的三视图 3.【答案】B【解析】181万61810000 1.8110==⨯,故选B .【提示】科学记数法的表示形式为10na ⨯的形式,其中11||0a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【考点】科学记数法—表示较大的数 4.【答案】D【解析】3262()x y x y -=,故选D .【提示】首先利用积的乘方运算法则化简求出答案. 【考点】幂的乘方与积的乘方5.【答案】C【解析】12l l ∥,13∴∠=∠,156∠=︒,356∴∠=︒,23180∠+∠=︒,2124∴∠=︒,故选C .【提示】根据平行线性质求出3150∠=∠=︒,代入23180∠+∠=︒即可求出2∠.【考点】平行线的性质6.【答案】A【解析】点(2,3)P -关于x 轴对称的点的坐标为(2,3)--,故选A .【提示】直接利用关于x 轴对称点的性质,横坐标不变,纵坐标互为相反数,进而得出答案. 【考点】关于x 轴、y 轴对称的点的坐标 7.【答案】B【解析】23x x =-,3x =-,经检验3x =-是原方程的解,故选B .【提示】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 【考点】分式方程的解 8.【答案】C【解析】因为乙组、丙组的平均数比甲组、丁组大,而丙组的方差比乙组的小,所以丙组的成绩比较稳定,所以丙组的成绩较好且状态稳定,应选的组是丙组.故选C . 【提示】先比较平均数得到乙组和丙组成绩较好,然后比较方差得到丙组的状态稳定,于是可决定选丙组去参赛. 【考点】方差,算术平均数9.【答案】D【解析】A :2a =,则抛物线223y x =-的开口向上,所以A 选项错误;B :当2x =时,2435y =⨯-=,则抛物线不经过点(2,3),所以B 选项错误;C :抛物线的对称轴为直线0x =,所以C 选项错误;D :当0y =时,2230x -=,此方程有两个不相等的实数解,所以D 选项正确.故选D . 【提示】根据二次函数的性质对A ,C 进行判断;根据二次函数图象上点的坐标特征对B 进行判断;利用方程2230x -=解的情况对D 进行判断.【考点】二次函数的性质 10.【答案】B 【解析】50OCA ∠=︒,OA OC =,50A ∴∠=︒,100BOC ∴∠=︒,4AB =,2BO ∴=,BC ∴的长为:100π210π1809⨯=,故选B . 【提示】直接利用等腰三角形的性质得出A ∠的度数,再利用圆周角定理得出BOC ∠的度数,再利用弧长公式求出答案.【考点】弧长的计算,圆周角定理第Ⅱ卷二、填空题 11.【答案】2-【解析】由绝对值的意义得20a +=,解得:2a =-;故答案为2-.【提示】根据绝对值的意义得出20a +=,即可得出结果.数学试卷 第11页(共24页)数学试卷 第12页(共24页)【考点】绝对值 12.【答案】120 【解析】A B C A B C '''△≌△,24C C ∴∠=∠'=︒,180120B A C ∴∠=︒-∠-∠=︒,故答案为120°.【提示】根据全等三角形的性质求出C ∠的度数,根据三角形内角和定理计算即可. 【考点】全等三角形的性质 13.【答案】>【解析】在反比例函数2xy =中20k =>,∴该函数在0x <内单调递减.120x x <<,12y y ∴>.【提示】根据一次函数的系数k 的值可知,该函数在0x <内单调递减,再结合120x x <<,即可得出结论.【考点】反比例函数图象上点的坐标特征,反比例函数的性质14.【答案】【解析】四边形ABCD 是矩形,OB OD ∴=,OA OC =,AC BD =,OA OB ∴=,AE 垂直平分OB ,AB AO ∴=,3OA AB OB ∴===,26BD OB ∴==,AD ∴;故答案为: 【提示】由矩形的性质和线段垂直平分线的性质证出3OA AB OB ===,得出26BD OB ==,由勾股定理求出AD 即可.【考点】矩形的性质,线段垂直平分线的性质,等边三角形的判定与性质 三、解答题 15.【答案】(1)4- (2)13m -<【解析】(1)原式1842142=-+-⨯+=-. (2)2320x x m +-=没有实数解, 24443()4120b ac m m ∴=-⨯⨯-=+-<,解得:13m <-,故实数m 的取值范围是:13m <-.【提示】(1)直接利用有理数的乘方运算法则以及特殊角的三角函数值和零指数幂的性质分别化简求出答案; (2)直接利用根的判别式进而求出m 的取值范围. 【考点】实数的运算,根的判别式,特殊角的三角函数值 16.【答案】1x +【解析】原式2221(1)(1)(1)(1)1(1)(1)x x x x x x x x x x x x --+--=÷==+--. 