2018年四川省成都市中考数学试卷及解析
- 格式:doc
- 大小:412.00 KB
- 文档页数:24
初2018届成都市郫都区中考数学九年级一诊试卷(考试时间:120分钟满分150分)A卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.如图摆放的圆锥、圆柱、三棱柱、球,其主视图、左视图、俯视图都相同的是()A.B.C.D.2.一元二次方程5x2﹣4x﹣3=0的二次项系数与一次项系数分别为()A.5,﹣1 B.5,4 C.5x2,﹣4x D.5,﹣43.已知=,则的值是()A.B.C.﹣D.﹣4.如图,在平面直角坐标系中,点A的坐标为(4,3),那么cosα的值是()A.B.C.D.5.若m是一元二次方程x2﹣5x﹣2=0的一个实数根,则2018﹣m2+5m的值为()A.2015 B.2016 C.2017 D.20186.下列哪种光线形成的投影不是中心投影()A.探照灯B.太阳C.手电筒D.路灯7.如图所示,阳光中学教学楼前喷水池喷出的抛物线形水柱,其解析式为y=﹣(x﹣2)2+6,则水柱的最大高度是()A.2 B.4 C.6 D.2+8.函数y=中,自变量x的取值范围是()A.x>5 B.x<5 C.x≥5 D.x≤59.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.10.在同一坐标系中,一次函数y=ax+b与二次函数y=ax2+b的大致图象为()A.B.C.D.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.若反比例函数y=的图象在第一、三象限内,则k的取值范围为.12.抛物线y=x2+2x﹣2向右平移2个单位长度,所得抛物线的对称轴为直线.13.如图,河两岸分别有A、B两村,测得A、B、D在一直线上,A、C、E在一条直线上,BC∥DE,DE=100m,BC=70m,BD=30m,则A、B两村间的距离为.14.在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有个.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:||+﹣2tan45°﹣2sin60°(2)解方程:x2﹣6x+5=016.(6分)如图是由6个小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,请按要求画出该几何体的主视图与左视图.17.(8分)如图,一艘核潜艇在海面下500米A点处测得俯角为31°正前方的海底C点处有黑匣子信号发出,继续在同一深度直线航行3000米后再次在B点处测得俯角为62°正前方的海底C点处有黑匣子信号发出,求海底黑匣子C点处距离海面的深度CH.(参考数据:sin62°≈0.88,cos62°≈0.47,tan62°≈1.88)18.(8分)端午节那天,小贤回家看到桌上有一盘粽子,其中有豆沙粽、肉粽各1个,蜜枣粽2个,这些粽子除馅外无其他差别.(1)小贤随机地从盘中取出一个粽子,取出的是肉粽的概率是多少?(2)小贤随机地从盘中取出两个粽子,试用画树状图或列表的方法表示所有可能的结果,并求出小贤取出的两个都是蜜枣粽的概率.19.(10分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=图象交于点A (1,5)和点B(n,1).(1)求m,n的值;(2)设直线AB与x轴交于点C,求△AOC的面积;(3)若图中一次函数的函数值小于反比例函数的函数值,直接写出x的取值范围.20.(10分)如图,已知矩形ABCD中,过对角线AC的中点O作AC的垂线,分别交射线AD和CB于点E、F,交DC于点G,交AB于点H,连接AF,CE.(1)求证:四边形AFCE是菱形;(2)若=,△DGE的面积是2,求△CGF的面积;(3)如果OF=2GO,求证:GO2=DG•GC.B卷(共50分)一、填空题(本大题共5分,每小题4分,共20分,答案写在答题卡上)21.已知三角形的3条中位线分别为3cm、4cm、6cm,则这个三角形的周长是.22.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=﹣2,则b a的值为.23.已知函数y=(k﹣3)x2+2x+1的图象与x轴有两个交点,则k的取值范围是.24.从﹣2、﹣1、0、1这四个数中随机抽取一个记为a,则使关于x的不等式组有解,且使关于x的一次函数y=的图象与反比例函数y=的图象有1个交点的概率是.25.如图,正方形ABCD的边长为2,E,F分别是AB,BC的中点,AF与DE,DB分别交于点M、N,则S △MND:S△AFD的值为.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2015年利润为2亿元,2017年利润为2.88亿元.(1)求该企业从2015年到2017年利润的年平均增长率;(2)若保持年平均增长率不变,该企业2018年的利润能否超过3.4亿元?27.(10分)如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)当线段BE为何值时,线段AM最短,最短是多少?28.(12分)如图,在平面直角坐标系中,抛物线F1:y=ax2+bx﹣4(a≠0)与x轴交于点A(﹣1,0)和点B(3,0),将抛物线F1沿x轴翻折得到抛物线F2,抛物线F2与y轴交于点C.(1)求抛物线F1和抛物线F2的解析式;(2)若点P是抛物线F2在第一象限的图象上的一个动点,过点P作PE平行于y轴交直线BC于点E,求PE 的最大长度及△PCB的最大面积;(3)若点Q在抛物线F1上,且到∠OCB的两边的距离相等,求点Q的坐标.参考答案与试题解析1.【解答】解:球的三视图是大小相同的圆,而圆锥、圆柱、三棱柱的三视图都不完全相同.所以主视图、左视图、俯视图都完全相同的是球.故选:D.2.【解答】解:一元二次方程5x2﹣4x﹣3=0的二次项系数和一次项系数分别为5,﹣4,故选:D.3.【解答】解:∵=,∴a=5k,b=13k,∴=,故选:A.4.【解答】解:由点A的坐标为(4,3),那么OA==5,∴cosα的值为A的横坐标:OA=4:5,故选:B.5.【解答】解:∵m是一元二次方程x2﹣5x﹣2=0的一个实数根,∴m2﹣5m﹣2=0,即m2﹣5m=2,∴2018﹣m2+5m=2018﹣(m2﹣5m)=2018﹣2=2016.故选:B.6.【解答】解:中心投影的光源为灯光,平行投影的光源为阳光与月光,在各选项中只有B选项得到的投影为平行投影,故选B.7.【解答】解:∵抛物线形水柱,其解析式为y=﹣(x﹣2)2+6,∴水柱的最大高度是:6.故选:C.8.【解答】解:根据题意得:x﹣5≥0解得:x≥5故选:C.9.【解答】解:共4种情况,有1种情况每个路口都是绿灯,所以概率为.故选:A.10.【解答】解:A、由一次函数y=ax+b的图象可得:a>0,此时二次函数y=ax2+b的图象应该开口向上,故A错误;B、由一次函数y=ax+b的图象可得:a<0,b>0,此时二次函数y=ax2+b的图象应该开口向下,顶点的纵坐标大于零,故B正确;C、由一次函数y=ax+b的图象可得:a<0,b<0,此时二次函数y=ax2+b的图象应该开口向下,故C错误;D、由一次函数y=ax+b的图象可得:a<0,b>0,此时二次函数y=ax2+b的图象应该开口向下,故D错误;故选:B.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.【解答】解:∵反比例函数y=的图象在第一、三象限内,∴k﹣5>0,解得 k>5.故答案为:k>5.12.【解答】解:∵y=x2+2x﹣2=(x+1)2﹣3,∴向右平移2个单位长度后抛物线解析式为y=(x﹣1)2+3,∴所得抛物线的对称轴为直线 x=1.故答案是:x=1.13.【解答】解:∵BC∥DE,∴△ABC∽△AED,∴=,即=,解得,AB=70,故答案为:70.14.【解答】解:设白球个数为:x个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴=,解得:x=12,故白球的个数为12个.故答案为:12.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.【解答】解:(1)原式=2﹣+3﹣2×1﹣2×=;(2)(x﹣5)(x+1)=0,x﹣5=0或x+1=0,所以x1=5,x2=1.16.【解答】解:如图所示:17.【解答】解:在△ABC中∠CAG=31°,∠CBG=62°,∴BC=AB=3000m,在Rt△BCG中,∠BCD=62°,∴sin∠CBG=,∴CG=0.88×3000≈2640 (m),∴CH=CG﹣GH=2640+500=3140(m),∴海底黑匣子C点处距离海面的深度CH为3140m.18.【解答】解:(1)∵有豆沙粽、肉粽各1个,蜜枣粽2个,∴随机地从盘中取出一个粽子,取出的是肉粽的概率是:;(2)如图所示:,一共有12种可能,取出的两个都是蜜枣粽的有2种,故取出的两个都是蜜枣粽的概率为:=.19.【解答】解:(1)∵点A(1,5)在反比例函数y=图象上,∴m=1×5=5,∴反比例函数的解析式为y=,∵点B(n,1)在反比例函数y=的图象上,∴n=5.(2)∵点A(1,5)和点B(5,1)在直线y=kx+b上∴,解得,∴直线AB的解析式为y=﹣x+6,∴点C的坐标为(6,0),OC=6,∴△AOC的面积=×6×5=15,(3)观察图象可知:当图中一次函数的函数值小于反比例函数的函数值,x的取值范围为:0<x<1或x >5.20.【解答】证明:(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠EAC=∠ACF,在△EOA和△FOC中,,∴△EOA≌△FOC(ASA).∴AE=CF,OE=OF.∴四边形AFCE是平行四边形.∵AC⊥EF,∴四边形AFCE是菱形;(2)∵四边形AFCE是菱形∴AE∥CF,AE=CF.∴△DGE∽△CGF.∴=()2.∵=,△DGE的面积是2,∴=()2.∴S△CGF=18;(3)∵∠EDG=∠COG=90°,∠EGD=∠CGO,∴△EGD∽△CGO.∴EG:DG=CG:GO.∵OF=2GO,∴EG=GO.∴GO2=DG•GC.一、填空题(本大题共5分,每小题4分,共20分,答案写在答题卡上)21.【解答】解:∵三角形的3条中位线分别为3cm、4cm、6cm,根据三角形的中位线定理,得三角形的三边分别是6cm、8cm、12cm,则三角形的周长是26cm.故答案为26cm.22.【解答】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=﹣2,解得a=2,b=1,∴b a=12=1.故答案为:1.23.【解答】解:∵函数y=(k﹣3)x2+2x+1的图象与x轴有两个交点,∴令y=0,则(k﹣3)x2+2x+1=0,则△=4﹣4(k﹣3)>0,且k﹣3≠0,解得,k<4且k≠3.故答案是:k<4且k≠3.24.【解答】解:由题意:当a=﹣1时,关于x的不等式组有解,关于x的一次函数y=的图象与反比例函数y=的图象有1个交点,当a=0或1时,关于x的不等式组有解,关于x的一次函数y=的图象与反比例函数y =的图象有2个交点,∴使关于x的不等式组有解,且使关于x的一次函数y=的图象与反比例函数y=的图象有1个交点的概率是.故答案.25.【解答】解:连接DF,如图,∵E,F分别是AB,BC的中点,∴AE=BF=,∵四边形ABCD是正方形,∴AD∥BC,AB=BC=,∴DE=AF==5,在△ADE和△BAF中,∴△ADE≌△BAF(SAS),∴∠ADE=∠BAF,∵∠BAF+∠FAD=90°,∴∠FAD+∠ADE=90°,∴∠AMD=90°,∴AM⊥DE,∵AM•DE=AE•AD,∴AM==2,在Rt△AMD中,DM==4,又∵AD∥BF,∴△AND∽△FNB,∴,∴AN=2NF==×5=,∴MN=﹣2=,∴S△DMN=DM•MN=×4×=8,∵S△ADF=×2×2=30,∴S△MND:S△AFD=8:30=4:15.故答案为4:15.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.【解答】解:(1)设这两年该企业年利润平均增长率为x,根据题意得:2(1+x)2=2.88,解答:x1=0.2=20%,x2=﹣2.2(不合题意,舍去),则设这两年该企业年利润平均增长率为20%;(2)如果2018年仍保持相同的年平均增长率,那么2018年该企业年利润为:2.88(1+20%)=3.456,且3.456>3.4,则该企业2018年的利润能超过3.4亿元.27.【解答】解:(1)∵AB=AC,∴∠B=∠C,∵△ABC≌△DEF,∴∠AEF=∠B,又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,∴∠CEM=∠BAE,∴△ABE∽△ECM;(2)能.∵∠AEF=∠B=∠C,且∠AME>∠C,∴∠AME>∠AEF∴AE≠AM;当AE=EM时,则△ABE≌△ECM,∴CE=AB=5,∴BE=BC﹣EC=6﹣5=1,当AM=EM时,则∠MAE=∠MEA,∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,∵∠C=∠C,∴△CAE∽△CBA,∴,∴CE=,∴BE=6﹣=;∴BE=1或.(3)设BE=x,又∵△ABE∽△ECM,∴,即:,∴CM=﹣+x=﹣(x﹣3)2+,∴AM=5﹣CM=(x﹣3)2+,∴当x=3时,AM最短为.28.【解答】解:(1)F1的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即﹣3a=﹣4,解得:a=,故函数F1的表达式为:y=x2﹣x﹣4,将抛物线F1沿x轴翻折得到抛物线F2,抛物线的表达式为:y=﹣x2+x+4;(2)点B、C的坐标分别为(3,0)、(0,4),将点B、C坐标代入一次函数表达式:y=kx+b并解得:直线C的表达式为:y=﹣x+4,设点P(x,﹣x2+x+4),则点E(x,﹣x+4),PE=﹣x2+x+4﹣(﹣x+4)=﹣(x﹣)2+3,∵<0,∴当x=时,PE的最大值为3;(3)如图,在y轴上截取CB=CD=5,则点D(0,﹣1),设BD的中点为H(,﹣),同理过点C、H的直线表达式为:y=﹣3x+4,∵CH平分∠OCB,则CH与抛物线F1的交点Q到∠PCB两边的距离相等,,解得:x=,故点Q(,)或(,)。
