高三一轮复习《计数原理》教材
- 格式:doc
- 大小:288.00 KB
- 文档页数:15
第四讲 随机事件的概率知识梳理·双基自测 知识梳理知识点一 随机事件和确定事件(1)在条件S 下,__必然要发生__的事件,叫做相对于条件S 的必然事件,简称必然事件. (2)在条件S 下,__不可能发生__的事件,叫做相对于条件S 的不可能事件,简称不可能事件. (3)必然事件和不可能事件统称为相对于条件S 的确定事件,简称确定事件.(4)在条件S 下,__可能发生也可能不发生__的事件,叫做相对于条件S 的随机事件,简称随机事件. 知识点二 概率与频率(1)概率与频率的概念:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的__频数__,称事件A 出现的比例f n (A)=n An为事件A 出现的__频率__.(2)概率与频率的关系:对于给定的随机事件A ,由于事件A 发生的频率f n (A)随着试验次数的增加稳定于概率P(A),因此可以用__频率f n (A)__来估计概率P(A).知识点三 互斥事件与对立事件 事件的关系与运算 定义符号表示 包含 关系 若事件A__发生__,则事件B__一定发生__,这时称事件B 包含事件A(或称事件A 包含于事件B) __B ⊇A__ __(或A ⊆B)__ 相等 关系 若B ⊇A ,且__A ⊇B__,则称事件A 与事件B 相等 __A =B__ 并事件 (和事件) 若某事件发生__当且仅当事件A 发生或事件B 发生__,则称此事件为事件A 与事件B 的并事件(或和事件) __A ∪B__ __(或A +B)__ 交事件 (积事件) 若某事件发生__当且仅当事件A 发生且事件B 发生__,则称此事件为事件A 与事件B 的交事件(或积事件) __A∩B __ __(或AB)__ 互斥 事件 若A∩B 为__不可能__事件,则称事件A 与事件B 互斥 __A∩B=∅__ 对立 事件 若A∩B 为__不可能__事件,A ∪B 为__必然事件__,则称事件A 与事件B 互为对立事件__A∩B=∅,__ __且A ∪B =Ω__重要结论概率的几个基本性质(1)概率的取值范围:__0≤P(A)≤1__. (2)必然事件的概率:P(A)=__1__. (3)不可能事件的概率:P(A)=__0__.(4)概率的加法公式:若事件A 与事件B 互斥,则P(A ∪B)=__P(A)+P(B)__.(5)对立事件的概率:若事件A 与事件B 互为对立事件,则A ∪B 为必然事件.P(A ∪B)=__1__,P(A)=__1-P(B)__.双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)事件发生的频率与概率是相同的.( × ) (2)在大量重复试验中,概率是频率的稳定值.( √ ) (3)两个事件的和事件是指两个事件都得发生.( × )(4)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能的.( × )(5)对立事件肯定是互斥事件、互斥事件不一定是对立事件.( √ ) 题组二 走进教材2.(P 121T4)一个人打靶时连续射击两次,事件“至少有一次中靶”的对立事件是( D ) A .至多有一次中靶 B .两次都中靶 C .只有一次中靶D .两次都不中靶[解析] “至少有一次中靶”的对立事件是“两次都不中靶”.故选D . 3.(P 133T4)同时掷两个骰子,向上点数不相同的概率为__56__.[解析] 掷两个骰子一次,向上的点数共6×6=36(种)可能的结果,其中点数相同的结果共有6种,所以点数不相同的概率P =1-636=56.题组三 走向高考4.(2018·课标全国卷Ⅲ)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( B )A .0.3B .0.4C .0.6D .0.7[解析] 设事件A 为“不用现金支付”,事件B 为“既用现金支付也用非现金支付”,事件C 为“只用现金支付”,则P(A)=1-P(B)-P(C)=1-0.15-0.45=0.4故选B .5.(2020·新课标Ⅰ)设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( A )A .15B .25C .12D .45[解析] O ,A ,B ,C ,D 中任取3点,共有 C 35=10种,即OAB ,OAC ,OAD ,OBC ,OBD ,OCD ,ABC ,ABD ,ACD ,BCD 十种, 其中共线为A ,O ,C 和B ,O ,D 两种, 故取到的3点共线的概率为P =210=15,故选A .