第八讲机器人动力学牛顿-欧拉方程.
- 格式:ppt
- 大小:1.68 MB
- 文档页数:58
牛顿-欧拉方程向量法推导
欧拉方程(Euler equations),是欧拉运动定律的定量描述,该定律为:
)]([1b
b b b b b I M I Ω⨯Ω-=Ω-& 其中b Ω为体坐标系下的角速度,b I 为体坐标系下的转动惯量,b M 为体坐标系下的外力矩。
欧拉方程通常与牛顿的平移运动方程被一起写出,称为牛顿-欧拉方程(Newton-Euler equations),此处只推导欧拉方程。
在不考虑外力矩时,约束条件为惯性坐标系的角动量守恒(非体坐标系的角动量守恒),即有:
0/)(=Ωdt RI d b b
其中R 为旋转矩阵。
拆解有:
0=Ω+Ωb
b b b RI I R && 0)(=Ω+Ω⨯Ωb
b b b b I I & 最后可得:
b
b b b b I I /)(Ω⨯Ω-=Ω& 加入外力矩后可得完整的欧拉方程:
)]([1b
b b b b b I M I Ω⨯Ω-=Ω-&。
M Ω b bb 牛顿-欧拉方程欧拉方程(Euler equations),是欧拉运动定律的定量描述,欧拉运动定律是牛顿运动定律的延伸,在牛顿发表牛顿运动定律超过半个世纪后,于 1750 年,欧拉才成功的用欧拉方程表述了该定律:Ωb = I ‒ 1[M ‒ Ω × ( I Ω )]该方程是建立在角动量定理的基础上的描述刚体的旋转运动时 '刚体所受外力矩 与角加速度 的关系式,大多时候可简写成:Ω' = [M + (I ‒ I )Ω Ω ]/Ix x yy zz y x xx Ω' = [M + (I ‒ I )Ω Ω ]/I y y zz xx x z yy Ω' = [M + (I ‒ I )Ω Ω ]/Ixzzzyyx yzz其中,M x ,M y ,M z 分别为刚体坐标系S b 下三个轴的所受的外力矩, I xx ,I yy ,I zz 分别为刚体三个坐标轴的转动惯量(刚体坐标系下S b )。
欧拉方程通常与牛顿的平移运动方程被一起写出,称为牛顿-欧拉方程(Newton-Euler equations):F (t ) = ma (t )M b = Ωb × ( I b Ωb ) + I b Ωb这里对牛顿的平移运动方程不赘述,只对欧拉方程进行讨论。
1. 单质点角动量定理 质点旋转时,有动量定理:F =d (mv ) dtr × F = r × d (mv )对两边叉乘质点位置矢量r :dt b b观察:d (r × mv ) = r × d (mv ) + dr × mv因为:dt dt dt故有:dr× mv = v × mv = 0 dtd (r × mv ) = r × d (mv )dt dtr × F =d (r × mv )dt定义角动量L = r × mv ,可以看出r × F 为外力矩M故有单质点的角动量定理:2. 刚体的角动量定理M =dL dt定义刚体的角动量为:L G =∫L idm其中:L G 下标 G 表示该向量为大地坐标系S G 下的,L i 的下标 i 表示该向量为大地坐标S G 下各个质量元的向量。
牛顿-欧拉方程欧拉方程(Eulerequations),是欧拉运动定律的定量描述,欧拉运动定律是牛顿运动定律的延伸,在牛顿发表牛顿运动定律超过半个世纪后,于1750年,欧拉才成功的用欧拉方程表述了该定律:该方程是建立在角动量定理的基础上的描述刚体的旋转运动时刚体所受外力矩与角加速度的关系式,大多时候可简写成:其中,分别为刚体坐标系下三个轴的所受的外力矩,分别为刚体三个坐标轴的转动惯量(刚体坐标系下)。
