分布列及数学期望经典复习
- 格式:docx
- 大小:117.69 KB
- 文档页数:7
2023年高考数学复习----《求概率及随机变量的分布列与期望》规律方法与典型例题讲解【规律方法】求离散型随机变量的分布列及期望的一般步骤:(1)根据题中条件确定随机变量的可能取值;(2)求出随机变量所有可能取值对应的概率,即可得出分布列;(3)根据期望的概念,结合分布列,即可得出期望(在计算时,要注意随机变量是否服从特殊的分布,如超几何分布或二项分布等,可结合其对应的概率计算公式及期望计算公式,简化计算)【典型例题】例1.(2022·陕西宝鸡·统考一模)甲、乙两个代表队各有3名选手参加对抗赛.比赛规定:甲队的1,2,3号选手与乙队的1,2,3号选手按编号顺序各比赛一场,某队连赢3场,则获胜,否则由甲队的1号对乙队的2号,甲队的2号对乙队的1号加赛两场,胜场多者最后获胜(每场比赛只有胜或负两种结果).已知甲队的1号对乙队的1,2号选手的胜率分别是0.5,0.6,甲队的2号对乙队的1,2号选手的胜率都是0.5,甲队的3号对乙队的3号选手的胜率也是0.5,假设每场比赛结果相互独立.(1)求甲队仅比赛3场获胜的概率;(2)已知每场比赛胜者可获得200个积分,求甲队队员获得的积分数之和X的分布列及期望.【解析】(1)甲队1,2,3号选手与乙队1,2,3号选手比赛获胜的概率分别为0.5,0.5,0.5,,⨯⨯=;甲队比赛3场获胜的概率为P=0.50.50.50.125(2)X所以可能取得值为0,200,400,600,800;()3500.50.12P X ===,()31213200C 0.50.500..540.5600.07.5P X ==⨯=⨯⨯=⨯,()()11233332400C 0.50.60.50.40.55C 0.50.40.5 2.1050.50.262.P X ==⨯+⨯⨯⨯=⨯+⨯=⨯⨯, ()()31323333 6000.5C 0.50.60.5C 0.50.60.50.40.5 3.40.50.425P X ==+⨯⨯+⨯⨯+⨯=⨯=, ()2333800C 0.50.605.50.900.112.5P X ===⨯⨯=⨯.即所以()00.1252000.0754000.26256000.4258000.1125465E X =⨯+⨯+⨯+⨯+⨯=. 例2.(2022春·云南昆明·高三云南师大附中校考阶段练习)我校举办“学党史”知识测试活动,每位教师3次测试机会,规定按顺序测试,一旦测试合格就不必参加以后的测试,否则3次测试都要参加.甲教师3次测试每次合格的概率组成一个公差为18的等差数列,他第一次测试合格的概率不超过12,且他直到第二次测试才合格的概率为932,乙教师3次测试每次测试合格的概率均为23,每位教师参加的每次测试是否合格相互独立. (1)求甲教师第一次参加测试就合格的概率P ;(2)设甲教师参加测试的次数为m ,乙教师参加测试的次数为n ,求m n ξ=+的分布列.【解析】(1)由甲教师3次测试每次合格的概率组成一个公差为18的等差数列,又甲教师第一次参加测试就合格的概率为P ,故而甲教师参加第二、三次测试合格的概率分别是18P +、14P +,由题意知,19(1)832P P ⎛⎫−+= ⎪⎝⎭,解得14P =或58P =(舍),所以甲教师第一次参加测试就合格的概率为14.(2)由(1)知甲教师参加第二、三次测试合格的概率分别是38、12, 由题意知,ξ的可能取值为2,3,4,5,6,由题意可知121(2)(1,1)436P P m n ξ=====⨯=, 11233235(3)(1,2)(2,1)433483144P P m n P m n ξ⎛⎫⎛⎫====+===⨯⨯+⨯⨯= ⎪ ⎪⎝⎭⎝⎭, (4)(1,3)(2,2)(3,1)P P m n P m n P m n ξ====+==+==1113312352584334833483144⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯⨯+⨯⨯= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, (5)(2,3)(3,2)P P m n P m n ξ====+==33113512134833483396⎛⎫⎛⎫⎛⎫⎛⎫=⨯⨯⨯+⨯⨯⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 35115(6)(3,3)483396P P m n ξ⎛⎫⎛⎫=====⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭,所以ξ的分布列为:例3.(2022春·云南曲靖·高三校联考阶段练习)受新冠肺炎疫情的影响,某商场的销售额受到了不同程度的冲击,为刺激消费,该商场开展一项促销活动,凡在商场消费金额满300元的顾客可以免费抽奖一次,抽奖的规则如下:在不透明箱子中装有除颜色外其他都相同的10个小球,其中:红色小球1个,白色小球3个,黄色小球6个,顾客从箱子中依次不放回地摸出3个球,根据摸出球的颜色情况分别进行兑奖.将顾客摸出的3个球的颜色分成以下四种情况:A :1个红球2个白球;B :3个白球;C :恰有1个黄球;D :至少两个黄球,若四种情况按发生的机会从小到大的顺序分别对应一等奖,二等奖,三等奖,不中奖. (1)写出顾客分别获一、二、三等奖时所对应的概率;(2)已知顾客摸出的第一个球是白球,求该顾客获得二等奖的概率;(3)若五名顾客每人抽奖一次,且彼此是否中奖相互独立.记中奖的人数为X ,求X 的分布列和期望.【解析】(1)由题意可得:()()23331010C 3111,C 12040C 120P A P B =====, ()1264310C C 363=C 12010P C ==,2()1()()()3P D P A P B P C =−−−=所以中一等奖的概率为1120,二等奖的概率为140,三等奖的概率为310 (2)记事件E 为顾客摸出的第一个球是白球,事件F 为顾客获得二等奖,则()111229C C 1C 18P FE ==∣. (3)由(1)知一名顾客中奖的概率为113112040103P =++=. 由题意可得,15,3X B ⎛⎫ ⎪⎝⎭,所以()()5512C 1,2,3,4,533i ii P X i i −⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭则分布列为()15533E X =⨯=。
课时考点19 统计-----随机变量的分布列和期望高考考纲透析:等可能性的事件的概率,互斥事件有一个发生的概率,相互独立事件同时发生的概率,独立重复试验、离散型随机变量的分布列、期望和方差高考风向标:离散型随机变量的分布列、期望和方差热点题型1 n 次独立重复试验的分布列和期望 [样题1] (2005年高考·全国卷II ·理19) 甲、乙两队进行一场排球比赛.根据以往经验,单局比赛甲队胜乙队的概率为0.6.本场比赛采用五局三胜制,即先胜三局的队获胜,比赛结束.设各局比赛互间没有影响.令ξ为本场比赛的局数,求ξ的概率分布和数学期望.(精确到0.0001)本题考查离散型随机变量分布和数学期望等概念,考查运用概率知识解决实际问题的能力。
解:单局比赛甲队胜乙队的概率为0.6,乙队胜甲队的概率为1-0.6=0.4比赛3局结束有两种情况:甲队胜3局或乙队胜3局,因而P (ξ=3)=330.60.40.28+= 比赛4局结束有两种情况:前3局中甲队胜2局,第4局甲队胜;或前3局中乙队胜2局,第4局乙队胜。