考点突破·互动探究考点一 随机事件的关系——自主练透例1 (1)(2020·辽宁六校协作体期中)从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是( C )A .“至少有1个白球”和“都是红球”B .“至少有2个白球”和“至多有1个红球”C .“恰有1个白球”和“恰有2个白球”D .“至多有1个白球”和“都是红球”(2)(2021·中山模拟)从1,2,3,4,5这5个数中任取两个数,其中: ①恰有一个是偶数和恰有一个是奇数; ②至少有一个是奇数和两个都是奇数; ③至少有一个是奇数和两个都是偶数; ④至少有一个是奇数和至少有一个是偶数. 上述事件中,是对立事件的是( C ) A .① B .②④ C .③D .①③(3)设条件甲:“事件A 与事件B 是对立事件”,结论乙:“概率满足P(A)+P(B)=1”,则甲是乙的( A )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析] (1)对于选项A ,“至少有1个白球”和“都是红球”是对立事件,不符合题意;对于选项B ,“至少有2个白球”表示取出2个球都是白色的,而“至多有1个红球”表示取出的球1个红球1个白球,或者2个都是白球,二者不是互斥事件,不符合题意;对于选项C ,“恰有1个白球”表示取出2个球1个红球1个白球,与“恰有2个白球”是互斥而不对立的两个事件,符合题意;对于选项D ,“至多有1个白球”表示取出的2个球1个红球1个白球,或者2个都是红球,与“都是红球”不是互斥事件,不符合题意.故选C .(2)从1,2,3,4,5这5个数中任取两个数有3种情况:一奇一偶,2个奇数,2个偶数.其中“至少有一个是奇数”包含一奇一偶或2个奇数这两种情况,它与两个都是偶数是对立事件.又①中的事件可以同时发生,不是对立事件,故选C .(3)若事件A 与事件B 是对立事件,则A ∪B 为必然事件,再由概率的加法公式得P(A)+P(B)=1;投掷一枚硬币3次,满足P(A)+P(B)=1,但A ,B 不一定是对立事件,如:事件A :“至少出现一次正面”,事件B :“出现3次正面”,则P(A)=78,P(B)=18,满足P(A)+P(B)=1,但A ,B 不是对立事件,故甲是乙的充分不必要条件.名师点拨(1)准确把握互斥事件与对立事件的概念:①互斥事件是不可能同时发生的事件,但也可以同时不发生;②对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,既有且仅有一个发生.(2)判别互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两个事件为对立事件,对立事件一定是互斥事件.〔变式训练1〕(2021·宁夏检测)抽查10件产品,设事件A 为“至少有2件次品”,则事件A 的对立事件为( B ) A .至多有2件次品 B .至多有1件次品 C .至多有2件正品D .至少有2件正品[解析] ∵“至少有n 个”的反面是“至多有n -1个”,又∵事件A“至少有2件次品”,∴事件A 的对立事件为“至多有1件次品”.考点二 随机事件的概率——多维探究 角度1 频率与概率例2 (2018·北京高考)电影公司随机收集了电影的有关数据,经分类整理得到下表: 电影类型 第一类 第二类 第三类 第四类 第五类 第六类 电影部数 140 50 300 200 800 510 好评率0.40.20.150.250.20.1(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (2)随机选取1部电影,估计这部电影没有获得好评的概率;(3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化.那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)[解析] (1)由题意知,样本中电影的总部数是140+50+300+200+800+510=2 000, 第四类电影中获得好评的电影部数是200×0.25=50. 故所求概率为502 000=0.025.(2)由题意知,样本中获得好评的电影部数是140×0.4+50×0.2+300×0.15+200×0.25+800×0.2+510×0.1 =56+10+45+50+160+51 =372.