(直打版)2018成都市中考数学试卷及答案详解word修正版(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)2018成都市中考数学试卷及答案详解word修正版(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)2018成都市中考数学试卷及答案详解word修正版(word版可编辑修改)的全部内容。
成都市二O一八年高中阶段教育学校统一招生考试(含成都市初三毕业会考)全卷分A卷和B卷,A卷满分100分,B卷满分50分;考试时间120分钟A卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题:本大题共10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.实数a,b,c,d在数轴上对应的点的位置如图所示,这四个数中最大的是( )A. a B。
b C。
c D.d2.2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里,远地点高度为40万公里的预定轨道。
将数据40万用科学记数法表示为()A.44⨯ D.610104.0⨯4⨯ B.54⨯ C。
610103.如图所示的正六棱柱的主视图是( )A. B. C. D.4.在平直角坐标系点P(—3,—5)关原点对称的点的坐标是()A。
(3,—5) B。
(—3,5) C。
(3,5) D.(-3,-5) 5.下列计算正确的是()A 。
422x x x =+B 。
222)(y x y x -=- C. y x y x 632)(= D 。
532)(x x x =⋅-6.如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC ≌△DCB 的是( )A 。
专题6.3 概率一、单选题1.在一个不透明的袋子中装有n个小球,这些球除颜色外均相同,其中红球有2个,如果从袋子中随机摸出一个球,这个球是红球的概率为,那么n的值是()A.6 B.7 C.8 D.9【来源】2018年海南省中考数学试卷【答案】A【解析】【分析】此题涉及的知识点是概率,根据概率公式=,利用比例性质得到n的值.【详解】根据题意得: =,所以n=6.故选A.【点睛】本题重点考查学生对于概率公式的理解,熟练掌握这一规律是解题的关键.2.下列说法正确的是()A.调查某班学生的身高情况,适宜采用全面调查B.篮球队员在罚球线上投篮两次都未投中,这是不可能事件C.天气预报说明天的降水概率为95%,意味着明天一定下雨D.小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1[【来源】四川省南充市2018届中考数学试卷【答案】A【解析】【分析】利用调查的方式,概率的意义以及实际生活常识分析得出即可.【详解】A、调查某班学生的身高情况,适宜采用全面调查,此选项正确;B、篮球队员在罚球线上投篮两次都未投中,这是随机事件,此选项错误;C、天气预报说明天的降水概率为,意味着明天下雨可能性较大,此选项错误;D、小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1,此选项错误;故选:A.【点睛】此题主要考查了调查的方式,随机事件的定义和概率的意义,正确把握相关定义是解题关键.3.下列成语中,表示不可能事件的是( )A.缘木求鱼B.杀鸡取卵C.探囊取物D.日月经天,江河行地【来源】2018年黑龙江省齐齐哈尔市中考数学试卷【答案】A【解析】【分析】不可能事件,就是一定不会发生的事件,必然事件是一定会发生的事件.【详解】缘木求鱼,是不可能事件,符合题意;杀鸡取卵,是必然事件,不符合题意;探囊取物,是必然事件,不符合题意;日月经天,江河行地,是必然事件,不符合题意.故答案为:A.【点睛】本题考查的知识点是可能事件与不可能事件的判断,解题关键是熟记可能时间和不可能事件的定义.4.已知抛一枚均匀硬币正面朝上的概率为,下列说法错误的是A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10次都可能正面朝上C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的【来源】【市级联考】湖南省衡阳市2019届中考数学试卷【答案】A【解析】【分析】根据概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.【详解】A.连续抛一均匀硬币2次必有1次正面朝上,不正确,有可能两次都正面朝上,也可能都反面朝上,故此选项错误;B.连续抛一均匀硬币10次都可能正面朝上,是一个有机事件,有可能发生,故此选项正确;C.大量反复抛一均匀硬币,平均100次出现正面朝上50次,也有可能发生,故此选项正确;D.通过抛一均匀硬币确定谁先发球的比赛规则是公平的,概率均为,故此选项正确.故选A.【点睛】本题考查了概率的意义,解题的关键是弄清随机事件和必然事件的概念的区别.5.甲袋中装有2个相同的小球,分别写有数字1和2;乙袋中装有2个相同的小球,分别写有数字1和2.从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是()A.B.C.D.【来源】2018年广东省广州市中考数学试卷【答案】C【解析】【分析】用画树状图法求出所有情况,再计算概率.【详解】如图所示:,一共有4种可能,取出的两个小球上都写有数字2的有1种情况,故取出的两个小球上都写有数字2的概率是:.故选:C【点睛】本题考核知识点:概率. 解题关键点:用画树状图法得到所有情况.6.下列事件中,属于不可能事件的是()A.某个数的绝对值大于0 B.某个数的相反数等于它本身C.任意一个五边形的外角和等于540°D.长分别为3,4,6的三条线段能围成一个三角形【来源】2018年内蒙古包头市中考数学试题【答案】C【解析】【分析】直接利用随机事件以及确定事件的定义分析得出答案.【详解】A、某个数的绝对值大于0,是随机事件,故此选项错误;B、某个数的相反数等于它本身,是随机事件,故此选项错误;C、任意一个五边形的外角和等于540°,是不可能事件,故此选项正确;D、长分别为3,4,6的三条线段能围成一个三角形,是必然事件,故此选项错误.故答案选C.【点睛】本题考查的知识点是随机事件以及确定事件,解题的关键是熟练的掌握随机事件以及确定事件.7.有A,B两只不透明口袋,每只品袋里装有两只相同的球,A袋中的两只球上分别写了“细”、“致”的字样,B袋中的两只球上分别写了“信”、“心”的字样,从每只口袋里各摸出一只球,刚好能组成“细心”字样的概率是()A.B.C.D.【来源】2010年高级中等学校招生全国统一考试数学卷(河北)【答案】B【解析】共有4种情况,刚好能组成“细心”字样的情况有一种,所以概率是,故选B.8.为备战中考,同学们积极投入复习,李红书包里装有语文试卷3张、数学试卷2张、英语试卷1张、其它学科试卷3张,从中任意抽出一张试卷,恰好是数学试卷的概率是()A.B.C.D.【答案】D【解析】:由李红书包里装有语文试卷3张、数学试卷2张、英语试卷1张、其它学科试卷3张,可得一共有9种等可能的结果,又由数学试卷2张,根据概率公式即可求得答案.9.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于12【来源】福建省2018年中考数学试题(b卷)【答案】D【解析】【分析】根据事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件进行分析即可.【详解】A、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;C、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;D、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;故选D.【点睛】此题主要考查了随机事件,关键是掌握随机事件定义.10.下列说法正确的是()A.“明天降雨的概率为50%”,意味着明天一定有半天都在降雨B.了解全国快递包裹产生的包装垃圾数量适合采用全面调查(普查)方式C.掷一枚质地均匀的骰子,骰子停止转动后,6点朝上是必然事件D.—组数据的方差越大,则这组数据的波动也越大【来源】【全国市级联考】四川省德阳市2018届中考数学试卷【答案】D【解析】【分析】根据概率的意义,事件发生可能性的大小,可得答案.【详解】A、明天降雨的概率是50%表示明天有可能降雨,此选项错误;B、了解全国快递包裹产生的包装垃圾数量适合采用抽样调查方式,此选项错误;C、掷一枚质地均匀的骰子,骰子停止转动后,6点朝上是随机事件,此选项错误;D、一组数据的方差越大,则这组数据的波动也越大,此选项正确;故选:D.【点睛】本题考查了概率的意义、随机事件,利用概率的意义,事件发生可能性的大小是解题关键.11.在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是()A.B.C.D.【来源】四川省泸州市2016年中考数学试题【答案】C【解析】【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小【详解】根据题意可得:口袋里共有12只球,其中白球2只,红球6只,黑球4只,故从袋中取出一个球是黑球的概率:P(黑球)==,故选:C.12.“若是实数,则≥0”这一事件是()A.必然事件B.不可能事件C.不确定事件D.随机事件【来源】四川省广元市2018年中考数学【答案】A【解析】【分析】根据必然事件、不可能事件、随机事件的概念和绝对值的定义进行解答即可.【详解】因为数轴上表示数a的点与原点的距离叫做数a的绝对值,因为a是实数,所以|a|≥0,故选A.【点睛】本题主要考查了必然事件概念以及绝对值的性质,用到的知识点为:必然事件指在一定条件下一定发生的事件.13.用扇形统计图反映地球上陆地面积与海洋面积所占比例时,陆地面积所对应的圆心角是,当宇宙中一块陨石落在地球上,则落在陆地上的概率是A.B.C.D.【来源】青海省2018年中考数学试卷【答案】D【解析】【分析】根据扇形统计图可以得出“陆地”部分占地球总面积的比例,根据这个比例即可求出落在陆地的概率.【详解】“陆地”部分对应的圆心角是,“陆地”部分占地球总面积的比例为:,宇宙中一块陨石落在地球上,落在陆地的概率是,故选D.【点睛】本题考查了简单的概率计算以及扇形统计图.用到的知识点为:概率=相应的面积与总面积之比.二、填空题14.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____.【来源】四川省甘孜州2018年中考数学试题【答案】20【解析】【分析】利用频率估计概率,设原来红球个数为x个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x的方程,解方程即可得.【详解】设原来红球个数为x个,则有=,解得,x=20,经检验x=20是原方程的根.故答案为:20.【点睛】本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.15.现有长分别为1,2,3,4,5的木条各一根,从这5根木条中任取3根,能够构成三角形的概率是_____.【来源】2018年四川省绵阳市中考数学试卷【答案】【解析】【分析】先列举出从1,2,3,4,5的木条中任取3根的所有等可能结果,再根据三角形三边间的关系从中找到能组成三角形的结果数,利用概率公式计算可得.【详解】从1,2,3,4,5的木条中任取3根有如下10种等可能结果:3、4、5;2、4、5;2、3、5;2、3、4;1、4、5;1、3、5;1、3、4;1、2、5;1、2、4;1、2、3;其中能构成三角形的有3、4、5;2、4、5;2、3、4这三种结果,所以从这5根木条中任取3根,能构成三角形的概率是,故答案是:.【点睛】考查列表法与树状图法,列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.16.不透明的布袋里有1个黄球、4个红球、5个白球,它们除颜色外其他都相同,那么从布袋中任意摸出一球恰好为红球的概率是______.