因而P (ξ=4)=2230.60.40.6C ⨯⨯⨯+2230.40.60.40.3744C ⨯⨯⨯=比赛5局结束有两种情况:前4局中甲队胜2局、乙队胜2局,第5局甲胜或乙胜。
因而P (ξ=5)=22240.60.40.6C ⨯⨯⨯+22240.40.60.40.3456C ⨯⨯⨯= 所以ξ的概率分布为ξ的期望E ξ=3×P (ξ=3)+4×P (ξ=4)+5×P (ξ=5)=4.0656变式新题型1.(2005年高考·浙江卷·理19)袋子A 中装有若干个均匀的红球和白球,从A 中摸出一个红球的概率是31. (Ⅰ) 从A 中有放回地摸球,每次摸出一个,共摸5次,求恰好有3次摸到红球的概率. (Ⅱ) 从A 中有放回地摸球,每次摸出一个,有3次摸到红球即停止. (i) 求恰好摸5次停止的概率; (ii )记5次之内(含5次)摸到红球的次数为ξ,求随机变量ξ的分布列及数学期望E ξ.解:(Ⅰ) 333512140333243C ⎛⎫⎛⎫⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭(Ⅱ)(i )2224121833381C ⎛⎫⎛⎫⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭(ii)随机变量ξ的取值为0,1,2,3,;由n 次独立重复试验概率公式()()1n kk kn n P k C p p -=-,得()50513*******P C ξ⎛⎫==⨯-= ⎪⎝⎭; ()41511801133243P C ξ⎛⎫==⨯⨯-=⎪⎝⎭ ()232511802133243P C ξ⎛⎫⎛⎫==⨯⨯-=⎪ ⎪⎝⎭⎝⎭()323511173133243P C ξ⎛⎫⎛⎫==⨯⨯-=⎪ ⎪⎝⎭⎝⎭(或()328021731243243P ξ+⨯==-=) 随机变量ξ的分布列是ξ的数学期望是32808017012324324324324381E ξ=⨯+⨯+⨯+⨯= 热点题型2 随机变量ξ的取值范围及分布列[样题2]在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖,某顾客从此10张券中任抽2张,求:(Ⅰ)该顾客中奖的概率;(Ⅱ)该顾客获得的奖品总价值ξ(元)的概率分布列和期望ξE . 解法一:(Ⅰ)324515121026=-=-=C C I P ,即该顾客中奖的概率为32.(Ⅱ)ξ的所有可能值为:0,10,20,50,60(元)..151)60(,152)50(,151)20(,52)10(,31)0(2101311210161121023210161321026===============C C C P C C C P C C P C C C P C C P ξξξξξ且故ξ有分布列:从而期望.161516015250151205210310=⨯+⨯+⨯+⨯+⨯=ξE 解法二:(Ⅰ),324530)(210241614==+=C C C C P (Ⅱ)ξ的分布列求法同解法一由于10张券总价值为80元,即每张的平均奖品价值为8元,从而抽2张的平均奖品价值ξE =2×8=16(元).变式新题型2.假设一种机器在一个工作日内发生故障的概率为0 2,若一周5个工作日内无故障,可获利润10万元;仅有一个工作日发生故障可获利润5万元;仅有两个工作日发生故障不获利也不亏损;有三个或三个以上工作日发生故障就要亏损2万元 求:(Ⅰ)一周5个工作日内恰有两个工作日发生故障的概率(保留两位有效数字); (Ⅱ)一周5个工作日内利润的期望(保留两位有效数字)解:以ξ表示一周5个工作日内机器发生故障的天数,则ξ~B (5,0 2)).5,4,3,2,1,0(8.02.0)(55=⨯⨯==-k C k P k k kξ (Ⅰ).21.08.02.0)2(3225≈⨯⨯==C P ξ(Ⅱ)以η表示利润,则η的所有可能取值为10,5,0,-2.328.08.0)0()10(5≈====ξηP P .410.08.02.0)1()5(4115≈⨯⨯====C P P ξη .205.08.02.0)2()0(3225≈⨯⨯====C P P ξη .7()2(≥=-=ξηP P η∴的概率分布为∴利润的期望=10×0 (万元)[样题3] (2005年高考·江西卷·理19)A 、B 两位同学各有五张卡片,现以投掷均匀硬币的形式进行游戏,当出现正面朝上时A 赢得B 一张卡片,否则B 赢得A 一张卡片.规定掷硬币的次数达9次时,或在此前某人已赢得所有卡片时游戏终止.设ξ表示游戏终止时掷硬币的次数.(1)求ξ的取值范围; (2)求ξ的数学期望E ξ.解:(1)设正面出现的次数为m ,反面出现的次数为n ,则⎪⎩⎪⎨⎧≤≤=+=-915||ξξn m n m ,可得:.9,7,5:;9,7,22,7;7,6,11,6;5,5,00,5的所有可能取值为所以时或当时或当时或当ξξξξ===============n m n m n m n m n m n m(2);645)21(2)7(;161322)21(2)5(7155=====⨯==C P P ξξ .322756455964571615;64556451611)9(=⨯+⨯+⨯==--==ξξE P变式新题型3.某射手进行射击练习,每射击5发子弹算一组,一旦命中就停止射击,并进行下一组练习,否则一直打完5发子弹后才能进入下一组练习.若该射手在某组练习中射击命中一次,并且他射击一次命中率为0.8,(1)求在这一组练习中耗用子弹ξ的分布列.(2)求在完成连续两组练习后,恰好共耗用了4发子弹的概率。
离散型随机变量的分布列、期望、方差复习指导学习要求:了解随机变量,离散型随机变量的意义,会求简单的离散型随机变量,掌握离散型随机变量的分布列,会求出期望、方差。
知识总结:一、离散型随机变量的分布列1.随机变量:如果一个随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,可以按一定次序列出的随机变量叫做离散型随机变量,常用ξ,等希腊字母表示2.离散型随机变量的分布列:若离散型随机变量ξ的一切可能取值为:a1, a2, ……, a n, ……, 相应取这些值的概率为:p1,P2,……, P n, ……,则称下表:为离散型随机变量ξ的概率分布列,简称ξ的分布列。
离散型随机变量的分布列具有的两个性质:①P i0(i=1,2,……,n,……) ②P1+P2+……+P n+……=1 一种典型的离散型随机变量的分布列:二项分布:设重复独立地进行n次随机试验A,在每一次试验中,P(A)=P(0<P<1),ξ为n次试验中A 发生的次数,则ξ的分布列为:称ξ服从二项分布,记作ξ~B(n,P)注:是二项展开式[P+(1-P)]n=++……++……+中的第k+1项。
P1+P2+……+P n=++……+=[P+(1-P)]n=1。
二、离散型随机变量的期望与方差1.期望:设离散型随机变量ξ的分布列是:ξa1a2……a n……p p1p2……p n……称a1p1+a2p2+……+a n p n+……为ξ的数学期望,简称期望,记作Eξ。
期望的性质:①若=aξ+b (a,b均为常数), 则E=aEξ+b。
②E(ξ1+ξ2)=Eξ1+Eξ2。
③若ξ~B(n, p), 则Eξ=np注:期望Eξ是反映随机变量ξ集中趋势的指标,也反映了ξ取值的平均水平。
2.方差:设离散型随机变量ξ的分布列是ξa1a2……a n……p p1p2……p n……称(a1-Eξ)2p1+(a2-Eξ)2p2+……+(a n-Eξ)2p n+……为随机变量ξ的均方差,简称方差,记作Dξ。