故所求概率估计为1-3722 000=0.814.(3)增加第五类电影的好评率,减少第二类电影的好评率. 角度2 统计与概率例3 (2021·云南名校适应性月考)下边茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中有一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是( A )甲 乙 9 8 8 3 3 7 2 1 09● 9A .45B .25C .910D .710[解析] 记其中被污损的数字为x ,由题知甲的5次综合测评的平均成绩是15×(80×2+90×3+8+9+2+1+0)=90,乙的5次综合测评的平均成绩是15×(80×3+90×2+3+3+7+x +9)=442+x 5, 令90>442+x 5,解得x <8,即x 的取值可以是0~7,因此甲的平均成绩超过乙的平均成绩的概率是810=45.故选A .名师点拨概率和频率的关系概率可看成频率在理论上的稳定值,它从数量上反映了随机事件发生的可能性的大小,它是频率的科学抽象,当试验次数越来越多时频率向概率靠近,只要次数足够多,所得频率就近似地当作随机事件的概率.〔变式训练2〕(1)(2021·黑龙江大庆质检)某公司欲派甲、乙、丙3人到A ,B 两个城市出差,每人只去1个城市,且每个城市必须有人去,则A 城市恰好只有甲去的概率为( B )A .15B .16C .13D .14(2)(2021·吉林模拟)某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.②估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;③如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?[解析] (1)总的派法有:(甲、乙A),(丙B);(甲、乙B),(丙A);(甲、丙A),(乙B);(甲、丙B),(乙A);(乙、丙A),(甲B);(乙、丙B),(甲A),共6种(或C 23A 22=6(种)),A 城市恰好只有甲去有一种,故所求概率P =16.(2)①从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2001 000=0.2.②从统计表可以看出,在这1 000位顾客中有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品,所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001 000=0.3.③与①同理.可得:顾客同时购买甲和乙的概率可以估计为2001 000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001 000=0.6,顾客同时购买甲和丁的概率可以估计为1001 000=0.1.所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大. 考点三 互斥事件、对立事件的概率——师生共研例4 (1)某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A 、B 、C .求:①P(A),P(B),P(C); ②1张奖券的中奖概率;③1张奖券不中特等奖且不中一等奖的概率.(2)(2021·河南新乡模拟)从5个同类产品(其中3个正品,2个次品)中,任意抽取2个,下列事件发生概率为910的是( C )A .2个都是正品B .恰有1个是正品C .至少有1个正品D .至多有1个正品[解析] (1)①P(A)=11 000,P(B)=101 000=1100,P(C)=501 000=120.②因为事件A ,B ,C 两两互斥,所以P(A ∪B ∪C)=P(A)+P(B)+P(C)=11 000+1100+120=611 000.故1张奖券的中奖概率为611 000.③P(A ∪B )=1-P(A +B)=1-⎝⎛⎭⎪⎫11 000+1100=9891 000.故1张奖券不中特等奖且不中一等奖的概率为9891 000.(2)从5个产品中任取2个的取法有C 25=10种,其中2个都是正品的取法有C 23=3种,故2个都是正品的概率P 1=310;其对立事件是“至多有1个正品”,概率为P 2=1-P 1=1-310=710.