【来源】2018年宁夏中考数学试卷【答案】【解析】【分析】由在不透明的袋中装有1个黄球、4个红球、5个白球,它们除颜色外其它都相同,直接利用概率公式求解,即可得到任意摸出一球恰好为红球的概率【详解】∵在不透明的袋中装有1个黄球、4个红球、5个白球,共10个球且它们除颜色外其它都相同,∴从这不透明的袋里随机摸出一个球,所摸到的球恰好为红球的概率是=.故答案为:.【点睛】本题考查了概率公式的应用.解题时注意:概率=所求情况数与总情况数之比.17.在﹣2,1,4,﹣3,0这5个数字中,任取一个数是负数的概率是______.【来源】湖南省岳阳市2018年中考数学试卷【答案】.【解析】【分析】一共有5个数,其中负数有2个,根据概率公式计算即可得.【详解】在﹣2,1,4,﹣3,0这5个数字中,负数有-2、-3共2个,所以任取一个数是负数的概率是,故答案为:.【点睛】本题考查了简单的概率计算,熟练掌握概率的计算公式是解题的关键.18.在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是_____.【来源】湖南省永州市2018年中考数学试卷【答案】100.【解析】【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】由题意可得,=0.03,解得,n=100,故估计n大约是100,故答案为:100.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.三、解答题19.小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同的卡片上分别标记4、5、6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出的两张卡片标记的数字之和为偶数,则按照小明的想法参加敬老服务活动,若抽出的两张卡片标记的数字之和为奇数,则按照小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.【来源】2018年山东省青岛市中考数学试卷【答案】这个游戏不公平.理由见解析.【解析】【分析】首先根据题意列表,然后根据表求得所有等可能的结果与和为奇数、偶数的情况,再利用概率公式求解即可.【详解】不公平,列表如下:4 5 64 8 9 105 9 10 116 10 11 12由表可知,共有9种等可能结果,其中和为偶数的有5种结果,和为奇数的有4种结果,所以按照小明的想法参加敬老服务活动的概率为,按照小亮的想法参加文明礼仪宣传活动的概率为,由≠知这个游戏不公平.【点睛】此题考查了列表法求概率.注意树状图与列表法可以不重不漏的表示出所有等可能的情况.用到的知识点为:概率=所求情况数与总情况数之比.20.一个不透明的口袋中有三个小球,上面分别标有字母A,B,C,除所标字母不同外,其它完全相同,从中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球,用画树状图(或列表)的方法,求该同学两次摸出的小球所标字母相同的概率.【来源】2018年吉林省中考数学试卷【答案】.【解析】依据题意画树状图(或列表)法分析所有可能的出现结果即可解答.【详解】解:列表得:A B CA (A,A)(B,A)(C,A)B (A,B)(B,B)(C,B)C (A,C)(B,C)(C,C)由列表可知可能出现的结果共9种,其中两次摸出的小球所标字母相同的情况数有3种,所以该同学两次摸出的小球所标字母相同的概率==.故答案为:.【点睛】本题主要考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.21.“每天锻炼一小时,健康生活一辈子”.为了选拔“阳光大课间”领操员,学校组织初中三个年级推选出来的15名领操员进行比赛,成绩如下表:成绩/分78910人数/人2544(1)这组数据的众数是多少,中位数是多少.(2)已知获得2018年四川省南充市的选手中,七、八、九年级分别有1人、2人、1人,学校准备从中随机抽取两人领操,求恰好抽到八年级两名领操员的概率.【来源】四川省南充市2018届中考数学试卷【答案】(1)众数为2018年四川省南充市,中位数为2018年四川省南充市;(2)恰好抽到八年级两名领操员的概率为.【分析】(1)根据众数和中位数的定义求解可得;(2)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.【详解】(1)由于2018年四川省南充市出现次数最多,所以众数为2018年四川省南充市,中位数为第8个数,即中位数为2018年四川省南充市,故答案为:2018年四川省南充市、2018年四川省南充市;(2)画树状图如下:由树状图可知,共有12种等可能结果,其中恰好抽到八年级两名领操员的有2种结果,所以恰好抽到八年级两名领操员的概率为=.【点睛】本题主要考查众数、中位数及列表法与树状图法,解题的关键是掌握众数和中位数的定义,列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.22.将图中的A型、B型、C型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出1个盒子,求摸出的盒子中是型矩形纸片的概率;(2)搅匀后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).【来源】2018年江苏省常州市中考数学试卷【答案】(1);(2).【解析】(1)直接利用概率公式计算可得;(2)画树状图得出所有等可能结果,从中找打2次摸出的盒子的纸片能拼成一个新矩形的结果数,利用概率公式计算可得.【详解】解:(1)搅匀后从中摸出1个盒子有3种等可能结果,所以摸出的盒子中是型矩形纸片的概率为;(2)画树状图如下:由树状图知共有6种等可能结果,其中2次摸出的盒子的纸片能拼成一个新矩形的有4种结果,所以2次摸出的盒子的纸片能拼成一个新矩形的概率为.【点睛】考查了列表法或树状图法求概率.用到的知识点为:概率所求情况数与总情况数之比.23.密码锁有三个转轮,每个转轮上有十个数字:0,1,2,…9.小黄同学是9月份中旬出生,用生日“月份+日期”设置密码:9××小张同学要破解其密码:(1)第一个转轮设置的数字是9,第二个转轮设置的数字可能是.(2)请你帮小张同学列举出所有可能的密码,并求密码数能被3整除的概率;(3)小张同学是6月份出生,根据(1)(2)的规律,请你推算用小张生日设置的密码的所有可能个数.【来源】广西百色市2018年中考数学试卷【答案】(1)1或2(2)(3)30种【解析】【分析】(1)根据每个月分为上旬、中旬、下旬,分别是:上旬:1日﹣10日中旬:11日﹣20日下旬:21日到月底,由此即可解决问题;(2)利用列举法即可解决问题;(3)小张同学是6月份出生,6月份只有30天,推出第一个转轮设置的数字是6,第三个转轮设置的数字可能是0,1,2,3;第二个转轮设置的数字可能,0,1,2,…9;由此即可解决问题;【详解】(1)∵小黄同学是9月份中旬出生,∴第一个转轮设置的数字是9,第二个转轮设置的数字可能是1,2.故答案为:1或2;(2)所有可能的密码是:911,912,913,914,915,916,917,918,919,920;能被3整除的有912,915,918;密码数能被3整除的概率.(3)小张同学是6月份出生,6月份只有30天,∴第一个转轮设置的数字是6,第二个转轮设置的数字可能是0,1,2,3;第三个转轮设置的数字可能,0,1,2,…9(第二个转轮设置的数字是0时,第三个转轮的数字不能是0;第二个转轮设置的数字是3时,第三个转轮的数字只能是0),∴一共有9+10+10+1=30,∴小张生日设置的密码的所有可能个数为30种.【点睛】本题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.24.三张卡片的正面分别写有数字2,5,5,卡片除数字外完全相同,将它们洗匀后,背面朝上放置在桌面上.(1)从中任意抽取一张卡片,该卡片上数字是5的概率为;(2)学校将组织部分学生参加夏令营活动,九年级(1)班只有一个名额,小刚和小芳都想去,于是利用上述三张卡片做游戏决定谁去,游戏规则是:从中任意抽取一张卡片,记下数字放回,洗匀后再任意抽取一张,将抽取的两张卡片上的数字相加,若和等于7,小钢去;若和等于10,小芳去;和是其他数,游戏重新开始.你认为游戏对双方公平吗?请用画树状图或列表的方法说明理由.【来源】期末检测卷2018-2019学年九年级上学期数学教材【答案】(1)(2)详见解析【解析】【分析】(1)根据三张卡片的正面分别写有数字2,5,5,再根据概率公式即可求出答案。
2018年四川省成都市中考数学试卷(解答附后)一、选择题(每小题3分,共30分)1.(3分)实数a,b,c,d在数轴上对应的点的位置如图所示,这四个数中最大的是()A.a B.b C.c D.d2.(3分)2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A.4×104B.4×105C.4×106D.0.4×1063.(3分)如图所示的正六棱柱的主视图是()A.B.C.D.4.(3分)在平面直角坐标系中,点P(−3,−5)关于原点对称的点的坐标是()A.(3,−5) B.(−3,5) C.(3,5) D.(−3,−5)5.(3分)下列计算正确的是()A.x2+x2=x4 B.(x﹣y)2=x2−y2 C.(x2 y)3=x6y D.(−x)2•x3=x56.(3分)如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC7.(3分)如图是成都市某周内最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.极差是8℃ B.众数是28℃ C.中位数是24℃ D.平均数是26℃8.(3分)分式方程x+1x +1x−2=1的解是()A.x=1 B.x=﹣1 C.x=3 D.x=﹣39.(3分)如图,在□ABCD中,∠B=60°,⊙C的半径为3,则图中阴影部分的面积是()A.πB.2π C.3π D.6π10.(3分)关于二次函数y=2x2+4x−1,下列说法正确的是()A.图象与y轴的交点坐标为(0,1)B.图象的对称轴在y轴的右侧C.当x<0时,y的值随x值的增大而减小D.y的最小值为﹣3二、填空题(每小题4分,共16分)11.(4分)等腰三角形的一个底角为50°,则它的顶角的度数为.12.(4分)在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为38,则该盒子中装有黄色乒乓球的个数是.13.(4分)已知a6=b5=c4,且a+b﹣2c=6,则a的值为.14.(4分)如图,在矩形ABCD 中,按以下步骤作图:①分别以点A 和C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交CD 于点E .若DE=2,CE=3,则矩形的对角线AC 的长为 .三、解答题(本大题共6个小题,共54分)15.(12分)(1)22+√83﹣2sin60°+|−√3|(2)化简:(1−1x+1)÷x x 2−116.(6分)若关于x 的一元二次方程x 2−(2a +1)x+a 2=0有两个不相等的实数根,求a 的取值范围.17.(8分)为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.满意度 学生数(名) 百分比非常满意12 10% 满意54 m 比较满意n 40% 不满意 6 5% 根据图表信息,解答下列问题:(1)本次调查的总人数为 ,表中m 的值 ;(2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.18.(8分)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上实验任务.如图,航母由西向东航行,到达A处时,测得小岛C位于它的北偏东70°方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛C位于它的北偏东37°方向.如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2,75,sin37°≈0.6,cos37°≈0.80,tan37°≈0.75)19.(10分)如图,在平面直角坐标系xOy中,一次函数y=x+b的图象经过点A(−2,0),与反比例函数y=k(x>0)的图象交于B(a,4).x(1)求一次函数和反比例函数的表达式;(x>0)的图象于点(2)设M是直线AB上一点,过M作MN∥x轴,交反比例函数y=kxN,若A,O,M,N为顶点的四边形为平行四边形,求点M的坐标.20.(10分)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是⊙O的切线;(2)设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;(3)若BE=8,sinB=513,求DG的长,一、填空题(每小题4分,共20分)21.(4分)已知x+y=0.2,x+3y=1,则代数式x2+4xy+4y2的值为.22.(4分)汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3.