【知识点】1.n 次独立重复试验:在相同的条件下,重复地做n 次试验,各次试验的结果相互独立 2.n 次独立重复试验的概率:一般地,事件A 在n 次试验中发生k 次,其有kn C 种情形,由试验的独立性知A 在k 次试验中发生,而在其余k n -次试验中不发生的概率都是kn k p p --)1(,所以由概率加法公式知,如果在一次试验中事件A 发生的概率是p ,那么在n 次独立重复试验中,事件A 恰好发生k次的概率为).,...2,1,0()1()(n k p p C k P kn k k n n =-=-3.二项分布:在上公式中,若将事件A 发生的次数设为X ,事件A 不发生的概率为p q -=1,那么在n次独立重复试验中,事件A 恰好发生k 次的概率是kn k k n q p C k X P -==)(.其中.,...2,1,0n k =于是得到X 的分布列各对应项的值,所以称这样的离散型随机变量X 服从参数为p n ,的二项分布,记作).,(~p n B X4.离散型随机变量X 的数学期望一般地,设一个离散型随机变量X 所有可能取的值是,,...,,21n x x x 这些对应的概率是,,...,,21n p p p ,则n n p x p x p x X E +++=...)(2211叫做这个离散型随机变量X 的均值或数学期望.5.二项分布的数学期望:np x E =)(【经典例题】【例1】在某批次的某种灯泡中,随机地抽取200个样品,并对其寿命进行追踪调查,将结果列成频率分布表如下. 根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于天的灯泡是优等品,寿命小于天的灯泡是次品,其余的灯泡是正品.(Ⅰ)根据频率分布表中的数据,写出的值;(Ⅱ)某人从灯泡样品中随机地购买了()*∈n n N 个,如果这个灯泡的等级情况恰好与按三..个等级分层抽样.......所得的结果相同,求n 的最小值; (Ⅲ)某人从这个批次的灯泡中随机地购买了3个进行使用,若以上述频率作为概率,用X 表示此人所购买的灯泡中次品的个数,求X 的分布列和数学期望. 1、【答案】(Ⅰ)解:0.15a =,30b =. (Ⅱ)解:由表可知:灯泡样品中优等品有50个,正品有100个,次品有50个, 所以优等品、正品和次品的比例为50:100:501:2:1=. 所以按分层抽样法,购买灯泡数24()*=++=∈n k k k k k N , 所以n 的最小值为4. (Ⅲ)解:X 的所有取值为0,1,2,3.【例2】甲、乙两位同学进行篮球三分球投篮比赛,甲每次投中的概率为3,乙每次投中的概率为21,每人分别进行三次投篮. (Ⅰ)记甲投中的次数为ξ,求ξ的分布列及数学期望E ξ; (Ⅱ)求乙至多投中2次的概率;(Ⅲ)求乙恰好比甲多投进2次的概率.2.【答案】解:(Ⅰ)ξ的可能取值为:0,1,2,3.ξ的分布列如下表:(Ⅲ)设乙比甲多投中2次为事件A ,乙恰投中2次且甲恰投中0次为事件1B ,乙恰投中3次且甲恰投中1次为事件2B ,则2121,,B B B B A Y =为互斥事件.【例3】某商场一号电梯从1层出发后可以在层停靠.已知该电梯在1层载有4位乘客,假设每位乘客在234、、层下电梯是等可能的.(Ⅰ) 求这4位乘客中至少有一名乘客在第2层下电梯的概率;(Ⅱ) 用X 表示4名乘客在第4层下电梯的人数,求X 的分布列和数学期望.(Ⅱ) X 的可能取值为0,1,2,3,4【易错题】【例1】经调查发现,人们长期食用含高浓度甲基汞的鱼类会引起汞中毒,其中罗非鱼体内汞含量比其它鱼偏高.现从一批数量很大的罗非鱼中随机地抽出15条作样本,经检测得各条鱼的汞含量的茎叶图(以小数点前的数字为茎,小数点后一位数字为叶)如下:《中华人民共和国环境保护法》规定食品的汞含量不得超过1.0ppm .(Ⅰ)检查人员从这15条鱼中,随机抽出3条,求3条中恰有1条汞含量超标的概率; (Ⅱ)若从这批数量很大的鱼........中任选3条鱼,记ξ表示抽到的汞含量超标的鱼的条数.以此15条鱼的样本数据来估计...这批数量很大的鱼的总体数据,求ξ的分布列及数学期望E ξ. 1.【答案】解:(Ⅰ)记“15条鱼中任选3条恰好有1条鱼汞含量超标”为事件A ,则ξ可能取0,1,2,3.0 1235567889 135567 罗非鱼的汞含量(ppm )【例2】某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].(Ⅰ)求直方图中x 的值;(Ⅱ)如果上学所需时间不少于1小时的学生可申请在学校住宿,请估计学校600名新生中有多少名学生可以申请住宿;(Ⅲ)从学校的新生中任选4名学生,这4名学生中上学所需时间少于20分钟的人数记为X ,求X 的分布列和数学期望.(以直方图中新生上学所需时间少于20分钟的频率作为每名学生上学所需时间少于20分钟的概率) 2、【答案】解:(Ⅰ)由直方图可得:200.025200.0065200.0032201x ⨯+⨯+⨯+⨯⨯=. 所以 0.0125x =.(Ⅱ)新生上学所需时间不少于1小时的频率为:0.0032200.12⨯⨯=,因为6000.1272⨯=,所以600名新生中有72名学生可以申请住宿. (Ⅲ)X 的可能取值为0,1,2,3,4.【例3】国家对空气质量的分级规定如下表:(Ⅰ)写出下面频率分布表中,,,a b x y 的值;(Ⅱ)某人计划今年6月份到此城市观光4天,若将(Ⅰ)中的频率作为概率,他遇到空气质量为优或良的天数用X 表示,求X 的分布列和均值EX .【例4】某市规定,高中学生三年在校期间参加不少于80小时的社区服务才合格.教育部门在全市随机抽取200位学生参加社区服务的数据,按时间段[)75,80,[)80,85,[)85,90,[)90,95,[]95,100(单位:小时)进行统计,其频率分布直方图如图所示.(Ⅰ)求抽取的200位学生中,参加社区服务时间不少于90小时的学生人数,并估计从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的概率;(Ⅱ)从全市高中学生(人数很多)中任意选取3位学生,记ξ为3位学生中参加社区服务时间不少于90小时的人数.试求随机变量ξ的分布列和数学期望E ξ.服务时间/小时O4.【答案】解:(Ⅰ)根据题意,参加社区服务时间在时间段[)90,95小时的学生人数为2000.060560⨯⨯=(人), 参加社区服务时间在时间段[]95,100小时的学生人数为2000.020520⨯⨯=(人). 所以抽取的200位学生中,参加社区服务时间不少于90小时的学生人数为80人.由已知得,随机变量ξ的可能取值为0,1,2,3.随机变量ξ的分布列为【课后测试】1.乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同. (Ⅰ)求甲以4比1获胜的概率;(Ⅱ)求乙获胜且比赛局数多于5局的概率; (Ⅲ)求比赛局数的分布列.(Ⅲ)解:设比赛的局数为X ,则X 的可能取值为4,5,6,7.2.张先生家住H 小区,他在C 科技园区工作,从家开车到公司上班有12L L ,两条路线(如图),1L 路线上有123A A A ,,三个路口,各路口遇到红灯的概率均为12;2L 路线上有12B B ,两个路口,各路口遇到红灯的概率依次为34,35.(Ⅰ)若走1L 路线,求最多..