【提示】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果. 【考点】分式的混合运算 17.【答案】13.9【解析】由题意得20AC =米, 1.5AB =米,32DBE ∠=︒,tan32200.6212.4DE BE ∴=︒≈⨯=米,12.4 1.513.9CD DE CE DE AB ∴=+=+=+≈(米).答:旗杆CD 的高度约13.9米.【提示】根据题意得20AC =米, 1.5AB =米,过点B 做BE CD ⊥,交CD 于点E ,利用32DBE ∠=︒,得到tan32DE BE =︒后再加上CE 即可求得CD 的高度.【考点】解直角三角形的应用-仰角俯角问题 18.【答案】(1)图形见解析 (2)12(2)由(1)可知,共有12种可能的结果,每种出现的可能性相同,抽到的两张卡片上的数都是勾股数的有6种:(,)B C ,(,)B D ,(,)C B ,(,)C D ,(,)D B ,(,)D C , 61()==122P ∴抽到的两张卡片上的数都是勾股数. 【提示】(1)利用树状图展示12种等可能的结果数; (2)根据勾股数可判定只有A 卡片上的三个数不是勾股数,则可从12种等可能的结果数中找出抽到的两张卡片上的数都是勾股数的结果数,然后根据概率公式求解.数学试卷 第13页(共24页) 数学试卷 第14页(共24页)【考点】列表法与树状图法,勾股数19.【答案】(1)正比例函数的表达式为y x =-,反比例函数的表达式为4y x=-(2)(4,1)C -,6ABC S ∆=【解析】(1)根据题意,将点(2,2)A -代入y kx =,得:22k -=,解得:1k =-,∴正比例函数的解析式为:y x =-,将点()2,2A -代入my x=,得:22m -=,解得:4m =-;∴反比例函数的解析式为:4y x=-;(2)直线OA :y x =-向上平移3个单位后解析式为:3y x =-+,则点B 的坐标为(0,3),联立两函数解析式34y x y x =-+⎧⎪⎨=-⎪⎩,解得:14x y =-⎧⎨=⎩或41x y =⎧⎨=-⎩, ∴第四象限内的交点C 的坐标为(4,1)-,111(15)452216222ABC S ∴=⨯+⨯-⨯⨯-⨯⨯=△.【提示】(1)将点A 坐标(2,2)-分别代入y kx =、m y x=求得k m 、的值即可;(2)由题意得平移后直线解析式,即可知点B 坐标,联立方程组求解可得第四象限内的交点C 得坐标,割补法求解可得三角形的面积.【考点】反比例函数与一次函数的交点问题20.【答案】(1)证明:在Rt ABC △中,90ABC ∠=︒,90ABD DBC ∴∠=︒-∠,由题意知:DE 是直径,90DBE ∴∠=︒, 90E BDE ∴∠=︒-∠, BC CD =, DBC BDE ∴∠=∠,∴ABD E ∠=∠,A A ∠=∠,ABD AEB ∴△∽△(2)1(3 【解析】(1)证明:在Rt ABC △中,90ABC ∠=︒,90ABD DBC ∴∠=︒-∠,由题意知:DE 是直径,90DBE ∴∠=︒, 90E BDE ∴∠=︒-∠,BC CD =, DBC BDE ∴∠=∠,∴ABD E ∠=∠,A A ∠=∠,ABD AEB ∴△∽△;(2):4:3AB BC =,∴设4AB=,3BC =,5AC ∴,3BC CD ==,532AD AC CD ∴=-=-=,由(1)可知:ABD AEB △∽△,AB AD BDAE AB BE∴==, 2•AB AD AE ∴=, 242AE ∴=,8AE ∴=,在Rt DBE △中,41tan 82BD AB E BE AE ====. (3)过点F 作FM AE ⊥于点M ,:4:3AB BC =,∴设4AB x =,3BC x =,∴由(2)可知8AE x =,2AD x =,6DE AE AD x ∴=-=,AF 平分BAC ∠,BF ABEF AE ∴=, 4182BF x EF x ∴==, 1tan2E =,cos E ∴sin E ,BE DE ∴=BE ∴=,数学试卷 第15页(共24页)数学试卷 第16页(共24页)23EF BE ∴=,sin MF E EF ∴==85MF x ∴=,1tan 2E =,1625ME MF x ∴==, 245AM AE ME x ∴=-=,222AF AM MF =+,222484()()5x x ∴=+,x ∴=, C ∴的半径为:3x =.【提示】(1)要证明ABD AEB △∽△,已经有一组对应角是公共角,只需要再找出另一组对应角相等即可. (2)由于:4:3AB BC =,可设4AB =,3BC =,求出AC 的值,再利用(1)中结论可得2•AB AD AE =,进而求出AE 的值,所以tan BD ABE BE AE==. (3)设4AB x =,3BC x =,由于已知AF 的值,构造直角三角形后利用勾股定理列方程求出x 的值,即可知道半径3x 的值.