现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为.23.(4分)已知a>0,S1=1a,S2=−S1−1,S3=1S2,S4=−S3−1,S5=1S4,…(即当n为大于1的奇数时,S n=1S n−1;当n为大于1的偶数时,S n=−S n−1−1),按此规律,S2018= .24.(4分)如图,在菱形ABCD中,tanA=43,M,N分别在边AD,BC上,将四边形AMNB沿MN翻折,使AB的对应线段EF经过顶点D,当EF⊥AD时,BNCN的值为.25.(4分)设双曲线y=k(k>0)与直线y=x交于A,B两点(点A在第三象限),将双x曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P,Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径”,当双曲线y=k(k>0)的眸径为6时,k的值为.x二、解答题(本大题共3小题,共30分)26.(8分)为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0≤x≤300和x>300时,y与x的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1200m2,若甲种花卉的种植面积不少于200m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少元?27.(10分)在Rt△ABC中,∠ACB=90°,AB=√7,AC=2,过点B作直线m∥AC,将△ABC 绕点C顺时针旋转得到△A′B′C′(点A,B的对应点分别为A′,B′),射线CA′,CB′分別交直线m于点P,Q.(1)如图1,当P与A′重合时,求∠ACA′的度数;(2)如图2,设A′B′与BC的交点为M,当M为A′B′的中点时,求线段PQ的长;(3)在旋转过程中,当点P,Q分别在CA′,CB′的延长线上时,试探究四边形PA′B′Q的面积是否存在最小值.若存在,求出四边形PA′B′Q的最小面积;若不存在,请说明理由.28.(12分)如图,在平面直角坐标系xOy中,以直线x=52对称轴的抛物线y=ax2+bx+c 与直线l:y=kx+m(k>0)交于A(1,1),B两点,与y轴交于C(0,5),直线与y轴交于点D.(1)求抛物线的函数表达式;(2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若AF FB =34,且△BCG与△BCD面积相等,求点G的坐标;(3)若在x轴上有且仅有一点P,使∠APB=90°,求k的值.2018年四川省成都市中考数学试卷参考答案与试题解析A卷一、选择题(每小题3分,共30分)1.(3分)实数a,b,c,d在数轴上对应的点的位置如图所示,这四个数中最大的是()A.a B.b C.c D.d【考点】数轴、数的大小比较。
2018年中考数学试卷卷Ⅰ(选择题,共42分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形具有稳定性的是( )A .B .C .D .2.一个整数8155500 用科学记数法表示为108.155510 ,则原数中“0”的个数为( ) A .4 B .6 C .7 D .103.图1中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( )A .1lB .2lC .3lD .4l 答案:C4.将29.5变形正确的是( ) A .2229.590.5=+B .29.5(100.5)(100.5)=+-C.2229.5102100.50.5=-⨯⨯+ D .2229.5990.50.5=+⨯+5.图2中三视图对应的几何体是( )A .B .C. D .6.尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线.图3是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①-Ⅳ,②-Ⅱ,③-Ⅰ,④-Ⅲ B.①-Ⅳ,②-Ⅲ,③-Ⅱ,④-ⅠC. ①-Ⅱ,②-Ⅳ,③-Ⅲ,④-Ⅰ D.①-Ⅳ,②-Ⅰ,③-Ⅱ,④-Ⅲ7.有三种不同质量的物体,“”“”“”其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不.相等,则该组是()A. B.C. D..求证:点P在线段AB的垂直平分线上.8.已知:如图4,点P在线段AB外,且PA PB在证明该结论时,需添加辅助线,则作法不.正确的是( )A .作APB ∠的平分线PC 交AB 于点C B .过点P 作PC AB ⊥于点C 且AC BC = C.取AB 中点C ,连接PCD .过点P 作PC AB ⊥,垂足为C9.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:13x x ==甲丙,15x x ==乙丁;22 3.6s s ==甲丁,22 6.3s s ==乙丙.则麦苗又高又整齐的是( )A .甲B .乙 C.丙 D .丁10.图5中的手机截屏内容是某同学完成的作业,他做对的题数是( )A.2个 B.3个 C. 4个 D.5个11.如图6,快艇从P处向正北航行到A处时,向左转50︒航行到B处,再向右转80︒继续航行,此时的航行方向为()A.北偏东30︒ B.北偏东80︒C.北偏西30︒ D.北偏西50︒12.用一根长为a (单位:cm )的铁丝,首尾相接围成一个正方形.要将它按图7的方式向外等距扩1(单位:cm ), 得到新的正方形,则这根铁丝需增加( )A .4cmB .8cm C.(4)a cm + D .(8)a cm +13.若22222nnnn+++=,则n =( ) A.-1B.-2C.0D.1414.老师设计了接力游戏,用合作的方式完成分式化简.规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图8所示: 接力中,自己负责的一步出现错误的是( )A.只有乙B.甲和丁C.乙和丙D.乙和丁15.如图9,点I 为ABC 的内心,4AB =,3AC =,2BC =,将ACB ∠平移使其顶点与I 重合,则图中阴影部分的周长为( )A.4.5B.4C.3D.216.对于题目“一段抛物线:(3)(03)L y x x c x =--+≤≤与直线:2l y x =+有唯一公共点.若c 为整数,确定所有c 的值.”甲的结果是1c =,乙的结果是3c =或4,则( ) A.甲的结果正确 B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.= .18.若a ,b 互为相反数,则22a b -= .19.如图101-,作BPC ∠平分线的反向延长线PA ,现要分别以APB ∠,APC ∠,BPC ∠为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以BPC ∠为内角,可作出一个边长为1的正方形,此时90BPC ∠=︒,而90452︒=︒是360︒(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图102-所示.图102-中的图案外轮廓周长是 ;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是 .三、解答题 (本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)20. 嘉淇准备完成题目:化简: 2268)(652)x x x x ++-++发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:22(368)(652)x x x x ++-++;(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?21. 老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图111-)和不完整的扇形图(图112-),其中条形图被墨迹掩盖了一部分.(1)求条形图中被掩盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.22. 如图12,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x 是多少?应用 求从下到上前31个台阶上数的和.发现 试用k (k 为正整数)的式子表示出数“1”所在的台阶数.23. 如图13,50A B ∠=∠=︒,P 为AB 中点,点M 为射线AC 上(不与点A 重合)的任意一点,连接MP ,并使MP 的延长线交射线BD 于点N ,设BPN α∠=.(1)求证:APM BPN △△≌;(2)当2MN BN =时,求α的度数;(3)若BPN △的外心在该三角形的内部,直.接.写出α的取值范围.24. 如图14,直角坐标系xOy 中,一次函数152y x =-+的图像1l 分别与x ,y 轴交于A ,B 两点,正比例函数的图像2l 与1l 交于点C (,4)m .(1)求m 的值及2l 的解析式;(2)求AOC BOC S S -△△的值;(3)一次函数1y kx =+的图像为3l ,且1l ,2l ,3l 不能..围成三角形,直接..写出k 的值.25. 如图15,点A 在数轴上对应的数为26,以原点O 为圆心,OA 为半径作优弧 AB ,使点B 在O 右下方,且4tan 3AOB ∠=.在优弧 AB 上任取一点P ,且能过P 作直线//l OB 交数轴于点Q ,设Q 在数轴上对应的数为x ,连接OP .(1)若优弧AB 上一段 AP 的长为13π,求AOP ∠的度数及x 的值; (2)求x 的最小值,并指出此时直线与AB 所在圆的位置关系; (3)若线段PQ 的长为12.5,直接..写出这时x 的值.26.图16是轮滑场地的截面示意图,平台AB 距x 轴(水平)18米,与y 轴交于点B ,与滑道(1)k y x x=≥交于点A ,且1AB =米.运动员(看成点)在BA 方向获得速度v 米/秒后,从A 处向右下飞向滑道,点M 是下落路线的某位置.忽略空气阻力,实验表明:M ,A 的竖直距离h (米)与飞出时间(秒)的平方成正比,且1t =时5h =;M ,A 的水平距离是vt 米.(1)求k ,并用表示h ;v=.用表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范(2)设5y=时运动员与正下方滑道的竖直距离;围),及13米/秒.当甲距x轴1.8米,(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙且乙位于甲右侧超过4.5米的位置时,直接..写出的值及v乙的范围.。
四川省成都市2018年中考数学试卷(解析版)一、选择题(A卷)1.实数在数轴上对应的点的位置如图所示,这四个数中最大的是()A. B. C. D.【答案】D【考点】数轴及有理数在数轴上的表示,有理数大小比较【解析】【解答】解:根据数轴可知a<b<0<c<d∴这四个数中最大的数是d故答案为:D【分析】根据数轴上右边的数总比左边的数大,即可得出结果。
2.2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A. B. C. D.【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:40万=4×105故答案为:B【分析】根据科学计数法的表示形式为:a×10n。
其中1≤|a|<10,此题是绝对值较大的数,因此n=整数数位-1,即可求解。
3.如图所示的正六棱柱的主视图是()A. B.C. D.【答案】A【考点】简单几何体的三视图【解析】【解答】解:∵从正面看是左右相邻的3个矩形,中间的矩形面积较大,两边的矩形面积相同,∴答案A符合题意故答案为:A【分析】根据主视图是从正面看到的平面图形,即可求解。
4.在平面直角坐标系中,点关于原点对称的点的坐标是()A.B.C.D.【答案】C【考点】关于原点对称的坐标特征【解析】【解答】解:点关于原点对称的点的坐标为(3,5)故答案为:C【分析】根据关于原点对称点的坐标特点是横纵坐标都互为相反数,就可得出答案。
5.下列计算正确的是()A. B. C. D.【答案】D【考点】同底数幂的乘法,完全平方公式及运用,合并同类项法则及应用,积的乘方【解析】【解答】解:A、x2+x2=2x2,因此A不符合题意;B、(x-y)2=x2-2xy+y2,因此B不符合题意;C、(x2y)3=x6y3,因此C不符合题意;D、,因此D符合题意;故答案为:D【分析】根据合并同类项的法则,可对A作出判断;根据完全平方公式,可对B作出判断;根据积的乘方运算法则及同底数幂的乘法,可对C、D作出判断;即可得出答案。
2018年成都市中考数学试题及答案(word版-含详解)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年成都市中考数学试题及答案(word版-含详解)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年成都市中考数学试题及答案(word版-含详解)(word版可编辑修改)的全部内容。