欧拉方程通常与牛顿的平移运动方程被一起写出,称为牛顿-欧拉方程(Newton-Euler equations):这里对牛顿的平移运动方程不赘述,只对欧拉方程进行讨论。
1.单质点角动量定理质点旋转时,有动量定理:对两边叉乘质点位置矢量:观察:因为:故有:定义角动量,可以看出为外力矩故有单质点的角动量定理:2.刚体的角动量定理定义刚体的角动量为:其中:下标G表示该向量为大地坐标系下的,的下标i 表示该向量为大地坐标下各个质量元的向量。
刚体旋转运动参考的惯性系是大地坐标系,不能把采用刚体的本身坐标系作为参考系,本身坐标系的提出只是方便我们某些量的分析与表述,如角速度、惯性张量。
(这里需要特别说明的是因为刚体质量分布不均匀的原因,角动量的方向往往不与刚体角速度方向一致,这也是无力矩进动的原因,即很多时候刚体角速度不守恒但刚体的角动量守恒了,宏观来看就是因为要保证角动量和动量守恒所以才要产生内力作用使角速度变化达到守恒的效果。
)由牛顿第三定律易知内力矩产生的角动量变化相抵,故有刚体的角动量定理:其中:为外力矩把上式展开有:其中:称为惯性矩阵刚体旋转时,是变化的,但刚体在刚体坐标系下的惯性矩阵不会变,且容易分析得到:其中:为刚体坐标系下到大地坐标系的旋转矩阵。
3.欧拉方程的证明在先证欧拉方程前,先给出几个刚体坐标系下的向量:外力矩:;惯性矩阵:;角速度:引入刚体坐标系的向量:旋转运动时:旋转矩阵,刚体角速度都为变量,只有为不变量。
牛顿欧拉动力学方程
牛顿欧拉动力学方程是研究牛顿力学系统的一种重要方法,它是由英国数学家和物理学家Isaac Newton和欧拉提出的。
牛顿欧拉动力学方程表示为:
F=m*a
其中 F 是物体受力的矢量,m 是物体的质量,a 是物体的加
速度矢量。
牛顿欧拉动力学方程可以用来描述物体在外力作用下的运
动轨迹,可以用来解决牛顿力学中的各种问题。
它是牛顿力学的基础方程之一,在物理学、力学、天体物理学、分子动力学、流体动力学、统计物理学等学科中有广泛的应用。
例题1:
一个物体质量为10kg,受到30N的推力,物体的加速度为多少?
解:
根据牛顿欧拉动力学方程F=m*a
可得 a = F/m = 30N/10kg = 3m/s^2
所以物体的加速度为3m/s^2
例题2:
一个小球质量为2kg,在水平面上运动,受到水平方向上40N 的摩擦力,小球的速度是多少?
解:
F = -40N (摩擦力为抵消力)
m=2kg
a=F/m = -40N/2kg = -20m/s^2
根据牛顿欧拉动力学方程F=m*a,我们可以知道小球的加速度为-20m/s^2.由于这个加速度是负值,所以小球的速度会不断减小。
如果我们想要知道小球的速度,可以使用速度的一阶积分公式v = at + v0 (v0为初始速度)。
牛顿-欧拉方程欧拉方程(Euler equations),是欧拉运动定律的定量描述,欧拉运动定律是牛顿运动定律的延伸,在牛顿发表牛顿运动定律超过半个世纪后,于1750年,欧拉才成功的用欧拉方程表述了该定律:Ω⃗b=I b−1[M⃗⃗ b−Ω⃗b×( I b Ω⃗b)]该方程是建立在角动量定理的基础上的描述刚体的旋转运动时刚体所受外力矩M与角加速度Ω′的关系式,大多时候可简写成:Ωx′=[M x+(I yy−I zz)ΩyΩx]/I xxΩy′=[M y+(I zz−I xx)ΩxΩz]/I yyΩx′=[M z+(I zz−I yy)ΩxΩy]/I zz其中,M x,M y,M z分别为刚体坐标系S b下三个轴的所受的外力矩,I xx,I yy,I zz分别为刚体三个坐标轴的转动惯量(刚体坐标系下S b)。