恰有1个正品的取法有C 13·C 12=6种,故恰有1个正品的概率P 3=610=35.至少有1个正品的概率P 4=P 1+P 3=310+610=910.名师点拨求复杂的互斥事件的概率的两种方法(1)直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的概率求和公式计算.(2)间接求法,先求此事件的对立事件的概率,再用公式P(A)=1-P(A),即运用逆向思维(正难则反).特别是“至多”“至少”型题目,用间接求法就显得较简便.〔变式训练3〕(1)(2020·西安二模)2021年某省新高考将实行“3+1+2”模式,即语文、数学、外语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.某同学已选了物理,记事件A:“他选择政治和地理”,事件B:“他选择化学和地理”,则事件A与事件B( A )A.是互斥事件,不是对立事件B.是对立事件,不是互斥事件C.既是互斥事件,也是对立事件D.既不是互斥事件也不是对立事件(2)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.则该地1位车主至少购买甲、乙两种保险中的一种的概率为__0.8__;该地1位车主甲、乙两种保险都不购买的概率为__0.2__.[解析](1)2021年某省新高考将实行“3 +1+2”模式,即语文、数学、外语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.某同学已选了物理,记事件A:“他选择政治和地理”,事件B:“他选择化学和地理”,则事件A与事件B不能同时发生,但能同时不发生,故事件A和B是互斥事件,但不是对立事件,故A正确.故选A.(2)记A表示事件:该车主购买甲种保险;B表示事件:该车主购买乙种保险但不购买甲种保险;C表示事件:该车主至少购买甲、乙两种保险中的一种;D表示事件:该车主甲、乙两种保险都不购买.①由题意得P(A)=0.5,P(B)=0.3,又C=A∪B,所以P(C)=P(A∪B)=P(A)+P(B)=0.5+0.3=0.8.②因为D与C是对立事件,所以P(D)=1-P(C)=1-0.8=0.2.名师讲坛·素养提升用正难则反的思想求对立事件的概率例5 (1)(2020·浙江湖州期末,改编)现有5个不同编号的小球,其中黑色球2个,白色球2个,红色球1个,若将其随机排成一列,则相同颜色的球都不相邻的概率是__45__.(2)(2021·洛阳模拟)经统计,在某储蓄所一个营业窗口等候的人数及相应的概率如下:排队人数0 1 2 3 4 5人及5人以上概率0.1 0.16 0.3 0.3 0.1 0.04求:(1)至多2人排队等候的概率是多少?(2)至少3人排队等候的概率是多少?[解析](1)“相同颜色的球不都相邻”的对立事件为“相同颜色的球都相邻”,记为事件A.因5个不同编号的小球排列有A55=120种排法,“相同颜色的球都相邻”的排法有A22A22A33=24种排法,∴所求概率P=|-P(A)|=1-24120=45.(2)记“无人排队等候”为事件A,“1人排队等候”为事件B,“2人排队等候”为事件C,“3人排队等候”为事件D,“4人排队等候”为事件E,“5人及5人以上排队等候”为事件F,则事件A,B,C,D,E,F互斥.①记“至多2人排队等候”为事件G,则G=A∪B∪C,所以P(G)=P(A∪B∪C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.②解法一:记“至少3人排队等候”为事件H,则H=D∪E∪F,所以P(H)=P(D∪E∪F)=P(D)+P(E)+P(F)=0.3+0.1+0.04=0.44.解法二:记“至少3人排队等候”为事件H,则其对立事件为事件G,所以P(H)=1-P(G)=0.44.名师点拨“正难则反”的思想是一种常见的数学思想,如反证法、补集的思想都是“正难则反”思想的体现.在解决问题时,如果从问题的正面入手比较复杂或不易解决,那么尝试采用“正难则反”思想往往会起到事半功倍的效果,大大降低题目的难度.在求对立事件的概率时,经常应用“正难则反”的思想,即若事件A与事件B互为对立事件,在求P(A)或P(B)时,利用公式P(A)=1-P(B)先求容易的一个,再求另一个.〔变式训练4〕某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.