成都市二O 一八年高中阶段教育学校统一招生考试(含成都市初三毕业会考)数 学注意事项:1. 全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。
2。
在作答前,考生务必将自己的姓名,准考证号涂写在试卷和答题卡规定的地方。
考试结束,监考人员将试卷和答题卡一并收回。
3。
选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚.4. 请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸,试卷上答题均无效.5. 保持答题卡清洁,不得折叠、污染、破损等。
A 卷(共100分)第I 卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项。
其中只有一项符合题目要求,答案涂在答题卡上) 1.2的相反数是( )(A)2 (B )—2 (C)21(D )21- 2.如图所示的几何体的俯视图可能是( )3.要使分式15-x 有意义,则x 的取值范围是( )(A )x ≠1 (B )x>1 (C )x<1 (D)x ≠-1 4.如图,在△ABC 中,∠B=∠C ,AB=5,则AC 的长为( )(A)2 (B)3 (C )4 (D )5 5.下列运算正确的是( )(A )31×(-3)=1 (B )5—8=-3 (C )32-=6 (D )0)2013(-=06.参加成都市今年初三毕业会考的学生约有13万人,将13万用科学计数法表示应为( )(A)1。
2018年四川省成都市初中毕业、升学考试数学(满分150分,考试时间120分钟)A卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题(每小题3分,共30分)1.(2018四川省成都市,1,3)实数a,b,c,d在数轴上对应的点的位置如图所示,这四个数中最大的是()A.a B.b C.c D.d【答案】D【解析】解:数轴上表示的实数,右边的数总比左边的大,d在最右边,所以d最大,故选择D.【知识点】数轴;2.(2018四川省成都市,2,3)2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A.4×104B.4×105C.4×106D.0.4×106【答案】B【解析】解:40万=400000=4×105.故选择B.【知识点】科学计数法3.(2018四川省成都市,3,3)如图所示的正六棱柱的主视图是()【答案】A【解析】解:因为主视图是从正面看物体,如图所示的正六棱柱从正面可以看到中间一个大的矩形和两侧的两个等大的小矩形.故选择A.【知识点】三视图;主视图4.(2018四川省成都市,4,3)在平面直角坐标系中,点P(-3,-5)关于原点对称的点的坐标是()A.(3,-5)B.(-3,5)C.(3,5)D.(-3,-5)【答案】C【解析】解:因为关于原点对称的点的坐标特点是横纵坐标均为互为相反数,即P(x,y)关于原点对称的点P’(-x,-y),所以P(-3,-5)关于原点对称的点坐标为(3,5),故选择C.【知识点】中心对称;关于原点对称的点的坐标5.(2018四川省成都市,5,3)下列计算正确的是()A.2x+2x=4x B.()2x y-=2x-2y C.()32x y=6x y D.()23x x-g=5x【答案】D【解析】解:因为2x+2x=22x,故A错误;()2x y-=2x-2xy+2y,故B错误;()32x y=63x y,故C错误;()23x x-g=5x,D正确.故选择D.【知识点】整式乘法;乘法公式;合并同类项6.(2018四川省成都市,6,3)如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC【答案】C【解析】解:因为∠ABC=∠DCB,加上题中的隐含条件BC=BC,所以可以添加一组角或是添加夹角的另一组边,可以证明两个三角形全等,故添加A、B、D均可以使△ABC≌△DCB.故选择C.【知识点】三角形全等的判定;7.(2018四川省城都市,7,3)如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.极差是8℃B.众数是28℃C.中位数是24℃D.平均数是26℃【答案】B【解析】解:∵由图象提供的信息可知最高气温为30℃,最低气温为20℃,温差为10℃,A错误;一周中有两天日最高气温都是28℃,出现次数最多,所以众数是28℃,B正确;将20℃,28℃,28℃,24℃,26℃,30℃,22℃按从小到大排列后,居中的是26℃,所以中位数是26℃,C错误;七个数据的平均数是(20+28+28+24+26+30+22)÷7≈25.4℃,D错误.故选择B.【知识点】众数;中位数;极差;平均数8.(2018四川省成都市,8,3)分式方程1xx++12x-=1的解是()A.x=1 B.x=-1 C.x=3 D.x=-3【答案】A【解题过程】解:1x x ++12x -=1,去分母(x -2)(x +1)+x =x (x -2),解得x =1,检验:把x =1代入x (x -2)≠0,∴x =1是原方程的解.故选择A .【知识点】分式方程;分式方程的解法 9.(2018四川省成都市,9,3)如图,在 ABCD 中,∠B =60°,⊙C 的半径为3,则图中阴影部分的面积是( ) A .π B .2π C .3π D .6π【答案】C【解题过程】解:∵四边形ABCD 为平行四边形,AB ∥CD ,∴∠B +∠C =180°,∵∠B =60°,∴∠C =120°,∴阴影部分的面积=21203360π⨯=3π.故选择C .【知识点】平行四边形的性质;扇形面积10.(2018四川省成都市,10,3)关于二次函数y =22x +4x -1,下列说法正确的是( )A .图像与y 轴的交点坐标为(0,1)B .图像的对称轴在y 轴的右侧C .当x <0时,y 的值随x 值的增大而减小D .y 的最小值为-3 【答案】D【解题过程】解:因为当x =0时,y =-1,所以图像与y 轴的交点坐标为(0,-1),故A 错误;图像的对称轴为x =2ba-=-1,在y 轴的左侧,故B 错误;因为-1<x <0时,在对称轴的右侧,开口向上,y 的值随x 值的增大而增大,故C 错误;y =22x +4x -1=()221x +-3,开口向上,所以有最小值-3,D 正确.故此选择D . 【知识点】二次函数的性质第Ⅱ卷(非选择题,共70分)二、填空题(每小题4分,共16分) 11.(2018四川省成都市,11,4)等腰三角形的一个底角为50° ,则它的顶角的度数为 . 【答案】80° 【解析】解:∵等腰三角形的一个底角为50° ,且两个底角相等,∴顶角为180°-2×50°=80°. 【知识点】等腰三角形性质,三角形的内角和 12.(2018四川省成都市,12,4)在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为38,则该盒子中装有黄色乒乓球的个数是 .【答案】6【解析】解:设盒子中装有黄色乒乓球的个数为a 个,因为摸到黄色乒乓球的概率为38,所以16a =38,得a =6.【知识点】概率13.(2018四川省成都市,13,4)已知6a =5b =4c,且a +b -2c =6.则a 的值为 . 【答案】12 【解析】解:设6a =5b =4c=k ,则a =6k ,b =5k ,c =4k ,∵a +b -2c =6,∴6k +5k -8k =6,3k =6,解得k=2,∴a =6k =12.【知识点】比例;一元一次方程 14.(2018四川省成都市,14,4)如图,在矩形ABCD 中,按以下步骤作图:①分别以点A 和C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交CD 于点E ,若DE =2,CE =3,则矩形的对角线AC 的长为 .【答案】30【思路分析】因为由作图可知MN 为线段AC 的垂直平分线,则有AE =CE =3,在Rt △ADE 中,由勾股定理可以求出AD 的长,然后再在Rt △ADC 中用勾股定理求出AC 即可.【解析】解:连接AE ,由作图可知MN 为线段AC 的垂直平分线,∴AE =CE =3,在Rt △ADE 中,2AE =2AD +2DE ,∴AD =22AE DE -=5,在Rt △ADC 中,2AC =2AD +2CD ,∵CD =DE +CE =5,∴AC =()2255+=30.【知识点】尺规作图;线段垂直平分线的性质;勾股定理三、解答题(本大题共6个小题,满分54分,解答应写出文字说明、证明过程或演算步骤) 15.(2018四川省成都市,15,6)(1)22-+38-2sin60°+|-3|【思路分析】结合负整数指数幂的运算法则、立方根、特殊角的三角形函数值,以及绝对值的性质进行运算, 【解析】解:22-+38-2sin60°+|-3|=14+2-2×32+3=94【知识点】幂的运算;立方根;特殊角三角形函数值;绝对值;15.(2018四川省成都市,15,6)(2)(1-11x +)÷21x x - 【思路分析】根据运算法则,先算括号内的,通分变成同分母的分式进行加减运算,然后再算乘除法.最后利用因式分解进行约分化成最简的形式.【解题过程】解:(1-11x +)÷21x x -=(111x x +-+)×21x x -=1xx +×()()11x x x +-=x -1. 【知识点】;分式的通分和约分; 因式分解;分式的混合运算;16.(2018四川省成都市,16,6)若关于x 的一元二次方程:2x -(2a +1)x +2a =0有两个不相等的实数根, 求a 的取值范围.【思路分析】利用根的判别式△=24b ac -,当△>0时方程有两个不相等的实数根,代入得到关于a 的不等式,解这个不等式便可求出a 的取值范围.【解题过程】解:由题意可知,△=()221a -+⎡⎤⎣⎦-4×1×2a =()221a +-42a =4a +1.∵方程有两个不相等的实数根,∴△>0,即4a +1>0,解得a >-14. 【知识点】一元二次方程;根的判别式; 17.(2018四川省成都市,17,8)为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度” 的调查,并根据调查结果绘制成如下不完整的统计图表.6541260544842363024181260人数满意度不满意比较满意满意非常满意n m 5%40%10%65412不满意比较满意满意非常满意人数满意度所占百分比根据图表信息,解答下列问题:(1)本次调查的总人数为 ,表中m 的值为 ; (2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定. 【思路分析】(1)根据非常满意的人数和它所占的百分比,就可以求出调查的总人数;用满意的人数除以总人数就可以求出所占的百分比;(2)用总人数减去表中已知的数据,就可以得出比较满意的人数;或者用比较满意人数所占的百分比乘以总人数也可以得出比较满意的人数,然后在图中画出即可;(3)根据表格信息,能够知道“非常满意”和“满意”的人数之和,用它去除以总人数便可以得出所占的百分比,然后用每天接待的游客数乘以这个百分比,就可以知道每天得到多少游客的肯定了. 【解题过程】解:(1)∵12÷总人数×100%=10%,∴总人数=120(人);m =54÷120×100%=45%.(2)比较满意人数为:120×40%=48(人),图如下.486541260544842363024181260人数满意度不满意比较满意满意非常满意(3)3600×12+54120=1980(人). 答:该景区服务工作平均每天得到1980人的肯定. 【知识点】条形统计图 18.(2018四川省成都市,18,8)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务,如图,航母由西向东航行,到达A 处时,测得小岛C 位于它的北偏东70°方向,且与航母相距80海里,再航行一段时间后到达B 处,测得小岛C 位于它的北偏东37°方向,如果航母继续航行至小岛C 的正南方向的D 处,求还需航行的距离BD 的长.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,sin37°≈0.6,cos37°≈0.80,tan37°≈0.75) 东北37°70°CDBA【思路分析】在Rt ΔADC 中已知一个锐角和斜边,可以利用锐角三角函数中的余弦函数求出CD 的长,然后在Rt ΔBDC 中,已知直角边CD 和锐角∠BCD ,利用三角形函数中的正切函数求出BD 的长. 【解题过程】解:由题意得,∠ACD =70°,∠BCD =37°,AC =80.在Rt ΔADC 中,cos ∠ACD =CDAC,∴CD =AC ·cos70°≈80×0.34=27.2(海里).在Rt ΔBDC 中,tan ∠BCD =BDCD,∴BD =CD ·tan37°≈27.2×0.75=20.4(海里).答:还需航行的距离BD 的长为20.4海里. 【知识点】方向角;锐角三角函数; 19.