动力学基础(牛顿定律质点的运动微分方程)1
- 格式:ppt
- 大小:276.55 KB
- 文档页数:10
第2章质点动力学2.1 牛顿运动定律一、牛顿第一定律任何物体都保持静止或匀速直线运动状态,直到其他物体所作用的力迫使它改 变这种状态为止。
二、牛顿第二定律物体所获得的加速度的大小与合外力的大小成正比,与物体的质量成反比, 方向与合外力的方向相同。
表示为f ma说明:⑵在直角坐标系中,牛顿方程可写成分量式f x ma *, f y ma y , f z ma z 。
⑶ 在圆周运动中,牛顿方程沿切向和法向的分量式f t ma t f n ma n⑷ 动量:物体质量m 与运动速度v 的乘积,用p 表示。
p mv动量是矢量,方向与速度方向相同。
由于质量是衡量,引入动量后,牛顿方程可写成dv m 一 dt 当 f 0时,r 0,dp 常量,即物体的动量大小和方向均不改变。
此结 论成为质点动量守恒定律三、 牛顿第三定律:物体间的作用力和反作用力大小相等,方向相反,且在同 一直线上。
物体同时受几个力f i ,f 2f n 的作用时,合力f 等于这些力的矢量和f n力的叠加原理d pdtf ma说明:作用力和反作用力是属于同一性质的力。
四、国际单位制量纲基本量与基本单位导出量与导出单位五、常见的力力是物体之间的相互作用。
力的基本类型:引力相互作用、电磁相互作用和核力相互作用。
按力的性质来分,常见的力可分为引力、弹性力和摩擦力。
六、牛顿运动定律的应用用牛顿运动定律解题时一般可分为以下几个步骤:隔离物体,受力分析。
建立坐标,列方程。
求解方程。
当力是变力时,用牛顿第二定律得微分方程形式求解。
例题例2-1如下图所示,在倾角为30°的光滑斜面(固定于水平面)上有两物体通过滑轮相连,已知叶3kg, m2 2kg,且滑轮和绳子的质量可忽略,试求每一物体的加速度a及绳子的张力F T(重力加速度g取9.80m • s 2)。
解分别取叶和m2为研究对象,受力分析如上图。
利用牛顿第二定律列方程:「m2g F TYL F T m1gsi n30o m1a绳子张力F T F T代入数据解方程组得加速度a 0.98m • s 2,张力F T 17.64N。
1.第⼀定律——惯性定律
任何质点如不受⼒的作⽤,则将保持静⽌或匀速直线运动状态。
这个定律表明了任何质点都有保持静⽌或匀速直线运动状态的属性。
这种属性称为该质点的惯性。
所以第⼀定律叫做惯性定律。
⽽质点作匀速直线运动称为惯性运动。
由惯性定律可知.如果质点的运动状态(静⽌或匀速直线状态)发⽣改变,即有了加速度,则质点上必受到⼒的作⽤。
因此,⼒是物体运动状态改变的原因。
2.第⼆定律——⼒与加速度的关系定律
质点受⼀⼒F作⽤时所获得的加速度a的⼤⼩与⼒F的⼤⼩成正⽐,⽽与质点的质量成反⽐;加速度的⽅向与作⽤⼒⽅向相同,即
ma=F (4-3-1)
如果质点同时受⼏个⼒的作⽤,则上式中的F应理解为这些⼒的合⼒,⽽a应理解为这些⼒共同作⽤下的质点的加速度,这样式(4—3—1)可写为
ma=ΣFi (4-3-2)
式(4—3—1)或式4—3—2)称为质点动⼒学基本⽅程。
3.第三定律——作⽤与反作⽤定律
两质点相互作⽤的⼒总是⼤⼩相等,⽅向相反,沿同⼀直线,并分别作⽤在两质点上。
这些定律是古典⼒学的基础,它们不仅只适⽤于惯性坐标系,且只适⽤于研究速度远少于光速的宏观物体。
由于⼀般⼯程问题中,⼤多问题都属于上述的适⽤范围,因此以基本定律为基础的古典⼒学在近代⼯程技术中仍占有很重要的地位。