一次购物量1至4件5至8件9至12件13至16件17件及以上顾客数(人) x 30 25 y 10结算时间(分钟/人)1 1.52 2.5 3(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)[解析](1)由已知得25+y+10=55,x+30=45,所以x=15,y= 20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为1×15+1.5×30+2×25+2.5×20+3×10100=1.9(分钟).(2)记A为事件“一位顾客一次购物的结算时间不超过2分钟”,A1,A2分别表示事件“该顾客一次购物的结算时间为2.5分钟”,“该顾客一次购物的结算时间为3分钟”,将频率视为概率得P(A1)=20100=1 5,P(A2)=10100=110.P(A)=1-P(A1)-P(A2)=1-15-110=710.故一位顾客一次购物的结算时间不超过2分钟的概率为710.。
排列、组合和二项式定理2015.12一、高考要求二、本章定位计数原理的课程设置意图:必修三概率→本章→选修2-3第二章概率1.必修3强调概率思想,避免复杂的组合计算干扰学生对概率思想的领悟;2.本章为进一步研究概率做准备;3.本章学习为学生提供解决问题的思想和工具;“课标”对本章内容的定位是:用计数原理、排列与组合概念解决“简单的实际问题”。
所以,教学中一定要把握好这种定位,避免在技巧和难度上做文章(排列组合的求值化简证明题难度要控制,要重点做应用题)。
三、本章内容与要求【计数】1.分类计数原理完成一件事,有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法.2.分步计数原理完成一件事,需要分成两个步骤,做第一步有m种不同的方法,做第二步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.3.排列从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列,所有排列的个数称为排列数.(1)当m<n时的排列称为选排列,排列数为A m n=n(n-1)×…×(n-m+1)=n!(n-m)!.(2)当m=n时的排列称为全排列,排列数为A n n=n(n-1)×…×3×2×1=n!.规定0!=1.4.组合从n 个不同元素中,任意取出m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,所有组合的个数称为组合数.(1)组合数公式:C mn =A m n A m m =n (n -1)(n -2)·…·(n -m +1)m !=n !m !(n -m )!.规定:C 0n =1.(2)组合数的两个性质:①C m n =C n-mn; ②C m n +1=C m n +C m -1n. 注意:1.正确区分“分类”与“分步”,恰当地进行分类,使分类后不重、不漏.2.正确区分是组合问题还是排列问题,要把“定序”和“有序”区分开来. 3.正确区分分堆问题和分配问题. 【二项式定理】1.二项式定理(a +b )n =C 0n a n +C 1n a n -1b +…+C r n a n -r b r +…C n -1n ab n -1+C n n b n (n ∈N +),叫做二项式定理,右边的多项式叫做(a +b )n 的二项展开式,其通项公式为T r +1= .(a -b )n 的展开式第r +1项T r +1= . 2.二项式系数的性质(1)对称性:C 0n =C n n ,C 1n =C n -1n ,C 2n =C n -2n ,…,C r n =C n -r n. (2)增减性与最大值:二项式系数C k n ,当k <n +12时,二项式系数是递增的;当k >n +12时,二项式系数是递减的.当n 是偶数时,中间的一项的二项式系数最大.当n 是奇数时,中间两项的二项式系数相等且最大.(3)C 0n +C 1n +C 2n +…+C r n +…+C n n=2n . (4)C 1n +C 3n +C 5n +…=C 0n +C 2n +C 4n+…=2n –1.注意:1.通项公式T k +1=C k n an -k b k 是第k +1项,而不是第k 项,注意其指数规律. 2.求二项式展开式中的特殊项(如:系数最大的项、二项式系数最大的项、常数项、含某未知数的次数最高的项、有理项…)时,要注意n 与k 的取值范围.3.注意区分“某项的系数”与“某项的二项式系数”,展开式中“二项式系数的和”与“各项系数的和”,“奇(偶)数项系数的和”与“奇(偶)次项系数的和”.