(2018四川省成都市,19,10)如图,在平面直角坐标系xOy 中,一次函数y =x +b 的图象经过点A (-2,0),与反比例函数y =kx(x >0)的图象交于B (a ,4). (1)求一次函数和反比例函数的表达式;(2)设M 是直线AB 上一点,过M 作MN ∥x 轴,交反比例函数y =kx(x >0)的图象于点N ,若A ,O ,M ,N 为顶点的四边形为平行四边形,求点M 的坐标.yxO BA【思路分析】(1)因为一次函数y =x +b 的图象经过点A (-2,0),所以把A 点坐标代入就可求出b ,即可得到一次函数解析式,因为B (a ,4)是一次函数和反比例函数y =kx (x >0)的交点,所以把y =4代入一次函数中可以求B 点坐标,代入到y =kx求出k 得到反比例函数解析式;(2)因为MN ∥x 轴,A ,O ,M ,N 为顶点的四边形为平行四边形,则有MN =AO =2,又M 在直线AB 上,所以可以设M 的横坐标为m ,纵坐标用m 的代数式表示出来,由MN ∥x 轴可知M 与N 的纵坐标相等,代入y =kx,又可以将N 的横坐标也用m 的代数式表示出来,然后|M N x x -|=2,可以求出m 的值,即可求出M 的坐标. 【解题过程】解:设M (m ,m +2),N (82m +,m +2),∵MN ∥x 轴,∴当MN =OA 时,A ,O ,M ,N 为顶点的四边形为平行四边形.∵MN =|M N x x -|,∴|m -82m +|=2,当m -82m +=2时,解得1m =23,2m =-23,经检验都是方程的根,因为m >0,∴m =23;当m -82m +=-2时,解得1m =-2+22,2m =-2-22,经检验都是方程的根,因为m >0,∴m =-2+22,∴M 的坐标为(23,23+2)或(-2+22,22).NMNMyxO BA【知识点】一次函数;反比例函数;平行四边形的性质 20.(2018四川省成都市,21,10)如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,O 为AB 上一点,经过点A ,D 的⊙O 分别交AB ,AC 于点E ,F ,连接OF 交AD 于点G . (1)求证:BC 是⊙O 的切线;(2)设AB =x ,AF =y ,试用含x ,y 的代数式表示线段AD 的长; (3)若BE =8,sin B =513,求DG 的长.F ABCDEGO【思路分析】(1)连接OD ,根据同圆半径相等,及角平分线条件得到∠DAC =∠ODA ,得OD ∥AC ,切线得证;(2)连接EF ,DF ,根据直径所对圆周角为直角,证明∠AFE =90°,可得EF ∥BC ,因此∠B =∠AEF ,再利用同弧所对圆周角相等可得∠B =∠ADF ,从而证明△ABD ∽△ADF ,可得AD 与AB 、AF 关系;(3)根据∠AEF =∠B ,利用三角函数,分别在Rt △DOB 和Rt △AFE 中求出半径和AF ,代入(2)的结论中,求出AD ,在利用两角对应相等,证明△OGD ∽△FGA ,再利用对应边成比例,求出DG :AG 的值,即可求得DG 的长. 【解题过程】解:(1)连接OD ,∵OA =OD ,∴∠OAD =∠ODA ,∵AD 平分∠BAC ,∴∠OAD =∠DAC ,∴∠DAC =∠ODA ,∴OD ∥AC ,∴∠ODB =∠C =90°,∴OD ⊥BC ,∵OD 为⊙O 半径,BC 是⊙O 的切线. (2)连接EF ,DF .∵AE 为⊙O 直径,∴∠AFE =90°,∴∠AFE =∠C =90°,∴EF ∥BC ,∴∠B =∠AEF ,又∵∠ADF =∠AEF ,∴∠B =∠ADF ,又∠OAD =∠DAC ,∴△ABD ∽△ADF ,∴AB AD =ADAF,∴AD 2=AB ·AF ,∴AD =xy .(3)设⊙O 半径为r ,在Rt △DOB 中sin B =OD OB =513,∴8r r +=513,解得r =5,∴AE =10,在Rt △AFE 中sin ∠AEF =sin B =AF AE,∴AF =10×513=5013,∴AD =xy =501813⨯=301313.∵∠ODA =∠DAC ,∠DGO =∠AGF ,∴△OGD ∽△FGA ,∴DG AG =OD AF =1310,∴DG =301323.OGEDCBAF【知识点】切线的判定;相似三角形;圆的有关性质;锐角三角函数B 卷(共50分)四、填空题(本大题共4小题,每小题6分,共24分) 21.(2018四川省成都市,21,4)x +y =0.2,x +3y =1,则代数式x 2+4xy +4y 2的值为 . 【答案】0.36【思路分析】将已知x +y =0.2,x +3y =1,相加化简求出x +2y 的值,利用完全平方公式即可求值.【解题过程】解:∵x +y =0.2①,x +3y =1②,①+②得:2x +4y =1.2,∴x +2y =0.6,∴x 2+4xy +4y 2=(x +2y )2=0.36.【知识点】完全平方公式;整式加减 22.(2018四川省成都市,22,4)汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3.现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为 .【答案】1213【思路分析】利用四个直角三角形面积的和除以正方形面积即可求解.【解题过程】解:∵两直角边之比均为2:3,∴直角三角形的斜边平方=正方形的面积=22+32=13,∵四个直 角三角形面积和=4×12×2×3=12,∴针尖落在阴影区域的概率=1213. 【知识点】概率23.(2018四川省成都市,23,4)已知a >0,S 1=1a,S 2=-S 1-1,S 3=21S ,S 4=-S 3-1,S 5=41S ,…(即当n 为大于1的奇数时,S n =11n S -;当n 为大于1的偶数时,S n =-S n -1-1),按此规律S 2018= .(用含a 的代数式表示 )【答案】-1aa+ 【思路分析】分别用a 表示出S 1、S 2、S 3、…、直到发现循环规律,即可求解.【解题过程】解:∵S 1=1a ,∴S 2=-S 1-1=-1a -1=-1aa +,∴S 3=21S =-1a a +,∴S 4=-S 3-1=1a a+-1=-11a +,∴S 5=41S =-1-a ,∴S 6=-S 5-1=a ,∴S 7=61S =1a =S 1,故此规律为7个一循环,∵2018÷7=336余2,∴S 2018=-1aa+. 【知识点】整式运算;规律题 24.(2018四川省成都市,24,4) 如图,在菱形ABCD 的中,tan A =43,M ,N 分别在边AD ,BC 上,将四边形AMNB 沿MN 翻折,使AB 的对应线段AB 的对应线段EF 经过顶点D .当EF ⊥AD 时,BNCN的值为 .M NCF DB EA A EBDF CNHM【答案】27【思路分析】延长NF 交DC 于H .根据翻折得∠A =∠E ,∠B =∠DFN ,利用菱形中邻角互补,可得到∠A =∠DFH ,且∠DHF =90°,在Rt △EDM 中,根据tan A =tan E =43,得到△EDM 三边的关系,求出菱形边长,在解Rt △DHF 和Rt △NHC ,求出CN ,BN ,即可求出BNCN的值. 【解题过程】解:∵四边形ABCD 为菱形,∴AD ∥BC ,∴∠A +∠B =180°,∵∠DFN +∠DFH =180°,又∵∠B =∠DFN ,∴∠A =∠DFH ,∵AB ∥CD ,∴∠A +∠ADC =180°,又∵∠ADF =90°,∴∠A +∠FDC =90°,∴∠DFH +∠FDC =90°,∴∠DHF =90°,∵∠A =∠E ,∴tan A =tan E =DM DE=43,设DM =4x ,DE =3x ,∴EM =22DE DM =5x ,∴AM =5x ,∴AD =AM +DM =9x ,∵EF =AB =AD =9x ,∴DF =EF -DE =6x ,在Rt △DFH 中∠A =∠DFH ,∴tan A =tan ∠DFH =DH FH =43,∴DH =45DF =245x ,∴CH =DC -DH =215x ,在Rt △CHN 中∠A =∠C ,∴tan A =tan C =HN HC =43,∴CN =53CH =7x ,∴BN =BC -CN =2x ,∴BNCN =27. 【知识点】菱形性质;锐角三角函数;翻折变换25.(2018四川省成都市,25,4) 设双曲线y =kx(k >0)与直线y =x 交于A 、B 两点(点A 在第三象限),将双曲线在第一象限的一支沿射线BA 的方向平移,使其经过点A ,将双曲线在第三象限的一支沿射线AB 的方向平移,使其经过点B ,平移后的两条曲线相交于P 、Q 两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ 为双曲线的“眸径”.当双曲线y =kx(k >0)的眸径为6时,k 的值为 . xyOQPBA【答案】32【思路分析】由眸径为6得OP =3,求得P 点坐标,根据y =kx与直线y =x 交于A 、B 两点,求出A 、B 两点坐标根据平移规律得到P 的对应点坐标,代入双曲线y =kx解析式中,即可求得k 的值. 【解题过程】解:连接P A ,作BP ´∥AP .则四边形P ABP ´为平行四边形,且P ´在双曲线y =k x 上.∵y =k x与直线y =x 交于A 、B 两点,∴x =kx,解得x =±k ,∴A (-k ,-k ),B (k ,k ),根据题意可得OP =3,∴P (-322,322),∵四边形P ABP ´为平行四边形,∴PP ´∥AB ,PP ´=AB ,∴P ´(-322+2k ,322+2k ),代入y =kx 中,得(-322+2k )(322+2k )=k ,解得k =32.yP´xO QPBA【知识点】反比例函数;平移;五、解答题(本大题共3小题,共30分) 26.(2018四川省成都市,26,8)为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用y (元)与种植面积x (m 2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0≤x ≤300和x >300时,y 与x 的函数关系式;(2)广场上甲、乙两种花卉种植面积共1200m 2,若甲种花卉的种植面积不少于200m 2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植面积总费用最少?最少费用为多少元?5500039000500300O (m 2)(元)y x【思路分析】(1)根据函数图象把(300,39000),(500,55000)分别代入y =k 1x 与y =k 2x +b 中即可求得解析式.(2)设甲种花卉的种植面积为a m 2,则乙种花卉的种植面积为(1200-a )m 2,结合(1)中的函数关系式,分别求出甲、乙两种花卉的费用求和,再结合函数的增减性进行讨论,即可求出最小值. 【解题过程】解:(1)当0≤x ≤300时,设函数关系式为y =k 1x ,过(300,39000),则39000=300k 1,解得k 1=130,∴当0≤x ≤300时,y =130x ,当x >300时,设函数关系式为y =k 2x +b ,过(300,39000)和(500,55000)两点,∴223900030055000500k b k b =+⎧⎨=+⎩,解得2801500k b =⎧⎨=⎩,y =80x +1500.综上y =130(0300)801500(300)x x x x ⎧⎨+⎩≤≤>.(2)设甲种花卉的种植面积为a m 2,则乙种花卉的种植面积为(1200-a )m 2. 根据题意得2002(1200)a a a ⎧⎨-⎩≥≤,解得200≤a ≤800.当200≤a ≤300时,总费用W 1=130a +100(1200-a )=30a +120000,当a =200时,总费用最少为W min =30×200+120000=126000(元); 当300≤a ≤800时,总费用W 2=80a +15000+100(1200-a )=-20a +135000,当a =800时,总费用最少为W min =-20×800+135000=119000,∵119000<126000,∴当a =800时,总费用最少为119000,此时1200-a =400, ∴当甲种、乙两种花卉面积分别为800 m 2和400 m 2时,种植面积总费用最少,最少费用为119000元. 【知识点】解不等式组;一次函数;一次函数图象的性质;27.(2018四川省成都市,27,10)在Rt △ABC 中,∠ACB =90°,AB =7,AC =2,过点B 作直线m ∥AC ,将△ABC 绕点C 顺时针旋转得到△A ´B ´C ´(点A 、B 的对应点分别为A ´、B ´),射线CA ´、CB ´分别交直线m 于点P ,Q .(1)如图1,当P 与A ´重合时,求∠ACA ´的度数;(2)如图2,设A ´B ´与BC 的交点为M ,当M 为A ´B ´的中点时,求线段PQ 的长; (3)在旋转过程中,当点P ,Q 分别在CA ´,CB ´的延长线上时,试探究四边形P A ´B ´Q 的面积是否存在最小值.若存在,求出四边形P A ´B ´Q 的最小面积;若不存在,请说明理由. 