【考点】圆的综合题 四、填空题 21.【答案】2700【解析】根据题意得:909000(130%15%100%)900030%2700360⨯---⨯=⨯=(人),故答案为2700.【提示】先求出非常清楚所占的百分比,再乘以该辖区的总居民,即可得出答案.【考点】扇形统计图,用样本估计总体 22.【答案】8- 【解析】把32x y =⎧⎨=-⎩代入方程组得:323327a b b a -=⎧⎨-=-⎩①②,32⨯+⨯①②得:55a =-,即1a =-,把1a =-代入①得:3b =-,则原式22198a b ==-=--,故答案为:8-【提示】把x 与y 的值代入方程组求出a 与b 的值,代入原式计算即可得到结果. 【考点】二元一次方程组的解23.【答案】392【解析】作直径AE ,连接CE ,90ACE ∴∠=︒, AH BC ⊥,∴90AHB ∠=︒,ACE ADB ∴∠=∠,B E ∠=∠,ABH AEC ∴△∽△, AB AHAE AC∴=, AH AEAB AC∴=, 24AC =,18AH =,226AE OC ==,182639242AB ⨯∴==,故答案为:392.【提示】首先作直径AE ,连接CE ,易证得ABH AEC △∽△,然后由相似三角形的对应边成比例,即可求得O 半径. 【考点】三角形的外接圆与外心 24.【答案】4 【解析】2AM BM AB =,又BM AB AM =-,2()AM AB AM AB∴=-,又2A B b a =-=,2(2)2AM AM ∴=-⨯,解得1AM =,同理1BN ,4MN AM BN AB ∴=+-=.【提示】先把各线段长表示出来,分别代入到2•AM BM AB =,2•BN AN AB =中,列方程组;两式相减后再将2b a -=和m nx -=整体代入,即可求出. 【考点】实数与数轴25.【解析】ABE CDF PMQ △≌△≌△,AE D F PM ∴==,EAB FDC MPQ ∠=∠=∠,ADE BCG PNR △≌△≌△,AE BG PN ∴==,DAE CBG RPN ∠=∠=∠, PM PN ∴=,四边形ABCD 是平行四边形,数学试卷 第17页(共24页) 数学试卷 第18页(共24页)45DAB DCB ∴∠=∠=︒, 90MPN ∴∠=︒,MPN ∴△是等腰直角三角形,当PM 最小时,对角线MN 最小,即AE 取最小值,∴当AE BD ⊥时,AE 取最小值,过D 作D F A B ⊥于F ,平行四边形ABCD 的面积为6,3AB =,2DF ∴=,45DAB ∠=︒,2AF D F ∴==, 1BF ∴=,BD ∴DF AB AE BD ∴===,MN ∴==【提示】根据平移和翻折的性质得到MPN △是等腰直角三角形,于是得到当PM 最小时,对角线MN 最小,即AE 取最小值,当AE BD ⊥时,AE 取最小值,过D 作D F A B ⊥于F ,根据平行四边形的面积得到2DF =,根据等腰直角三角形的性质得到2A F D F ==,由勾股定理得到BD =,根据三角形的面积得到DF AB AE BD ==【考点】平移的性质 五、解答题26.【答案】(1)6005y x =-(2)果园多种10棵橙子树时,可使橙子的总产量最大,最大为60500个【解析】(1)平均每棵树结的橙子个数y (个)与x 之间的关系为:6005(0120)y x x =-≤<;(2)设果园多种x 棵橙子树时,可使橙子的总产量为w , 则225100600005(10)60500w x x x =-++=--+, 则果园多种10棵橙子树时,可使橙子的总产量最大,最大为60500个.【提示】(1)根据每多种一棵树,平均每棵树就会少结5个橙子列式即可;(2)根据题意列出函数解析式,利用配方法把二次函数化为顶点式,根据二次函数的性质进行解答即可. 【考点】二次函数的应用 27.【答案】(1)见解析 (2)①AE =②12GH EF =【解析】(1)在Rt AHB △中,45ABC ∠=︒,AH BH ∴=,在BHD △和AHC △中,90AH BH BHD AHC DH CH =⎧⎪∠=∠=︒⎨⎪=⎩, BHD AHC ∴△≌△,BD AC ∴=.