三、高考题【2015高考北京版理第9题】( 9 )在5(2)x 的展开式中,3x 的系数为_______.(用数字作答)40【2014高考北京版理第13题】把5件不同产品摆成一排.若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的摆法有 种.36[解析]先考虑产品A 与B 相邻,把A 、B 作为一个元素有44A 种方法,而A 、B 可交换位置,所以有48244=A 种摆法,又当A 、B 相邻又满足A 、C 相邻,有12233=A 种摆法,故满足条件的摆法有361248=-种【2013高考北京版理第12题】将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是________. 96[解析] 5张参观券分为4堆,有2个连号有4种分法,然后每一种全排列有A 44种方法,所以不同的分法种数是4A 44=96.【2012高考北京版理第6题】从0,2中选一个数字.从1.3.5中选两个数字,组成无重复数字的三位数.其中奇数的个数为( )A. 24B. 18C. 12D. 6[解析]由于题目要求的是奇数,那么对于此三位数可以分成两种情况:奇偶奇;偶奇奇。
排列、组合和二项式定理2015.12一、高考要求二、本章定位计数原理的课程设置意图:必修三概率→本章→选修2-3第二章概率1.必修3强调概率思想,避免复杂的组合计算干扰学生对概率思想的领悟;2.本章为进一步研究概率做准备;3.本章学习为学生提供解决问题的思想和工具;“课标”对本章内容的定位是:用计数原理、排列与组合概念解决“简单的实际问题”。
所以,教学中一定要把握好这种定位,避免在技巧和难度上做文章(排列组合的求值化简证明题难度要控制,要重点做应用题)。
三、本章内容与要求【计数】1.分类计数原理完成一件事,有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法.2.分步计数原理完成一件事,需要分成两个步骤,做第一步有m种不同的方法,做第二步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.3.排列从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列,所有排列的个数称为排列数.(1)当m<n时的排列称为选排列,排列数为A m n=n(n-1)×…×(n-m+1)=n!(n-m)!.(2)当m=n时的排列称为全排列,排列数为A n n=n(n-1)×…×3×2×1=n!.规定0!=1.4.组合从n 个不同元素中,任意取出m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,所有组合的个数称为组合数.(1)组合数公式:C mn =A m n A m m =n (n -1)(n -2)·…·(n -m +1)m !=n !m !(n -m )!.规定:C 0n =1.(2)组合数的两个性质:①C m n =C n-mn; ②C m n +1=C m n +C m -1n. 注意:1.正确区分“分类”与“分步”,恰当地进行分类,使分类后不重、不漏.2.正确区分是组合问题还是排列问题,要把“定序”和“有序”区分开来. 3.正确区分分堆问题和分配问题. 【二项式定理】1.二项式定理(a +b )n =C 0n a n +C 1n a n -1b +…+C r n a n -r b r +…C n -1n ab n -1+C n n b n (n ∈N +),叫做二项式定理,右边的多项式叫做(a +b )n 的二项展开式,其通项公式为T r +1= .(a -b )n 的展开式第r +1项T r +1= . 2.二项式系数的性质(1)对称性:C 0n =C n n ,C 1n =C n -1n ,C 2n =C n -2n ,…,C r n =C n -r n. (2)增减性与最大值:二项式系数C k n ,当k <n +12时,二项式系数是递增的;当k >n +12时,二项式系数是递减的.当n 是偶数时,中间的一项的二项式系数最大.当n 是奇数时,中间两项的二项式系数相等且最大.(3)C 0n +C 1n +C 2n +…+C r n +…+C n n=2n . (4)C 1n +C 3n +C 5n +…=C 0n +C 2n +C 4n+…=2n –1.注意:1.通项公式T k +1=C k n an -k b k 是第k +1项,而不是第k 项,注意其指数规律. 