【思路分析】(1)当P 与A ´重合时,解Rt △A ´BC ,求出∠BA ´C 的度数,即为∠ACA ´的度数;(2)当M 为A ´B ´的中点时,利用直角三角形斜边中线等于斜边一半,得∠MA ´C =∠BCA ,解Rt △PBC 求出PB ,利用同角余角相等,得∠BQC =∠PCB ,解Rt △CBQ 求出BQ ,根据PQ =PB +BQ 即可求得PQ ;(3)作Rt △PCQ 斜边中线CM ,由S 四边形P A ´B ´Q =S △PCQ -S △P A ´B ´=12PQ ·BC -S △P A ´B ´=CM ·BC -S △P A ´B ´,根据垂线段最短,当CM ⊥PQ 时,S 四边形P A ´B ´Q 最小,求出其最小值即可. C 备用图mABBQAP A´m 图2B´C C B´图1MmA´(P )AQB【解题过程】解:(1)∵∠ACB =90°,AB =7,AC =2,∴BC =22AB AC -=3,当P 与A ´重合时,A ´C =AC =2,在Rt △A ´BC 中,sin ∠BA ´C =BCA C'=32,∴∠BA ´C =60°,∵m ∥AC ,∴∠ACA ´=∠BA ´C =60°.(2)∵∠A ´CB ´=90°,M 为A ´B ´的中点时,∴A ´M =CM ,∴∠MA ´C =∠A ´CM =∠A ,∵在Rt △ABC 中,tan ∠A =BC AC =32,∴在Rt △PBC 中,tan ∠A ´CB =PB BC =32,∴PB =32.∵∠PCB +∠BCQ =∠BCQ+∠BQC =90°,∴∠BQC =∠PCB ,∴tan ∠BQC =tan ∠A ´CB =32,∴BQ =tan BC BQC ∠=2,∴PQ =PB+BQ =72. (3)取PQ 的中点M ,连接CM .∵S △CA ´B ´=12A ´C ·B ´C =12×2×3=3,S △PCQ =12PQ ·BC =32PQ ,∴S 四边形P A ´B ´Q =S △PCQ -S △CA ´B ´=32PQ -3,∵M 为PQ 的中点,∠PCQ =90°,∴PQ =2CM ,∴S 四边形P A ´B ´Q=S △PCQ -Q -S △CA ´B ´=3CM -3,当CM 最小时,S 四边形P A ´B ´Q 最小.∵CM ≤BC =3,∴当CM =3时,S 四边形P A ´B ´Q 的最小值= 3CM -3=3-3.P Q M A´B´CmA B【知识点】解直角三角形;直角三角形斜边中线等于斜边一半;旋转28.(2018四川省成都市,28,12)如图,在平面直角坐标系中xOy 中,以直线x =52为对称轴的抛物线y =ax 2+bx +c 与直线l :y =kx +m (k >0)交于A (1,1),B 两点,与y 轴交于点C (0,5),直线l 交于点D . (1)求抛物线的函数表达式;(2)设直线l 与抛物线的对称轴的交点为F ,G 是抛物线上位于对称轴右侧的一点,若AF FB =34,且△BCG 与△BCD 的面积相等,求点G 的坐标;(3)若在x 轴上有且只有一点P ,使∠APB =90°,求k 的值.备用图lOCD BAx yFFyx ABD COl【思路分析】(1)设抛物线解析式为y =ax 2+bx +c ,结合对称轴,及A (1,1), C (0,5),即可求得抛物线解析式;(2)过点B 作BH ⊥x 轴于H ,过点A 作AM ⊥BH 轴于M ,交抛物线对称轴于N ,过点G 作GP ∥y 轴交直线BC 于点Q ,则BM =1.利用△AEN ∽△ABM ,求出B 的坐标,求出直线AB 、BC 的解析式,可求出S △BCD ,设 G (p ,p 2-5p +5) ,再利用铅锤底水平宽表示S △BCG ,根据S △BCG =S △BCD ,列出关于p 的一元二次方程,求解即可;(3)过点A 作AE ⊥x 轴于E ,过点B 作BT ⊥x 轴于T ,连接P A 、PB .设P (x ,0),根据直线AB 过点A (1,1),求出直线AB 的解析式y =kx +1-k ,根据∠APB =∠AEP =∠PTB =90°,通过证明△AEP ∽△PTB ,∴AEPT=EPBT,列出关于x 的一元二次方程,结合已知在x 轴上有且只有一点P ,可得△=0,即可求出k 的值. 【解题过程】(1)设抛物线解析式为y =ax 2+bx +c ,根据题意得52215b a a b c c⎧-=⎪⎪=++⎨⎪=⎪⎩,解得155a b c =⎧⎪=-⎨⎪=⎩,∴抛物线解析式为y =x 2-5x +5.(2)过点B 作BH ⊥x 轴于H ,过点A 作AM ⊥BH 轴于M ,交抛物线对称轴于N ,过点G 作GP ∥y 轴交直线BC 于点Q ,则BM =1.∵FN ∥BM ,∴△AEN ∽△ABM ,∴AF AB =AN AM ,∵AF FB =34,∴AFAB=AN AM =37,∵抛物线y =x 2-5x +5=(x -52)2-54,∴抛物线的对称轴为x =52,∴AN =52-1=32,AM =73×32=72,点B 的横坐标为72+1=92,代入y =x 2-5x +5中,得y =114,∴B (92,114),设直线AB 的解析式为y =kx +b ,则119421k b k b ⎧=+⎪⎨⎪=+⎩,解得1212k b ⎧=⎪⎪⎨⎪=⎪⎩,∴直线AB 的解析式为y =12x +12,∴D (0,12),设直线BC 的解析式为y =mx +n ,则511942n m n =⎧⎪⎨=+⎪⎩,解得125m n ⎧=-⎪⎨⎪=⎩,∴直线BC 的解析式为y =-12x +5,∴CD =5-12=92,∴S △BCD =12×92×92=818.设 G (p ,p 2-5p +5) ,则Q (p ,-12p +5),∴GQ =|p 2-5p +5-(-12p +5)|=|p 2-112p |,∵S △BCG =12QG ×92,又∵△BCG 与△BCD 的面积相等,∴12|p 2-112p |×92=818,当p 2-112p =92时,p 1=32,p 2=3,∵G 是抛物线上位于对称轴右侧的一点,∴p 2=3,∴G (3,-1);当p 2-112p =-92时,解得p 3=93174+,p 4=93174-,∵G 是抛物线上位于对称轴右侧的一点,∴p 3=93174+,∴G (93174+,673178-);综上G (3,-1) 或(93174+,673178-). Q GNHM FyxAB D COl(3)过点A 作AE ⊥x 轴于E ,过点B 作BT ⊥x 轴于T ,连接P A 、PB .直线AB 的解析式为y =kx +b ,过A (1,1),1=k +b ,∴b =1-k ,∴直线AB 的解析式为y =kx +1-k ,∴ kx +1-k =x 2-5x +5,整理得x 2-(5+k )x +4+k =0,x 1=1,x 2=4+k ,∴B (4+k ,k 2+3k +1),设p (x ,0),∵∠APB =90°,∠AEP =∠PTB =90°,∴∠APE +∠EAP =∠APE +∠BPT =90°,∴∠EAP =∠BPT ,∴△AEP ∽△PTB ,∴AE PT =EP BT ,∴14k x+-=2131x k k -++,∴x 2-(5+k )x +k 2+4k +5=0,∵在x 轴上有且只有一点P ,∴△=(5+k )2-4×1×(k 2+4k +5)=0,,即3 k 2+6k -5=0,解得k =3263-±,∵k >0,∴k = 3263-+. TE PlOCD BA x yF【知识点】二次函数的表达式;二次函数的性质;一次函数的表达式;三角形面积公式;相似三角形的判定与性质;。
2018年四川省成都市中考数学试卷一、选择题(每小题3分,共30分)1.(3分)实数a,b,c,d在数轴上对应的点的位置如图所示,这四个数中最大的是()A.a B.b C.c D.d2.(3分)2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A.4×104B.4×105C.4×106D.×1063.(3分)如图所示的正六棱柱的主视图是()A. B. C. D.4.(3分)在平面直角坐标系中,点P(﹣3,﹣5)关于原点对称的点的坐标是()A.(3,﹣5)B.(﹣3,5)C.(3,5)D.(﹣3,﹣5)5.(3分)下列计算正确的是()A.x2+x2=x4B.(x﹣y)2=x2﹣y2C.(x2y)3=x6y D.(﹣x)2•x3=x56.(3分)如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBCC.AC=DB D.AB=DC7.(3分)如图是成都市某周内最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()第7题第9题A.极差是8℃B.众数是28℃C.中位数是24℃D.平均数是26℃8.(3分)分式方程=1的解是()A.x=1 B.x=﹣1 C.x=3 D.x=﹣39.(3分)如图,在▱ABCD中,∠B=60°,⊙C的半径为3,则图中阴影部分的面积是()A.πB.2πC.3πD.6π10.(3分)关于二次函数y=2x2+4x﹣1,下列说法正确的是()A.图象与y轴的交点坐标为(0,1) B.图象的对称轴在y轴的右侧C.当x<0时,y的值随x值的增大而减小 D.y的最小值为﹣3二、填空题(每小题4分,共16分)11.(4分)等腰三角形的一个底角为50°,则它的顶角的度数为.12.(4分)在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,则该盒子中装有黄色乒乓球的个数是.13.(4分)已知==,且a+b﹣2c=6,则a的值为.14.(4分)如图,在矩形ABCD中,按以下步骤作图:①分别以点A和C为圆心,以大于AC的长为半径作弧,两弧相交于点M和N;②作直线MN交CD于点E.若DE=2,CE=3,则矩形的对角线AC的长为.三、解答题(本大题共6个小题,共54分)15.(12分)(1)22+﹣2sin60°+|﹣|(2)化简:(1﹣)÷16.(6分)若关于x的一元二次方程x2﹣(2a+1)x+a2=0有两个不相等的实数根,求a的取值范围.17.(8分)为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.满意度学生数(名)百分比非常满意1210%满意54m比较满意n40%不满意65%根据图表信息,解答下列问题:(1)本次调查的总人数为,表中m的值;(2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.18.(8分)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上实验任务.如图,航母由西向东航行,到达A处时,测得小岛C位于它的北偏东70°方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛C位于它的北偏东37°方向.如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长.(参考数据:sin70°≈,cos70°≈,tan70°≈2,75,sin37°≈,cos37°≈,tan37°≈)19.(10分)如图,在平面直角坐标系xOy中,一次函数y=x+b的图象经过点A(﹣2,0),与反比例函数y=(x>0)的图象交于B(a,4).(1)求一次函数和反比例函数的表达式;(2)设M是直线AB上一点,过M作MN∥x轴,交反比例函数y=(x>0)的图象于点N,若A,O,M,N为顶点的四边形为平行四边形,求点M的坐标.20.(10分)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是⊙O的切线;(2)设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;(3)若BE=8,sinB=,求DG的长,四、填空题(每小题4分,共20分)21.(4分)已知x+y=,x+3y=1,则代数式x2+4xy+4y2的值为.22.(4分)汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3.现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为.第22题第24题第25题23.(4分)已知a>0,S1=,S2=﹣S1﹣1,S3=,S4=﹣S3﹣1,S5=,…(即当n为大于1的奇数时,S n=;当n为大于1的偶数时,S n=﹣S n﹣1﹣1),按此规律,S2018= .24.(4分)如图,在菱形ABCD中,tanA=,M,N分别在边AD,BC上,将四边形AMNB沿MN翻折,使AB的对应线段EF经过顶点D,当EF⊥AD时,的值为.25.(4分)设双曲线y=(k>0)与直线y=x交于A,B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P,Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径“,当双曲线y=(k>0)的眸径为6时,k的值为.五、解答题(本大题共3小题,共30分)26.(8分)为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0≤x≤300和x>300时,y与x的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1200m2,若甲种花卉的种植面积不少于200m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少最少总费用为多少元\27.