欧拉方程通常与牛顿的平移运动方程被一起写出,称为牛顿-欧拉方程(Newton-Euler equations):F(t)=ma(t)M⃗⃗ b=Ω⃗b×( I b Ω⃗b)+ I b Ω⃗b这里对牛顿的平移运动方程不赘述,只对欧拉方程进行讨论。
1.单质点角动量定理质点旋转时,有动量定理:F=d(mv ) dt对两边叉乘质点位置矢量r:r×F=r×d(mv ) dt观察:d(r×mv )dt =r×d(mv )dt+drdt×mv因为:drdt×mv=v×mv=0故有:d(r×mv )dt =r×d(mv )dtr×F=d(r×mv )定义角动量L⃗=r×mv,可以看出r×F为外力矩M⃗⃗ 故有单质点的角动量定理:M⃗⃗ =dL⃗dt2.刚体的角动量定理定义刚体的角动量为:L⃗G=∫L⃗i dm其中:L⃗G下标G表示该向量为大地坐标系S G下的,L⃗i的下标i表示该向量为大地坐标S G下各个质量元的向量。
牛顿欧拉方程牛顿欧拉方程,那可真是数学和物理世界里的超级明星组合啊!就像是蝙蝠侠和罗宾,总是在关键时刻拯救世界,不过这个世界是科学的世界。
先说说牛顿第二定律,F = ma,这方程简单得就像一个直爽的大汉,力(F)就像是那个推东西的大手,质量(m)呢,就是那个懒洋洋、不太愿意动的大胖子,加速度(a)就是这个大胖子被大手推了之后,不情不愿挪动的速度。
你想啊,质量越大的东西,就像个超级大的石头,要让它加速动起来,得使多大的劲儿啊,这个方程就这么明明白白地把这关系给说清楚了,一点都不藏着掖着。
再看欧拉方程,e^(iπ) + 1 = 0,这方程简直就是数学界的魔法咒语。
e 就像是一个神秘的精灵,在虚数的世界里穿梭,i呢,那就是打开虚数大门的神奇钥匙,π这个老大哥,圆周率啊,到处都有它的身影,就像个无处不在的大侠。
这几个家伙凑在一起,居然能得出这么一个简洁又神奇的结果,就好像几个超级英雄合体变成了一个无敌的存在,让整个数学世界都为之惊叹。
牛顿欧拉方程有时候又像一场精心编排的舞蹈。
力、质量、加速度,还有那些虚数、指数函数等等元素,就像是舞蹈演员。
他们在方程这个大舞台上,按照精确的舞步跳动着。
如果哪个元素错了节拍,就像舞者踩错了步点,整个舞蹈就乱套了,而科学的这个大舞台就会变得一团糟。
你要是把牛顿欧拉方程当成菜谱来看也挺有趣的。
各种物理量和数学符号就是食材,方程就是烹饪的方法。
按照这个方法把食材组合起来,就能做出一道美味的科学大餐。
不过这大餐可不像普通的菜,它是用来喂养人类智慧的,吃了这大餐,我们的科学素养就能像气球一样膨胀起来。
牛顿欧拉方程在解决实际问题的时候,就像一群超级侦探。
比如说要分析一个复杂的机械运动,牛顿方程就像那个能找到蛛丝马迹的福尔摩斯,从力和加速度的关系里把隐藏的信息挖掘出来。
而欧拉方程呢,就像是那个有着独特洞察力的侦探助手,在涉及到一些复杂的数学关系,特别是和旋转、波动相关的问题时,它总能发挥关键作用。
牛顿欧拉法求机器人动力学方程机器人动力学方程是描述机器人运动的重要数学工具,它可以帮助我们理解和控制机器人的运动。
牛顿-欧拉法是一种常用的方法,用于推导机器人的动力学方程。
在机器人动力学研究中,我们关注的是机器人的运动以及它受到的力和力矩。
动力学方程描述了机器人运动的加速度与力之间的关系。
牛顿-欧拉法的基本思想是将机器人的连杆和关节看作是一个多体系统,利用牛顿定律和欧拉公式来推导机器人的动力学方程。
具体推导的步骤如下:首先,我们需要为机器人建立坐标系,并定义关节角度和末端执行器的位置、速度和加速度。
通过定义这些量,我们可以准确描述机器人的状态。
接下来,我们根据牛顿定律,对每个连杆和关节分别应用动力学方程。
动力学方程可以写为力矩等于惯性力加上外力的代数和,即:力矩 = 惯性力 + 外力在计算惯性力时,我们需要考虑机器人的质量、惯量以及它们与坐标系之间的几何关系。