2.求二项式展开式中的特殊项(如:系数最大的项、二项式系数最大的项、常数项、含某未知数的次数最高的项、有理项…)时,要注意n 与k 的取值范围.3.注意区分“某项的系数”与“某项的二项式系数”,展开式中“二项式系数的和”与“各项系数的和”,“奇(偶)数项系数的和”与“奇(偶)次项系数的和”.三、高考题【2015高考北京版理第9题】( 9 )在5(2)x 的展开式中,3x 的系数为_______.(用数字作答)40【2014高考北京版理第13题】把5件不同产品摆成一排.若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的摆法有 种.36[解析]先考虑产品A 与B 相邻,把A 、B 作为一个元素有44A 种方法,而A 、B 可交换位置,所以有48244=A 种摆法,又当A 、B 相邻又满足A 、C 相邻,有12233=A 种摆法,故满足条件的摆法有361248=-种【2013高考北京版理第12题】将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是________. 96[解析] 5张参观券分为4堆,有2个连号有4种分法,然后每一种全排列有A 44种方法,所以不同的分法种数是4A 44=96.【2012高考北京版理第6题】从0,2中选一个数字.从1.3.5中选两个数字,组成无重复数字的三位数.其中奇数的个数为( )A. 24B. 18C. 12D. 6[解析]由于题目要求的是奇数,那么对于此三位数可以分成两种情况:奇偶奇;偶奇奇。
如果是第一种奇偶奇的情况,可以从个位开始分析(3种选择),之后十位(2种选择),最后百位(2种选择),共12种;如果是第二种情况偶奇奇,分析同理:个位(3种情况),十位(2种情况),百位(不能是0,一种情况),共6种,因此总共12+6=18种情况。
【2011高考北京版理第12题】 用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有______个(用数字作答) [解析]个数为42214-=。
【2010高考北京版理第4题】8名学生和2位第师站成一排合影,2位老师不相邻的排法种数为( A )(A )8289A A (B )8289A C (C ) 8287A A (D )8287A C[解析] 8名学生先排成一排,有88A 种排法,在他们的9个空中插入两名教师,有29A 种方法,所以排法总数为8289A A四、例题【计数部分】排列、组合问题,通常都是以选择题或填空题的形式出现在试卷上,它联系实际,生动有趣;但题型多样,解法灵活.实践证明,备考有效的方法是将题型与解法归类,识别模式、熟练运用.下面介绍常见排列组合问题的解答策略.(1)相邻元素捆绑法[例1] (2012·山西四校联考)有七名同学站成一排照相,其中甲必须站在正中间,并且乙、丙两位同学要站在一起,则不同的站法有________种.分析:甲站正中间,左边、右边各3人,乙、丙相邻排列后作为一个“整体元素”,按这个整体元素的站位考虑有4种情况,其他位置可任意排列.解析:依题意得,满足题意的不同站法共有4·A22·A44=192种.答案:192.(2)相离问题插空法[例2](2012·东北三省四市模拟)用1、2、3、4、5、6组成一个无重复数字的六位数,要求三个奇数1、3、5有且只有两个相邻,则不同的排法种数为()A.18B.108 C.216 D.432分析:1、3、5有且仅有两个相邻,即这三个数字中有两个相邻,另一个与之相离,先从3个中选两个作为一个整体与另一个插入2、4、6排好后形成的空位中即可.解析:从1、3、5中选2个有C23种选法,把选出的2个元素排好有A22种排法,把2、4、6排好有A33种排法,在其形成的4个空位中选2个将上述两组奇数插入有A24种插法,∴共有不同排法C23A22A33A24=432种.答案:D.(3)定序问题属组合[例3]6个人排一队参观某项目,其中甲、乙、丙三人进入展厅的次序必须是先乙,再甲,最后丙,则不同的列队方式有________种.解析:解法1:由于甲、乙、丙三人的次序已定,故只需从6个位置中选取3个排上其余3人,有A36种排法,剩下的三个位置排甲、乙、丙三人,只有一种排法,∴共有A36=120种.解法2:先选取3个位置排甲、乙、丙三人有C36种方法,剩下3个位置站其余3人,有A33种方法,∴共有C36·A33=120种.答案:120.