遇到1次红灯的概率; (Ⅱ)若走2L 路线,求遇到红灯次数X 的数学期望;(Ⅲ)按照“平均遇到红灯次数最少”的要求,请你帮助张先生从上述两条路线中选择一条最好的上班路线,并说明理由.2 122、【答案】解:(Ⅰ)设走1L 路线最多遇到1次红灯为A 事件,则因为EX EY <,所以选择2L 路线上班最好.3.为提高学生学习数学的兴趣,某地区举办了小学生“数独比赛”.比赛成绩共有90,70,60,40,30分分分分分五种,按本次比赛成绩共分五个等级.从参加比赛的学生中随机抽取了名学生,并把他们的比赛成绩按这五个等级进行了统计,得到如下数据表:(Ⅰ),其成绩等级为“A 或B ”的概率;(Ⅱ)根据(Ⅰ)的结论,若从该地区参加“数独比赛”的小学生(参赛人数很多)中任选3人,记X 表示抽到成绩等级为“A 或B ”的学生人数,求X 的分布列及其数学期望EX ; (Ⅲ)从这30名学生中,随机选取2人,求“这两个人的成绩之差大于20分”的概率.显然基本事件的总数为230C .不妨设m n >,当90m =时,60n =或40或30,其基本事件数为111141073()C C C C ⋅++; 当70m =时,n =40或30,其基本事件数为111673()C C C ⋅+;当60m =时,30n =,其基本事件数为11103C C ⋅;4.在某批次的某种灯泡中,随机地抽取200个样品,并对其寿命进行追踪调查,将结果列成频率分布表如下. 根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于500.(Ⅰ)根据频率分布表中的数据,写出的值;(Ⅱ)某人从灯泡样品中随机地购买了()*∈n n N 个,如果这个灯泡的等级情况恰好与按三..个等级分层抽样.......所得的结果相同,求n 的最小值; (Ⅲ)某人从这个批次的灯泡中随机地购买了3个进行使用,若以上述频率作为概率,用X 表示此人所购买的灯泡中次品的个数,求X 的分布列和数学期望. 4.【答案】(Ⅰ)解:0.15a =,30b =. (Ⅱ)解:由表可知:灯泡样品中优等品有50个,正品有100个,次品有50个, 所以优等品、正品和次品的比例为50:100:501:2:1=. 所以按分层抽样法,购买灯泡数24()*=++=∈n k k k k k N , 所以n 的最小值为4.(Ⅲ)解:X 的所有取值为0,1,2,3.5.为提高学生学习数学的兴趣,某地区举办了小学生“数独比赛”.比赛成绩共有90,70,60,40,30分分分分分五种,按本次比赛成绩共分五个等级.从参加比赛的学生中随机抽取了(Ⅰ)根据上面的统计数据,试估计从本地区参加“数独比赛”的小学生中任意抽取一人,其成绩等级为“A 或B ”的概率;(Ⅱ)根据(Ⅰ)的结论,若从该地区参加“数独比赛”的小学生(参赛人数很多)中任选3人,记X 表示抽到成绩等级为“A 或B ”的学生人数,求X 的分布列及其数学期望EX ; (Ⅲ)从这30名学生中,随机选取2人,求“这两个人的成绩之差大于20分”的概率.显然基本事件的总数为230C .不妨设m n >,当90m =时,60n =或40或30,其基本事件数为111141073()C C C C ⋅++; 当70m =时,n =40或30,其基本事件数为111673()C C C ⋅+;当60m =时,30n =,其基本事件数为11103C C ⋅;【课后作业】1.某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,遇到红灯时停留的时间都是2min。
课时考点19 统计-----随机变量的分布列和期望高考考纲透析:等可能性的事件的概率,互斥事件有一个发生的概率,相互独立事件同时发生的概率,独立重复试验、离散型随机变量的分布列、期望和方差高考风向标:离散型随机变量的分布列、期望和方差热点题型1 n 次独立重复试验的分布列和期望 [样题1] (2005年高考·全国卷II ·理19)甲、乙两队进行一场排球比赛.根据以往经验,单局比赛甲队胜乙队的概率为0.6.本场比赛采用五局三胜制,即先胜三局的队获胜,比赛结束.设各局比赛互间没有影响.令ξ为本场比赛的局数,求ξ的概率分布和数学期望.(精确到0.0001)本题考查离散型随机变量分布和数学期望等概念,考查运用概率知识解决实际问题的能力。
解:单局比赛甲队胜乙队的概率为0.6,乙队胜甲队的概率为1-0.6=0.4比赛3局结束有两种情况:甲队胜3局或乙队胜3局,因而P (ξ=3)=330.60.40.28+= 比赛4局结束有两种情况:前3局中甲队胜2局,第4局甲队胜;或前3局中乙队胜2局,第4局乙队胜。
因而P (ξ=4)=2230.60.40.6C ⨯⨯⨯+2230.40.60.40.3744C ⨯⨯⨯=比赛5局结束有两种情况:前4局中甲队胜2局、乙队胜2局,第5局甲胜或乙胜。
因而P (ξ=5)=22240.60.40.6C ⨯⨯⨯+22240.40.60.40.3456C ⨯⨯⨯=所以ξ的概率分布为ξ的期望E ξ=3×P (ξ=3)+4×P (ξ=4)+5×P (ξ=5)=4.0656变式新题型1.(2005年高考·浙江卷·理19)袋子A 中装有若干个均匀的红球和白球,从A中摸出一个红球的概率是31.(Ⅰ) 从A 中有放回地摸球,每次摸出一个,共摸5次,求恰好有3次摸到红球的概率. (Ⅱ) 从A 中有放回地摸球,每次摸出一个,有3次摸到红球即停止. (i) 求恰好摸5次停止的概率; (ii )记5次之内(含5次)摸到红球的次数为ξ,求随机变量ξ的分布列及数学期望E ξ.解:(Ⅰ) 333512140333243C ⎛⎫⎛⎫⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭(Ⅱ)(i )2224121833381C ⎛⎫⎛⎫⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭(ii)随机变量ξ的取值为0,1,2,3,;由n 次独立重复试验概率公式()()1n kkkn n P k C p p -=-,得()50513*******P C ξ⎛⎫==⨯-=⎪⎝⎭; ()41511801133243P C ξ⎛⎫==⨯⨯-=⎪⎝⎭ ()232511802133243P C ξ⎛⎫⎛⎫==⨯⨯-=⎪ ⎪⎝⎭⎝⎭ ()323511173133243P C ξ⎛⎫⎛⎫==⨯⨯-=⎪ ⎪⎝⎭⎝⎭(或()328021731243243P ξ+⨯==-=) 随机变量ξ的分布列是ξ的数学期望是32808017131012324324324324381E ξ=⨯+⨯+⨯+⨯=热点题型2 随机变量ξ的取值范围及分布列[样题2]在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖,某顾客从此10张券中任抽2张,求:(Ⅰ)该顾客中奖的概率;(Ⅱ)该顾客获得的奖品总价值ξ(元)的概率分布列和期望ξE . 解法一:(Ⅰ)324515121026=-=-=C C I P ,即该顾客中奖的概率为32.(Ⅱ)ξ的所有可能值为:0,10,20,50,60(元)..151)60(,152)50(,151)20(,52)10(,31)0(2101311210161121023210161321026===============C C C P C C C P C C P C C C P C C P ξξξξξ且故ξ有分布列:从而期望.161516015250151205210310=⨯+⨯+⨯+⨯+⨯=ξE 解法二:(Ⅰ),324530)(210241614==+=C C C C P (Ⅱ)ξ的分布列求法同解法一由于10张券总价值为80元,即每张的平均奖品价值为8元,从而抽2张的平均奖品价值ξE =2×8=16(元).