这一步可以通过应用欧拉公式来计算。
计算外力主要是考虑机器人与环境之间的交互,包括重力、摩擦力、接触力等。
对于接触力,我们需要考虑机器人与其他物体之间的约束。
最后,我们将所有的动力学方程组合在一起,得到机器人的动力学方程。
这些方程可以帮助我们理解机器人在不同状态下受到的力和力矩以及其加速度。
机器人动力学方程的求解对于机器人的轨迹规划、运动控制以及力矩控制等具有重要的指导意义。
通过求解动力学方程,我们可以预测机器人在不同控制输入下的运动行为,从而优化机器人的性能。
总之,牛顿-欧拉法是一种求解机器人动力学方程的有效方法,它为我们研究和控制机器人的运动提供了重要的数学工具。
在实际应用中,我们可以根据具体的机器人模型和任务需求,灵活应用动力学方程求解的方法,从而实现机器人的精确控制和运动规划。
牛顿-欧拉方程欧拉方程(Euler equations),是欧拉运动定律的定量描述,欧拉运动定律是牛顿运动定律的延伸,在牛顿发表牛顿运动定律超过半个世纪后,于1750年,欧拉才成功的用欧拉方程表述了该定律:该方程是建立在角动量定理的基础上的描述刚体的旋转运动时刚体所受外力矩与角加速度的关系式,大多时候可简写成:其中,分别为刚体坐标系下三个轴的所受的外力矩,分别为刚体三个坐标轴的转动惯量(刚体坐标系下)。
欧拉方程通常与牛顿的平移运动方程被一起写出,称为牛顿-欧拉方程(Newton-Euler equations):这里对牛顿的平移运动方程不赘述,只对欧拉方程进行讨论。
1.单质点角动量定理质点旋转时,有动量定理:对两边叉乘质点位置矢量:观察:因为:故有:定义角动量,可以看出为外力矩故有单质点的角动量定理:2.刚体的角动量定理定义刚体的角动量为:其中:下标G表示该向量为大地坐标系下的,的下标i 表示该向量为大地坐标下各个质量元的向量。
刚体旋转运动参考的惯性系是大地坐标系,不能把采用刚体的本身坐标系作为参考系,本身坐标系的提出只是方便我们某些量的分析与表述,如角速度、惯性张量。
(这里需要特别说明的是因为刚体质量分布不均匀的原因,角动量的方向往往不与刚体角速度方向一致,这也是无力矩进动的原因,即很多时候刚体角速度不守恒但刚体的角动量守恒了,宏观来看就是因为要保证角动量和动量守恒所以才要产生内力作用使角速度变化达到守恒的效果。
)由牛顿第三定律易知内力矩产生的角动量变化相抵,故有刚体的角动量定理:其中:为外力矩把上式展开有:其中:称为惯性矩阵刚体旋转时,是变化的,但刚体在刚体坐标系下的惯性矩阵不会变,且容易分析得到:其中:为刚体坐标系下到大地坐标系的旋转矩阵。
3.欧拉方程的证明在先证欧拉方程前,先给出几个刚体坐标系下的向量:外力矩:;惯性矩阵:;角速度:引入刚体坐标系的向量:旋转运动时:旋转矩阵,刚体角速度都为变量,只有为不变量。
机器人动力学牛顿欧拉迭代
机器人动力学分为正运动学和逆运动学两部分,其中逆运动学是机器人动力学研究中的核心问题之一。
牛顿欧拉迭代是逆运动学求解中最常见的一种方法之一。
牛顿欧拉迭代法是先根据机器人连杆的运动学模型计算出机器人的身体速度、身体加速度、角加速度等信息,并结合牛顿第二定律和欧拉公式,建立机器人动力学方程,再通过迭代法求解机器人的关节加速度,从而完成机器人的运动控制。
在牛顿欧拉迭代法中,计算机器人的关节加速度需要先求出机器人各连杆的惯性矩阵、科氏力以及重力等力矩,并根据机器人的运动状态联立动力学方程组。
由于机器人通常具有多个自由度,因此需要采用数值方法求解动力学方程组,其中最常用的方法就是牛顿欧拉迭代法。
总之,牛顿欧拉迭代法是机器人动力学方程求解的一种有效方法,可以帮助机器人实现高精度的运动控制。