(4)定元、定位优先排[例4]某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有() A.36种B.42种C.48种D.54种分析:丙占最后一位不必考虑.“甲在前两位,乙不在第一位”,故应以甲为标准进行分类.解析:若甲在第一位有A44=24种方法;若甲在第二位有C13A33=18种方法,故共有18+24=42种方法.答案:B.(5)至多、至少间接法[例5](2011·北京)用数字2、3组成四位数,且数字2、3至少都出现一次,这样的四位数共有________个.(用数字作答)解析:假如四位数的四个数位可以从2、3中任意选取,则共有24=16个,当四个数位全为3时,只有1个,全为2时也只有一个,故这样的四位数有16-2=14个.答案:14.点评:可按数字2的个数分类:1个2和3个3,2个2和2个3,3个2和1个3.(6)选排问题先选后排法[例6]四个不同的小球放入编号为1、2、3、4的四个盒子中,则恰有一个空盒的放法共有________种(用数字作答).解析:先从四个小球中取两个放在一起,有C24种不同的取法,再把取出的两个小球与另外两个小球看作三堆,并分别放入四个盒子中的三个盒子中,有A34种不同的放法,据分步计数原理,共有C24·A34=144种不同的放法.答案:144.(7)部分符合条件淘汰法[例7]过三棱柱任意两个顶点的直线共15条,其中异面直线有()A.18对B.24对C.30对D.36对解析:三棱柱共6个顶点,由此6个顶点可组成C46-3=12个不同四面体,而每个四面体有三对异面直线则共有12×3=36对.答案:D.(8)数字问题要弄清可否重复及首位不能为0.[例8]用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为()A.324 B.328 C.360 D.648解析:利用分类计数原理,共分两类:(1)0作个位,共A29=72个偶数;(2)0不作个位,共A14·A18·A18=256个偶数,共计72+256=328个偶数,故选B.答案:B.(9)枚举法[例9]如果直线a与b异面,则称a与b为一对异面直线,六棱锥的侧棱与底边共12条棱所在的直线中,异面直线共有________对.解析:六棱锥的侧棱都相交,底面六条边所在直线都共面,故异面直线只可能是侧棱与底面上的边.考察P A与底面六条边所在直线可用枚举法列出所有异面直线(P A,BC),(P A,CD),(P A,DE),(P A,EF)共四对.同理与共它侧棱异面的底边也各有4条,故共有4×6=24对.答案:24.五、补充例题【计数部分】[例1]若直线方程ax+by=0中的a、b可以从0,1,2,3,5这五个数字中任取两个不同的数字,则方程所表示的不同直线一共有________条.解析:分两类:第一类,a、b均不为零,a、b的取值共有A24=12种方法.第二类:a、b中有一个为0,则不同的直线仅有两条x=0和y=0.∴共有不同直线14条.答案:14.[例2]如图所示,用五种不同的颜色分别给A、B、C、D四个区域涂色,相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同的涂色方法共有()A.180种B.120种C.96种D.60种解析:按区域分四步:第一步A区域有5种颜色可选;第二步B区域有4种颜色可选;第三步C区域有3种颜色可选;第四步D区域也有3种颜色可选.由分步计数原理,共有5×4×3×3=180(种).答案:A.点评:课标要求掌握分类计数原理与分步计数原理,并能用它们分析和解决问题,这就要求我们不仅要准确地理解两个基本原理,更要能灵活地运用两个原理分析和解决问题,运用两个原理解题的关键在于正确区分“类”与“步”.[例3]用数字0、1、2、3、4、5、6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有________个(用数字作答).分析:数字问题首先看是否有0,0不能在首位,其次看有无其它限制条件(如奇数,偶数,能被某数整除的数等),本题中要求“个位、十位、百位上数字之和为偶数”,因此解决本题应从这儿着手.解析:要使个位、十位和百位上的数字之和为偶数,可以分为两种情况:(1)个位、十位和百位上的数字均为偶数,此时满足条件的四位数有A33A13+C23A33A14个;(2)个位、十位和百位上的数字有两个奇数、一个偶数,此时满足条件的四位数有C23C13A33A13+C23A33A14个;故满足条件的四位数共有(A33A13+C23A33A14)+(C23C13A33A13+C23A33A14)=324个.答案:324。