第八讲机器人动力学牛顿-欧拉方程.
- 格式:ppt
- 大小:1.68 MB
- 文档页数:58
牛顿-欧拉方程向量法推导
欧拉方程(Euler equations),是欧拉运动定律的定量描述,该定律为:
)]([1b
b b b b b I M I Ω⨯Ω-=Ω-& 其中b Ω为体坐标系下的角速度,b I 为体坐标系下的转动惯量,b M 为体坐标系下的外力矩。
欧拉方程通常与牛顿的平移运动方程被一起写出,称为牛顿-欧拉方程(Newton-Euler equations),此处只推导欧拉方程。
在不考虑外力矩时,约束条件为惯性坐标系的角动量守恒(非体坐标系的角动量守恒),即有:
0/)(=Ωdt RI d b b
其中R 为旋转矩阵。
拆解有:
0=Ω+Ωb
b b b RI I R && 0)(=Ω+Ω⨯Ωb
b b b b I I & 最后可得:
b
b b b b I I /)(Ω⨯Ω-=Ω& 加入外力矩后可得完整的欧拉方程:
)]([1b
b b b b b I M I Ω⨯Ω-=Ω-&。
M Ω b bb 牛顿-欧拉方程欧拉方程(Euler equations),是欧拉运动定律的定量描述,欧拉运动定律是牛顿运动定律的延伸,在牛顿发表牛顿运动定律超过半个世纪后,于 1750 年,欧拉才成功的用欧拉方程表述了该定律:Ωb = I ‒ 1[M ‒ Ω × ( I Ω )]该方程是建立在角动量定理的基础上的描述刚体的旋转运动时 '刚体所受外力矩 与角加速度 的关系式,大多时候可简写成:Ω' = [M + (I ‒ I )Ω Ω ]/Ix x yy zz y x xx Ω' = [M + (I ‒ I )Ω Ω ]/I y y zz xx x z yy Ω' = [M + (I ‒ I )Ω Ω ]/Ixzzzyyx yzz其中,M x ,M y ,M z 分别为刚体坐标系S b 下三个轴的所受的外力矩, I xx ,I yy ,I zz 分别为刚体三个坐标轴的转动惯量(刚体坐标系下S b )。
欧拉方程通常与牛顿的平移运动方程被一起写出,称为牛顿-欧拉方程(Newton-Euler equations):F (t ) = ma (t )M b = Ωb × ( I b Ωb ) + I b Ωb这里对牛顿的平移运动方程不赘述,只对欧拉方程进行讨论。
1. 单质点角动量定理 质点旋转时,有动量定理:F =d (mv ) dtr × F = r × d (mv )对两边叉乘质点位置矢量r :dt b b观察:d (r × mv ) = r × d (mv ) + dr × mv因为:dt dt dt故有:dr× mv = v × mv = 0 dtd (r × mv ) = r × d (mv )dt dtr × F =d (r × mv )dt定义角动量L = r × mv ,可以看出r × F 为外力矩M故有单质点的角动量定理:2. 刚体的角动量定理M =dL dt定义刚体的角动量为:L G =∫L idm其中:L G 下标 G 表示该向量为大地坐标系S G 下的,L i 的下标 i 表示该向量为大地坐标S G 下各个质量元的向量。
牛顿-欧拉方程欧拉方程(Eulerequations),是欧拉运动定律的定量描述,欧拉运动定律是牛顿运动定律的延伸,在牛顿发表牛顿运动定律超过半个世纪后,于1750年,欧拉才成功的用欧拉方程表述了该定律:该方程是建立在角动量定理的基础上的描述刚体的旋转运动时刚体所受外力矩与角加速度的关系式,大多时候可简写成:其中,分别为刚体坐标系下三个轴的所受的外力矩,分别为刚体三个坐标轴的转动惯量(刚体坐标系下)。
欧拉方程通常与牛顿的平移运动方程被一起写出,称为牛顿-欧拉方程(Newton-Euler equations):这里对牛顿的平移运动方程不赘述,只对欧拉方程进行讨论。
1.单质点角动量定理质点旋转时,有动量定理:对两边叉乘质点位置矢量:观察:因为:故有:定义角动量,可以看出为外力矩故有单质点的角动量定理:2.刚体的角动量定理定义刚体的角动量为:其中:下标G表示该向量为大地坐标系下的,的下标i 表示该向量为大地坐标下各个质量元的向量。
刚体旋转运动参考的惯性系是大地坐标系,不能把采用刚体的本身坐标系作为参考系,本身坐标系的提出只是方便我们某些量的分析与表述,如角速度、惯性张量。
(这里需要特别说明的是因为刚体质量分布不均匀的原因,角动量的方向往往不与刚体角速度方向一致,这也是无力矩进动的原因,即很多时候刚体角速度不守恒但刚体的角动量守恒了,宏观来看就是因为要保证角动量和动量守恒所以才要产生内力作用使角速度变化达到守恒的效果。
)由牛顿第三定律易知内力矩产生的角动量变化相抵,故有刚体的角动量定理:其中:为外力矩把上式展开有:其中:称为惯性矩阵刚体旋转时,是变化的,但刚体在刚体坐标系下的惯性矩阵不会变,且容易分析得到:其中:为刚体坐标系下到大地坐标系的旋转矩阵。
3.欧拉方程的证明在先证欧拉方程前,先给出几个刚体坐标系下的向量:外力矩:;惯性矩阵:;角速度:引入刚体坐标系的向量:旋转运动时:旋转矩阵,刚体角速度都为变量,只有为不变量。
牛顿欧拉动力学方程
牛顿欧拉动力学方程是研究牛顿力学系统的一种重要方法,它是由英国数学家和物理学家Isaac Newton和欧拉提出的。
牛顿欧拉动力学方程表示为:
F=m*a
其中 F 是物体受力的矢量,m 是物体的质量,a 是物体的加
速度矢量。
牛顿欧拉动力学方程可以用来描述物体在外力作用下的运
动轨迹,可以用来解决牛顿力学中的各种问题。
它是牛顿力学的基础方程之一,在物理学、力学、天体物理学、分子动力学、流体动力学、统计物理学等学科中有广泛的应用。
例题1:
一个物体质量为10kg,受到30N的推力,物体的加速度为多少?
解:
根据牛顿欧拉动力学方程F=m*a
可得 a = F/m = 30N/10kg = 3m/s^2
所以物体的加速度为3m/s^2
例题2:
一个小球质量为2kg,在水平面上运动,受到水平方向上40N 的摩擦力,小球的速度是多少?
解:
F = -40N (摩擦力为抵消力)
m=2kg
a=F/m = -40N/2kg = -20m/s^2
根据牛顿欧拉动力学方程F=m*a,我们可以知道小球的加速度为-20m/s^2.由于这个加速度是负值,所以小球的速度会不断减小。
如果我们想要知道小球的速度,可以使用速度的一阶积分公式v = at + v0 (v0为初始速度)。