变式新题型2.假设一种机器在一个工作日内发生故障的概率为0 2,若一周5个工作日内无故障,可获利润10万元;仅有一个工作日发生故障可获利润5万元;仅有两个工作日发生故障不获利也不亏损;有三个或三个以上工作日发生故障就要亏损2万元 求:(Ⅰ)一周5个工作日内恰有两个工作日发生故障的概率(保留两位有效数字); (Ⅱ)一周5个工作日内利润的期望(保留两位有效数字)解:以ξ表示一周5个工作日内机器发生故障的天数,则ξ~B (5,0 2)).5,4,3,2,1,0(8.02.0)(55=⨯⨯==-k C k P k k k ξ (Ⅰ).21.08.02.0)2(3225≈⨯⨯==C P ξ(Ⅱ)以η表示利润,则η的所有可能取值为10,5,0,-2.328.08.0)0()10(5≈====ξηP P.410.08.02.0)1()5(4115≈⨯⨯====C P P ξη .205.08.02.0)2()0(3225≈⨯⨯====C P P ξη.7()2(≥=-=ξηP P的概率分布为利润的期望=10×0 328+5×(万元)[样题3] (2005年高考·江西卷·理19)A 、B 两位同学各有五张卡片,现以投掷均匀硬币的形式进行游戏,当出现正面朝上时A 赢得B 一张卡片,否则B 赢得A 一张卡片.规定掷硬币的次数达9次时,或在此前某人已赢得所有卡片时游戏终止.设ξ表示游戏终止时掷硬币的次数.(1)求ξ的取值范围; (2)求ξ的数学期望E ξ.解:(1)设正面出现的次数为m ,反面出现的次数为n ,则⎪⎩⎪⎨⎧≤≤=+=-915||ξξn m n m ,可得:.9,7,5:;9,7,22,7;7,6,11,6;5,5,00,5的所有可能取值为所以时或当时或当时或当ξξξξ===============n m n m n m n m n m n m(2);645)21(2)7(;161322)21(2)5(7155=====⨯==C P P ξξ .322756455964571615;64556451611)9(=⨯+⨯+⨯==--==ξξE P变式新题型3.某射手进行射击练习,每射击5发子弹算一组,一旦命中就停止射击,并进行下一组练习,否则一直打完5发子弹后才能进入下一组练习.若该射手在某组练习中射击命中一次,并且他射击一次命中率为0.8,(1)求在这一组练习中耗用子弹ξ的分布列.(2)求在完成连续两组练习后,恰好共耗用了4发子弹的概率。
课时考点19 统计-----随机变量的分布列和期望高考考纲透析:等可能性的事件的概率,互斥事件有一个发生的概率,相互独立事件同时发生的概率,独立重复试验、离散型随机变量的分布列、期望和方差高考风向标:离散型随机变量的分布列、期望和方差热点题型1 n 次独立重复试验的分布列和期望 [样题1] (2005年高考·全国卷II ·理19)甲、乙两队进行一场排球比赛.根据以往经验,单局比赛甲队胜乙队的概率为0.6.本场比赛采用五局三胜制,即先胜三局的队获胜,比赛结束.设各局比赛互间没有影响.令ξ为本场比赛的局数,求ξ的概率分布和数学期望.(精确到0.0001)本题考查离散型随机变量分布和数学期望等概念,考查运用概率知识解决实际问题的能力。
解:单局比赛甲队胜乙队的概率为0.6,乙队胜甲队的概率为1-0.6=0.4比赛3局结束有两种情况:甲队胜3局或乙队胜3局,因而P (ξ=3)=330.60.40.28+= 比赛4局结束有两种情况:前3局中甲队胜2局,第4局甲队胜;或前3局中乙队胜2局,第4局乙队胜。
因而P (ξ=4)=2230.60.40.6C ⨯⨯⨯+2230.40.60.40.3744C ⨯⨯⨯=比赛5局结束有两种情况:前4局中甲队胜2局、乙队胜2局,第5局甲胜或乙胜。
因而P (ξ=5)=22240.60.40.6C ⨯⨯⨯+22240.40.60.40.3456C ⨯⨯⨯=所以ξ的概率分布为ξ的期望E ξ=3×P (ξ=3)+4×P (ξ=4)+5×P (ξ=5)=4.0656变式新题型1.(2005年高考·浙江卷·理19)袋子A 中装有若干个均匀的红球和白球,从A中摸出一个红球的概率是31.(Ⅰ) 从A 中有放回地摸球,每次摸出一个,共摸5次,求恰好有3次摸到红球的概率. (Ⅱ) 从A 中有放回地摸球,每次摸出一个,有3次摸到红球即停止. (i) 求恰好摸5次停止的概率; (ii )记5次之内(含5次)摸到红球的次数为ξ,求随机变量ξ的分布列及数学期望E ξ.解:(Ⅰ) 333512140333243C ⎛⎫⎛⎫⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭(Ⅱ)(i )2224121833381C ⎛⎫⎛⎫⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭(ii)随机变量ξ的取值为0,1,2,3,;由n 次独立重复试验概率公式()()1n kkkn n P k C p p -=-,得()50513*******P C ξ⎛⎫==⨯-=⎪⎝⎭; ()41511801133243P C ξ⎛⎫==⨯⨯-=⎪⎝⎭ ()232511802133243P C ξ⎛⎫⎛⎫==⨯⨯-=⎪ ⎪⎝⎭⎝⎭ ()323511173133243P C ξ⎛⎫⎛⎫==⨯⨯-=⎪ ⎪⎝⎭⎝⎭(或()328021731243243P ξ+⨯==-=) 随机变量ξ的分布列是ξ的数学期望是32808017131012324324324324381E ξ=⨯+⨯+⨯+⨯=热点题型2 随机变量ξ的取值范围及分布列[样题2]在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖,某顾客从此10张券中任抽2张,求:(Ⅰ)该顾客中奖的概率;(Ⅱ)该顾客获得的奖品总价值ξ(元)的概率分布列和期望ξE . 解法一:(Ⅰ)324515121026=-=-=C C I P ,即该顾客中奖的概率为32.(Ⅱ)ξ的所有可能值为:0,10,20,50,60(元)..151)60(,152)50(,151)20(,52)10(,31)0(2101311210161121023210161321026===============C C C P C C C P C C P C C C P C C P ξξξξξ且故ξ有分布列:从而期望.161516015250151205210310=⨯+⨯+⨯+⨯+⨯=ξE 解法二:(Ⅰ),324530)(210241614==+=C C C C P (Ⅱ)ξ的分布列求法同解法一由于10张券总价值为80元,即每张的平均奖品价值为8元,从而抽2张的平均奖品价值ξE =2×8=16(元).变式新题型2.假设一种机器在一个工作日内发生故障的概率为0 2,若一周5个工作日内无故障,可获利润10万元;仅有一个工作日发生故障可获利润5万元;仅有两个工作日发生故障不获利也不亏损;有三个或三个以上工作日发生故障就要亏损2万元 求:(Ⅰ)一周5个工作日内恰有两个工作日发生故障的概率(保留两位有效数字); (Ⅱ)一周5个工作日内利润的期望(保留两位有效数字)解:以ξ表示一周5个工作日内机器发生故障的天数,则ξ~B (5,0 2)).5,4,3,2,1,0(8.02.0)(55=⨯⨯==-k C k P k k k ξ (Ⅰ).21.08.02.0)2(3225≈⨯⨯==C P ξ(Ⅱ)以η表示利润,则η的所有可能取值为10,5,0,-2.328.08.0)0()10(5≈====ξηP P.410.08.02.0)1()5(4115≈⨯⨯====C P P ξη .205.08.02.0)2()0(3225≈⨯⨯====C P P ξη.7()2(≥=-=ξηP P的概率分布为利润的期望=10×0 328+5×(万元)[样题3] (2005年高考·江西卷·理19)A 、B 两位同学各有五张卡片,现以投掷均匀硬币的形式进行游戏,当出现正面朝上时A 赢得B 一张卡片,否则B 赢得A 一张卡片.