(2)①如图,在Rt AHC △中,tan 3C =,3AHCH∴=, 设CH x =,3BH AH x ∴==, 4BC =,34x x ∴+=, 1x ∴=,3AH ∴=,1CH =,由旋转知,90EHF BHD AHC ∠=∠=∠=︒,3EH AH ==,CH DH FH ==, EHA FHC ∴∠=∠,1EH FHAH HC==, EHA FHC ∴△≌△,EAH C ∴∠=∠,tan tan 3EAH C ∴∠==,过点H 作HP AE ⊥,3HP AP ∴=,2AE AP =,在Rt AHP △中222AP HP AH +=,2239AP AP ∴+=(),数学试卷 第19页(共24页)数学试卷 第20页(共24页)AP ∴=AE ∴= ②由①有,AEH △和FHC △都为等腰三角形,设直线AH ,CG 相交于Q ,90GAH HCG ∴∠=∠=︒,AGQ CHQ ∴△∽△,AQ GQ CQ HQ ∴=, AQ CQGQ HQ∴=, AQC GQE ∠=∠,AQC GQH ∴△∽△, 12sin30EF AC AQ GH GH GQ ∴====︒, 12GH EF ∴=【提示】(1)先判断出A H B H =,再判断出BHD AHC △≌△即可;(2)①先根据tan 3C =,求出3AH =,1CH =,然后根据EHA FHC △≌△,得到3HP AP =,2AE AP =,最后用勾股定理即可;②先判断出AGQ CHQ △∽△,得到AQ CQCQ HQ=,然后判断出AQC GQH ∽△,用相似比即可. 【考点】几何变换综合题28.【答案】(1)13a =,(4,0)A -,(2,0)B (2)直线l 的函数表达式为22y x =+或4433y x =-- (3)能,(1,1)N -【解析】(1)抛物线与y 轴交于点8(0,)3C -.833a ∴-=-,解得:13a =,21(1)33y x ∴=+-当0y =时,有21(1)303x +-=,12x ∴=,24x =-,(4,0)A ∴-,(2,0)B(2)(4,0)A -,(2,0)B ,8(0,)3C -,(1,3)D --,1181833(3)121022323ADH BOC ABCD OCDH S S S S ∴=++=⨯⨯++⨯+⨯⨯=△△四边形梯形.从面积分析知,直线l 只能与边AD 或BC 相交,所以有两种情况:①当直线l 与边AD 相交于点1M 时,则1310310AHM S =⨯=△,113()32M y ∴⨯⨯-=- 1=2M y ∴-,点1(2,2)M --,过点(1,0)H -和1(2,2)M --的直线l 的解析式为22y x =+.②当直线l 与边BC 相交于点2M 时,同理可得点21(,2)2M -,过点(1,0)H -和21(,2)2M -的直线l 的解析式为4433y x =--.综上所述:直线l 的函数表达式为22y x =+或4433y x =--(3)设12(,)P x x 、22(,)Q x y 且过点(1,0)H -的直线PQ的解析式为y kx b =+,0k b ∴+=﹣, b k ∴=,y kx k ∴=+. 由2128333y kx k y x x =+⎧⎪⎨=+-⎪⎩,2128()0333x k x k ∴+---=, 1223x x k ∴+=-+,212123y y kx k kx k k +=+++=,点M 是线段PQ 的中点,由中点坐标公式的点233(1,)22M k k -.假设存在这样的N 点如图,直线DN PQ ∥,设直线DN 的解析式为3y kx k =+- 由23128333y kx k y x x =+-⎧⎪⎨=+-⎪⎩,解得:11x =-,231x k =-,2(3133)N k k ∴--,四边形DMPN 是菱形,DN DM ∴=,22222233(3)3()()(3)22k k k k ∴+=++, 整理得:42340k k --=,210k +>,2340k ∴-=,解得k =,0k <,k ∴=,(1,6)P ∴-,(1,2)M,(1,1)N -,PM DN ∴==PM DN ∥,∴四边形DMPN 是平行四边形,数学试卷 第21页(共24页)数学试卷 第22页(共24页)DM DN =,∴四边形DMPN 为菱形,∴以DP 为对角线的四边形DMPN 能成为菱形,此时点N的坐标为(1,1)-.【提示】(1)把点C 代入抛物线解析式即可求出a ,令0y =,列方程即可求出点A 、B 坐标.(2)先求出四边形ABCD 面积,分两种情形:①当直线l 边AD 相交与点1M 时,根据1310310AHM S =⨯=△,求出点1M 坐标即可解决问题.②当直线l 边BC 相交与点2M 时,同理可得点2M 坐标.(3)设11(),P x y 、22(),Q x y 且过点(1,0)H -的直线PQ的解析式为y kx b =+,得到b k =,利用方程组求出点M坐标,求出直线DN 解析式,再利用方程组求出点N 坐标,列出方程求出k ,即可解决问题.【考点】二次函数综合题成为菱形?若能,求出点N的坐标;若不能,请说明理由.数学试卷第23页(共24页)数学试卷第24页(共24页)。