(10分)在Rt△ABC中,∠ACB=90°,AB=,AC=2,过点B作直线m∥AC,将△ABC 绕点C顺时针旋转得到△A′B′C′(点A,B的对应点分别为A',B′),射线CA′,CB′分別交直线m于点P,Q.(1)如图1,当P与A′重合时,求∠ACA′的度数;(2)如图2,设A′B′与BC的交点为M,当M为A′B′的中点时,求线段PQ的长;(3)在旋转过程中,当点P,Q分别在CA′,CB′的延长线上时,试探究四边形PA'B′Q 的面积是否存在最小值.若存在,求出四边形PA′B′Q的最小面积;若不存在,请说明理由.28.(12分)如图,在平面直角坐标系xOy中,以直线x=对称轴的抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,1),B两点,与y轴交于C(0,5),直线与y轴交于点D.(1)求抛物线的函数表达式;(2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若=,且△BCG与△BCD面积相等,求点G的坐标;(3)若在x轴上有且仅有一点P,使∠APB=90°,求k的值.2018年四川省成都市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)【考点】2A:实数大小比较;29:实数与数轴.【分析】根据实数的大小比较解答即可.【解答】解:由数轴可得:a<b<c<d,故选:D.【点评】此题考查实数大小比较,关键是根据实数的大小比较解答.2.(3分)【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.万=10000=104.【解答】解:40万=4×105,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)【考点】U1:简单几何体的三视图.【分析】根据主视图是从正面看到的图象判定则可.【解答】解:从正面看是左右相邻的3个矩形,中间的矩形的面积较大,两边相同.故选:A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.(3分)【考点】R6:关于原点对称的点的坐标.【分析】根据关于原点对称的点的坐标特点解答.【解答】解:点P(﹣3,﹣5)关于原点对称的点的坐标是(3,5),故选:C.【点评】本题考查的是关于原点的对称的点的坐标,平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数.5.(3分)【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法;4C:完全平方公式.【分析】根据合并同类项法则、完全平方公式、积的乘方法则、同底数幂的乘法法则计算,判断即可.【解答】解:x2+x2=2x2,A错误;(x﹣y)2=x2﹣2xy+y2,B错误;(x2y)3=x6y3,C错误;(﹣x)2•x3=x2•x3=x5,D正确;故选:D.【点评】本题考查的是合并同类项、完全平方公式、积的乘方、同底数幂的乘法,掌握它们的运算法则是解题的关键.6.(3分)【考点】KD:全等三角形的判定与性质.【分析】全等三角形的判定方法有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【解答】解:A、∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS,即能推出△ABC≌△DCB,故本选项错误;B、∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA,即能推出△ABC≌△DCB,故本选项错误;C、∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项正确;D、AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项错误;故选:C.【点评】本题考查了全等三角形的性质和判定,等腰三角形的性质的应用,能正确根据全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定方法有SAS,ASA,AAS,SSS.7.(3分)【考点】VD:折线统计图;W1:算术平均数;W4:中位数;W5:众数;W6:极差.【分析】根据折线统计图中的数据可以判断各个选项中的数据是否正确,从而可以解答本题.【解答】解:由图可得,极差是:30﹣20=10℃,故选项A错误,众数是28℃,故选项B正确,这组数按照从小到大排列是:20、22、24、26、28、28、30,故中位数是26℃,故选项C 错误,平均数是:=℃,故选项D错误,故选:B.【点评】本题考查折线统计图、极差、众数、中位数、平均数,解答本题的关键是明确题意,能够判断各个选项中结论是否正确.8.(3分)【考点】B3:解分式方程.【分析】观察可得最简公分母是x(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:=1,去分母,方程两边同时乘以x(x﹣2)得:(x+1)(x﹣2)+x=x(x﹣2),x2﹣x﹣2+x=x2﹣2x,x=1,经检验,x=1是原分式方程的解,故选:A.【点评】考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.9.(3分)【考点】MO:扇形面积的计算;L5:平行四边形的性质.【分析】根据平行四边形的性质可以求得∠C的度数,然后根据扇形面积公式即可求得阴影部分的面积.【解答】解:∵在▱ABCD中,∠B=60°,⊙C的半径为3,∴∠C=120°,∴图中阴影部分的面积是:=3π,故选:C.【点评】本题考查扇形面积的计算、平行四边形的性质,解答本题的关键是明确题意,利用扇形面积的计算公式解答.10.(3分)【考点】H3:二次函数的性质;H7:二次函数的最值.【分析】根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题.【解答】解:∵y=2x2+4x﹣1=2(x+1)2﹣3,∴当x=0时,y=﹣1,故选项A错误,该函数的对称轴是直线x=﹣1,故选项B错误,当x<﹣1时,y随x的增大而减小,故选项C错误,当x=﹣1时,y取得最小值,此时y=﹣3,故选项D正确,故选:D.【点评】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.二、填空题(每小题4分,共16分)11.(4分)【考点】KH:等腰三角形的性质;K7:三角形内角和定理.【分析】本题给出了一个底角为50°,利用等腰三角形的性质得另一底角的大小,然后利用三角形内角和可求顶角的大小.【解答】解:∵等腰三角形底角相等,∴180°﹣50°×2=80°,∴顶角为80°.故填80°.【点评】本题考查等腰三角形的性质,即等边对等角.找出角之间的关系利用三角形内角和求角度是解答本题的关键.12.(4分)【考点】X4:概率公式.【分析】直接利用摸到黄色乒乓球的概率为,利用总数乘以概率即可得出该盒子中装有黄色乒乓球的个数.【解答】解:∵装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,∴该盒子中装有黄色乒乓球的个数是:16×=6.故答案为:6.【点评】此题主要考查了概率公式,正确利用摸到黄色乒乓球的概率求出黄球个数是解题关键.13.(4分)【考点】S1:比例的性质.【分析】直接利用已知比例式假设出a,b,c的值,进而利用a+b﹣2c=6,得出答案.【解答】解:∵==,∴设a=6x,b=5x,c=4x,∵a+b﹣2c=6,∴6x+5x﹣8x=6,解得:x=2,故a=12.故答案为:12.【点评】此题主要考查了比例的性质,正确表示出各数是解题关键.14.(4分)【考点】N2:作图—基本作图;KG:线段垂直平分线的性质;LB:矩形的性质.【分析】连接AE,如图,利用基本作图得到MN垂直平分AC,则EA=EC=3,然后利用勾股定理先计算出AD,再计算出AC.【解答】解:连接AE,如图,由作法得MN垂直平分AC,∴EA=EC=3,在Rt△ADE中,AD==,在Rt△ADC中,AC==.故答案为.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).三、解答题(本大题共6个小题,共54分)15.(12分)【考点】6C:分式的混合运算;2C:实数的运算;T5:特殊角的三角函数值.【分析】(1)根据立方根的意义,特殊角锐角三角函数,绝对值的意义即可求出答案.(2)根据分式的运算法则即可求出答案.【解答】解:(1)原式=4+2﹣2×+=6(2)原式=×=×=x﹣1【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.16.(6分)【考点】AA:根的判别式.【分析】根据方程的系数结合根的判别式△>0,即可得出关于a的一元一次不等式,解之即可得出a的取值范围.【解答】解:∵关于x的一元二次方程x2﹣(2a+1)x+a2=0有两个不相等的实数根,∴△=[﹣(2a+1)]2﹣4a2=4a+1>0,解得:a>﹣.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.17.(8分)【考点】VC:条形统计图;V5:用样本估计总体;W2:加权平均数.【分析】(1)利用12÷10%=120,即可得到m的值;用120×40%即可得到n的值.(2)根据n的值即可补全条形统计图;(3)根据用样本估计总体,3600××100%,即可答.【解答】解:(1)12÷10%=120,故m=120,n=120×40%=48,m==45%.故答案为%.(2)根据n=48,画出条形图:(3)3600××100%=1980(人),答:估计该景区服务工作平均每天得到1980名游客的肯定.【点评】本题考查了条形统计图、扇形统计图等知识,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.18.(8分)【考点】TB:解直角三角形的应用﹣方向角问题.【分析】根据题意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD中,由三角函数得出CD=海里,在直角三角形BCD中,得出BD,即可得出答案.【解答】解:由题意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD中,CD=AC•cos∠ACD=海里,在直角三角形BCD中,BD=CD•tan∠BCD=海里.答:还需航行的距离BD的长为海里.【点评】此题考查了解直角三角形的应用﹣方向角问题,三角函数的应用;求出CD的长度是解决问题的关键.19.(10分)【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)根据一次函数y=x+b的图象经过点A(﹣2,0),可以求得b的值,从而可以解答本题;(2)根据平行四边形的性质和题意,可以求得点M的坐标,注意点M的横坐标大于0.【解答】解:(1)∵一次函数y=x+b的图象经过点A(﹣2,0),∴0=﹣2+b,得b=2,∴一次函数的解析式为y=x+2,∵一次函数的解析式为y=x+2与反比例函数y=(x>0)的图象交于B(a,4),∴4=a+2,得a=2,∴4=,得k=8,即反比例函数解析式为:y=(x>0);(2)∵点A(﹣2,0),∴OA=2,设点M(m﹣2,m),点N(,m),当MN∥AO且MN=AO时,四边形AOMN是平行四边形,||=2,解得,m=2或m=+2,∴点M的坐标为(﹣2,)或(,2+2).【点评】本题考查反比例函数与一次函数的交点问题,解答本题的关键是明确题意,利用数形结合的思想解答.20.(10分)【考点】MR:圆的综合题.【分析】(1)连接OD,由AD为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD与AC平行,得到OD与BC垂直,即可得证;(2)连接DF,由(1)得到BC为圆O的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD与三角形ADF相似,由相似得比例,即可表示出AD;(3)连接EF,设圆的半径为r,由sinB的值,利用锐角三角函数定义求出r的值,由直径所对的圆周角为直角,得到EF与BC平行,得到sin∠AEF=sinB,进而求出DG的长即可.【解答】(1)证明:如图,连接OD,∵AD为∠BAC的角平分线,∴∠BAD=∠CAD,∵OA=OD,∴∠ODA=∠OAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∴BC为圆O的切线;(2)解:连接DF,由(1)知BC为圆O的切线,∴∠FDC=∠DAF,∴∠CDA=∠CFD,∴∠AFD=∠ADB,∵∠BAD=∠DAF,∴△ABD∽△ADF,∴=,即AD2=AB•AF=xy,则AD=;(3)解:连接EF,在Rt△BOD中,sinB==,设圆的半径为r,可得=,解得:r=5,∴AE=10,AB=18,∵AE是直径,∴∠AFE=∠C=90°,∴EF∥BC,∴∠AEF=∠B,∴sin∠AEF==,∴AF=AE•sin∠AEF=10×=,∵AF∥OD,∴===,即DG=AD,∴AD===,则DG=×=.【点评】此题属于圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题。