规定掷硬币的次数达9次时,或在此前某人已赢得所有卡片时游戏终止.设ξ表示游戏终止时掷硬币的次数.(1)求ξ的取值范围; (2)求ξ的数学期望E ξ.解:(1)设正面出现的次数为m ,反面出现的次数为n ,则⎪⎩⎪⎨⎧≤≤=+=-915||ξξn m n m ,可得:.9,7,5:;9,7,22,7;7,6,11,6;5,5,00,5的所有可能取值为所以时或当时或当时或当ξξξξ===============n m n m n m n m n m n m(2);645)21(2)7(;161322)21(2)5(7155=====⨯==C P P ξξ .322756455964571615;64556451611)9(=⨯+⨯+⨯==--==ξξE P变式新题型3.某射手进行射击练习,每射击5发子弹算一组,一旦命中就停止射击,并进行下一组练习,否则一直打完5发子弹后才能进入下一组练习.若该射手在某组练习中射击命中一次,并且他射击一次命中率为0.8,(1)求在这一组练习中耗用子弹ξ的分布列.(2)求在完成连续两组练习后,恰好共耗用了4发子弹的概率。
离散型随机变量的数学期望
1.若随机变量X的分布列如表,则E(X)等于( )
某中学组建了A、B、C、D、E五个不同的社团组织,为培养学生的兴趣爱好,要求每个学生必须参加,且只能参加一个社团.假定某班级的甲、乙、丙三名学生对这五个社团的选择是等可能的.
(1)求甲、乙、丙三名学生参加五个社团的所有选法种数;
(2)求甲、乙、丙三人中至少有两人参加同一社团的
概率;
(3)设随机变量ξ为甲、乙、丙这三名学生参加A社
团的人数,求ξ的分布列与数学期望.
有一批产品,其中有12件正品和4件次品,从中任取3件,若ξ表示取到次品的个数,则E(ξ)=_
某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则数学期望E(ξ)=_
袋中有相同的5个球,其中3个红球,2个黄球,现从
中随机且不放回地摸球,每次摸1个,当两种颜色的
球都被摸到时,即停止摸球,记随机变量ξ为此时已
摸球的次数,求:
(1)随机变量ξ的概率分布列;
(2)随机变量ξ的数学期望与方差.。
高考数学复习考点知识与结论专题讲解 第61讲 随机变量分布列随机变量分布列、、期望与方差【知识通关】通关一、离散型随机变量分布离散型随机变量分布列列1. 离散型随机变量的分布列的表示一般地,若离散型随机变量X 可能取的不同值为12,,,n x x x ,X 取每一个值()12,,,i x n 的概率12,i i P X x p i n === (),,,则下表称为随机变量X 的概率分布列,简称为x 的分布列.X 1x 2x i x n x P1p2pi pn p为了简单起见,也可以用等式12,i i P X x p i n === (),,,表示X 的分布列. 2. 离散型随机变量的分布列的性质根据概率的性质,离散型随机变量的分布列具有如下性质: (1)012,,,i P i n ≥= ,; (2)121i n p p p p +++++= ;(3)1i j i i j Px x x P P P +≤≤=+++ ()(*,i j i j N <∈且). 通关二通关二、、离散型随机变量的均值与方差1. 期望与方差的表示一般地,若离散型随水变量X 的概率分布列为:则称1122i i n n E X x P x P x p x p =+++++ ()为随机变量X 的均值或数学期望,它反映了高散型随机变量取值的平均水平;称()21ni i i D x x E X p = =− ∑()为随机变量X 的方差,它刻画了随机变量X与其均值E (Xx 的标准差. 2. 均值的性质若y aX b =+,其中a b ,是常数,X 是随机变量,则均值的性质:(1)Ek k =()(k 为常效); (2)EaX b aB X b +=+()(); (3)1212E X X E X E X +=+()()(); (4)若12,X X 相互独立,则1212·E X X E X E X ⋅=()()(). 3. 方差的性质(1)0Dk =()(k 为常数); (2)2D aX b a D X +=()();(3)22[]D X E X E X =−()()().X 1x 2x i x n x P1p2pi pn p通关三通关三、、正态分布曲缆及特点我们把画数224()(),(,)k n nn x x ϕ−−−==−∞+∞(其中u 是样本均值,σ是样本标准差)的图像称为正态分布密度曲线,简称正态曲线.(1)曲线位手x 轴上方,与x 轴不相交; (2)曲线是单峰的,它关于直线x µ=对称;(3)曲线在x µ=(4)曲线与x 轴之间的面积为1;(5)当σ一定时,曲线的位置由u 确定,曲线随着u 的变化而沿x 轴平移;(6)当u 一定时,曲线的形状由σ确定;σ越小,曲线越“瘦”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散. 【结论第讲】结论一结论一、、求解离散型随机变量X 的分布到的步的分布到的步骤骤1. 理解X 的意义,写出X 可能取的全部值;2. 求X 取每个值的概率;3. 写出X 的分布列;4. 根据分布列的性质对结果进行检验.【例1】甲、乙两人轮流投篮,每人每次投一球,约定甲先投且先投中者获胜,一直到有人获胜或每人都投球3次时投篮结束. 设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响,(1)求甲获胜的概率;(2)求投篮结束时甲的投球次数ξ的分布列.【解析】设,k k A B 分别表示“甲、乙在第k 次投篮投中”,则()()()1112233,,,,k k P A P B k ===.(1)记“甲获胜”为事件C ,由互斥事件与相互独立事件的概率计算公式知1112112231122111()()()()()()()()()()()P C P A P A B A P A B A B A P A P A P B P A P A P B P A =++=++32221211211111133323323392727()()()().P B P A +×+=++==××× (2)ξ的所有可能取值为1,2,3且111121213323()()()P P A P A B ξ×==+=+=;1222221112921121232332()()()(( =)P P A B A P A B A B ξ+==+=×××11223()()P P A B A B ξ==22211329()(×==, 综上ξ的分布列为:【变式】在一个选拔项目中,每个选手都需要进行4轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰. 已知某选手能正确回答第一、二、三、四轮问题的概率分别为2,4,2,且各轮问题能否正确回答互不影响.(1)求该选手进人第三轮才被淘汰的概率; (2)求该选手至多进人第三轮考核的概率;(3)该选手在选拔过程中回答过的问题的个数记为X ,求随机变量X 的分布列.【解析】设事件i A (1234i =,,,)表示“该选手能正确回答第i 轮问题”,由已知234154316543(),(),(),()P A P A P A P A ==== (1)设事件B 表示“该选手进入第三轮被淘汰”,则123123543116546()()()()()()P B P A A A P A P A P A ===××−= (2)设事件C 表示“该选手至多进入第三轮考核”,则112123112123P ( C ) = P ( ++ )=P ( )+P ()+P ( )A A A A A A A A A A A A 1515431665654()××=++×−12=(3)x 的可能取值为1,2,3,4.1231211541541213665665()();()()();()(P X P A P X P A A P X A P A A =======×−===×12331553114466442(;()()P X P A A A −===×=××=所以,x 的分布列为:结论二结论二、、期望与方差的一般计算步骤1. 理解X 的意义,写出X 的所有可能取的值;2. 求X 取各个值的概率,写出分布列;3. 根据分布列,正确运用期望与方差的定义或公式进行计算.【例2】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完. 根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关. 如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得到下面的频数分布表:最高气温 [10,15)[15,20)[20,25)[25,30)[30, 35) [35,40)天数216362574以最高气温位于各区间的频率代替最高气温位于该区间的概率,(1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值?【解析】(1)由题意知X 的可能取值为200,300,500,P (X=200)=2160290.+=36257430004500049090().,().P X P X ++====== 所以X 的分布列为:X 200 300 500 P0. 20. 40. 4(2)由题意知这种酸奶一天的需求量至多为500瓶,至少为200瓶,所以只需考虑200≤n ≤500. 当300≤n ≤500时,若最高气温不低于25,则Y=6n -4n =2n ;若最高气温位于区间[20,25),则Y=6×300+2(n -300)-4n =1200-2n ; 若最高气温低于20,则Y=6×200+2(n -200)-4n =800-2n ; 所以F(Y )=2n ×0. 4+(1200-2n )×0. 4+(800-2n )×0. 2=640-0. 4n . 当200≤n ≤300时,若最高气温不低于20,则Y=6n-4n=2n ; 若最高气温低于20,则Y=6×200+2(m -200)-4n =800-2n ;所以E(Y )=2n×(0. 4+0. 4)+(800-2m )×0. 2=160+1. 2n .综上,当n=300时,Y 的数学期望达到最大值,最大值为520元【变式】为加强大学生实践、创新能力和团队精神的培养,促进高等教育教学改革,教育部门主办了全国大学生智能汽车竞赛,竞赛分为预赛和决赛两个阶段,参加决赛的队伍按照抽签的方式决定出场顺序,通过预赛,选拔出甲、乙等五支队伍参加决赛.(1)求决赛中甲乙两支队伍恰好排在前两位的概率;(2)若决赛中甲队和乙队之间间隔的队伍数记为X ,求X 的分布列和数学期望.【解析】(1)设事件A 为“甲乙排在前两位”,则232355110()()A A n A P A n Q A ⋅===(). (2)X 的可能取值为0,1,2,3,则232323235555432301510();(),A A A A P X P X A A ⋅⋅⋅⋅======23332323555211123510();()A A A B P X P X A A ⋅⋅⋅⋅======. 所以x 的分布列为:结论三结论三、、二项分布一般地,在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ,则事件A 恰好发生次的概率为1k k n k n P X k C p p −==−()()",k=0,1,2…,n ,则称随机变量X 服从二项分布,记作x ~B (n ,p ).X1nP001nn C p p −() 1111n n C p p −−()1n n n C p p −()要点诠释:1E X np D X np p ==−(),()(). 【例】3为保护水资源,宣传节约用水,某校4. 名志愿者准备去附近的甲、乙、两三个公园进行宣传活动,每名志愿者都可以从三个公园中随机选择一个,且每人的选择相互独立.(1)求4人恰好选择了同一个公园的概率;(2)设选择甲公园的志愿者的人数为X ,试求X 的分布列及期望.【解析】(1)设“4人恰好选择了同一个公园”为事件A. 每名志愿者都有3种选择,4名志愿者的选择共有3’种等可能的情况,事件A 所包含的等可能事件的个数为3,所以431273P A ==(),故4人恰好选择了同一个公园的概率为127(2)设“一名志愿者选择甲公园”为事件C ,则13P C =(). 4人中选择甲公园的人数X 可看作4次独立重复试验中事件C 发生的次数. 因此,随机变量X 服从二项分布X 可取的值为0,1,2,3,4.4141233()()()i i P X i C −==,i=0,1,2,3,4.X 的分布列为:X 的期望为14433()E X np ==×=【变式】一家面包房根据以往某种将日销售量落入各组的频率视为概(1)求在未来连续3天里,有的概率;(2)用X 表示在未来3天里日方差D(X ).【解析】(1)设1A 表示事件“日销件“在未来连续3天里,有连续2天的1000600040002...P A =++()()2000350015..P A P =×==(),((2)X 的可能取值为0,1131061.P X C ==−()()(3333060216..P X C ===()(). 随机变量X 的分布列为:X P往某种面包的销售记录,绘制了日销售量的频率分布直视为概率,并假设每天的销售量相互独立.里,有连续2天的日销售量都不低于100个且另1天的日天里日销售量不低于100个的天数,求随机变量x 的分布日销售量不低于100个”,2A 表示事件“日销售量低于天的日销售量都不低于100个且另1天的日销售量低5006.×=,060601520108....B ×××=).1,2,3,相应的概率为:03010P X C ==−()(222130602882061060432.....P X C ===−=);()()()0 1 2 30064. 0288. 0432. 0216.分布直方图,如图所示. 天的日销售量低于50个的分布列、期望E(X )及量低于50个”,B 表示事售量低于50个”,因此360064..=); ;因为X~B (3,0. 6),所以期望30618..E X np ==×=(),方1306106072...D X p p =−=××−=()()().结论四结论四、、超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有x 件次品,则012,,,,,,k n kN NMM nC P X k k m C C −−==== ()其中min{,},m M n =且*,,,,n N M N n M N N ≤≤∈. 要点诠释:21()()(),()()nM nM N M N n E X D X N N N −−==− 【例】4某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4. 现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率;(2)设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望.【解析】(1)由已知得11234321013C C C P C ⋅+==,所以事件A 发生的概率为13. (2)随机变量X 的所有可能取值为0,1,2.222111111334333434222101010474012151515 ();();()C C C C C C C C C P X P X P X C C C +++========= 所以,随机变量x 的分布列为:随机变量X 的数学期望4740121151515()E X =×+×+×=.【变式】为了提高我市的教育教学水平,市教育局打算从红塔区某学校推荐的10名教师中任选3人去参加支教活动. 这10名教师中,语文教师3人,数学教师4人,英语教师3人.(1)求选出的语文教师人数多于数学教师人数的概率; (2)求选出的3人中,语文教师人数X 的分布列和数学期望.【解析】设事件i A 为“3人中有i 名语文教师”,j B 为“3人中有j 名数学教师”,事件A 为“语文教师人数多于数学教师人数”,所以3213412213333310021333331010101099121120C C C C C C C P A P A B P A B P A B P A C C C C ++++++==+++=()()(₂)()()31120=. (2)语文教师人数X 可取的值为0,1,2,3,依题意可得x~H (10,3,3),所以2217713331301310031211356301212020120,(),(),C C C P C C C C X P X P X C =========()3331031201()C P X C ===. 所以X 的分布列为:所以356321*********12012012010()E X =×+×+×+×=.结论五结论五、、利用期望与方差进行决策若我们希望实际的平均水平较理想时,一般先求随机变量12,ξξ的期望,若12()()E E ξξ=时,则用12(),()D D ξξ来比较这两个随机变量的偏离程度. 若1()E ξ与2()E ξ比较接近,且期望较大者的方差校小,显然该变量更好;若1()E ξ与2()E ξ比较接近且方差相差不大时,应根据不同选择给出不同的结论,是选择较理想的平均水平还是选择较稳定.【例5】改革开放以来,人们的支付方式发生了巨大转变. 近年来,移动支付已成为主要支付方式之一为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中,A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下;支付方式支付金额(元)(0,1000](1000,2000]大于2000 仅使用A |18人 9人 3人 仅使用B10人14人1人(1)从全校学生中随机抽取1人,估计该学生上个月A ,B 两种支付方式都使用的概率; (2)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,求X 的分布列和数学期望;(3)已知上个月样本学生的支付方式在本月没有变化. 现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元. 根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化?说明理由.【解析】(1)由题意得:从全校所有学生中随机抽取的100人中,A ,B 两种支付方式都不使用的有5人,仅使用A 的有30人,仅使用B 的有25人,所以A ,B 两种支付方式都使用的人数有:100-5-30-25=40. 从全校学生中随机抽取1人,估计该学生上个月A ,B 两种支付方式都使用的概率4004100.p ==.(2)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,则X 的可能取值为0,1,2. 样本仅使用A 的学生有30人,其中支付金额在(0,1000]的有l8人,超过1000元的有12人,样本仅使用B 的学生有25人,其中支付金额在(0. 1000]的有10人,超过1000元的有15人.所以1810180618151239013013025750253025307525;();P X P X ××+========()121518023025750256()P X ====×. 所以x 的分布列为:数学期望61360121252525()E X =×+×+×=.(3)不能认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化,理由如下:样本中仅使用A 的学生有30人,其中27人月支付金额不大于2000元,有3人月支付金额大于2000元,随机抽查3人,发现他们本月的支付金额都大于2000元的概率为3333014060C p C ==,虽然概率较小,但发生的可能性为14060,故不能认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化.。
分布列与数学期望离散型随机变量的分布列与数学期望班级姓名如右表:则x= 。
2.两封信随机投入A B C,,三个空邮箱,则A邮箱的信件数ξ的数学期望Eξ=.3.某班从6名班干部(其中男生4人,女生2人)中选3人参加学校学生会的干部竞选.(1)设所选3人中女生人数为ξ,求ξ的分布列及数学期望;(2)在男生甲被选中的情况下,求女生乙也被选中的概率.4.已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球.(1)求取出的4个球均为黑球的概率;(2)求取出的4个球中恰有1个红球的概率;(3)设ξ为取出的4个球中红球的个数,求ξ数学期望.5、为加强大学生实践、创新能力和团队精神的培养,促进高等教育教学改革,教育部门主办了全国大学生智能汽车竞赛.该竞赛分为预赛和决赛两个阶段,参加决赛的队伍按照抽签方式决定出场顺序,通过预赛,选拔出甲、乙等五支队伍参加决赛.(I)求决赛中甲、乙两支队伍恰好排在前两位的概率;(II)若决赛中甲队和乙队之间间隔的队伍数记为X,求X的分布列和数学期望.6.(本题满分12分)为了解今年某校高三毕业班准备报考飞行员学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为12.(1)求该校报考飞行员的总人数;(2)以这所学校的样本数据来估计全省的总体数据,若从全省报考飞行员的同学中(人数很多)任选三人,设X表示体重超过60公斤的学生人数,求X的分布列和数学期望.7.某项新技术进入试用阶段前必须对其中三项不同指标甲、乙、丙进行通过量化检测。
假设该项新技术的指标甲、乙、丙独立通过检测合格的概率分别为21,32,32,指标甲、乙、丙检测合格分别记4分、2分、4分,若某项指标不合格,则该项指标记0分,各项指标检测结果互不影响。
(Ⅰ)求该项技术量化得分不低于8分的概率;(Ⅱ)记该技术的三个指标中被检测合格的指标个数为随机变量ξ,求ξ的分布列与数学期望。