34.函数模型及其应用(2) (2)
- 格式:doc
- 大小:169.00 KB
- 文档页数:5
函数模型及应用研究报告函数模型是指通过对一个或多个自变量的输入,通过一系列数学运算得出一个或多个因变量的输出的数学模型。
函数模型是数学应用中的重要工具,广泛应用于各个领域,包括工程、物理、计算机科学等等。
本文旨在探讨函数模型的应用,并以实际问题为例,研究其在解决实际问题中的应用和效果。
二、函数模型的概述1. 函数模型的定义:函数模型是通过对自变量进行加工运算,得到因变量的数学模型。
函数模型可以是线性的、非线性的、离散的或连续的等等。
2. 函数模型的应用:函数模型广泛应用于各个领域。
在经济领域,函数模型可以用于描述供需关系,预测经济走势。
在物理领域,函数模型可以用于描述运动物体的位移、速度、加速度等等。
在工程领域,函数模型可以用于优化设计、提高生产效率。
在计算机科学领域,函数模型可以用于解决各种算法和计算问题。
三、函数模型在实际问题中的应用1. 函数模型在经济学中的应用:函数模型可以用于描述供需关系。
例如,在市场经济中,供给和需求的关系决定了商品的价格和数量。
通过建立供给和需求的函数模型,可以分析价格对数量的影响,预测未来市场的变化趋势,辅助经济决策。
2. 函数模型在物理学中的应用:函数模型可以用于描述运动物体的位移、速度、加速度等等。
例如,在物体运动的过程中,可以通过建立位移与时间的函数模型,预测物体的运动轨迹;通过建立速度与时间的函数模型,计算物体在不同时间点的速度。
这对于研究物体的运动规律、优化设计等方面都具有重要意义。
3. 函数模型在工程学中的应用:函数模型可以用于优化设计、提高生产效率。
例如,在工程设计中,通过建立输入与输出之间的函数模型,可以确定最优设计参数,提高产品质量和性能;在生产过程中,通过建立生产过程的函数模型,可以分析生产效率和成本之间的关系,优化生产流程。
这对于提高工程效益具有重要作用。
4. 函数模型在计算机科学中的应用:函数模型是计算机科学的基石。
在算法设计与分析中,函数模型可以用于描述算法的时间复杂度、空间复杂度等;在机器学习中,函数模型可以用于构建分类器和回归器,实现数据分析和预测;在图像处理中,函数模型可以用于描述图像的变换和处理。
函数模型及其应用一、构建函数模型的基本步骤:1、审题:弄清题意,分析条件和结论,理顺数量关系;2、建模:引进数学符号,一般地,设自变量为x ,函数为y ,必要时引入其他相关辅助变量,并用x 、y 和辅助变量表示各相关量,然后根据已知条件建立关系式,即所谓的数学模型;3、求模:利用数学方法将得到的常规函数问题予以解答,求得结果;4、还原:将所得的结果还原为实际问题的意义,再转译成具体问题的回答。
二、常见函数模型:1、一次函数模型;2、二次函数模型;3、分段函数模型;4、指数函数模型;5、对数函数模型;6、对勾函数模型;7、分式函数模型。
题型1:一次函数模型因一次函数y kx b =+(0k ≠)的图象是一条直线,因而该模型又称为直线模型,当0k >时,函数值的增长特点是直线上升;当0k <时,函数值则是直线下降。
例1:某工厂在甲、乙两地的两个分工厂各生产同一种机器12台和6台。
现销售给A 地10台,B 地8台。
已知从甲地到A 地、B 地的运费分别是400元和800元,从乙地到A 地、B 地的运费分别是300元和500元,(1)设从乙地运x 台至A 地,求总运费y 关于x 的函数解析式; (2)若总运费不超过9000元,共有几种调运方案; (3)求出总运费最低的方案和最低运费。
题型2:二次函数模型二次函数2y ax bx c =++(0a ≠)为生活中最常见的一种数学模型,因二次函数可求其最大值(或最小值),故常常最优、最省等最值问题是二次函数的模型。
例2:渔场中鱼群的最大养殖量为m 吨,为保证鱼群的生长空间,实际养殖量不能达到最大养殖量,必须留下适当的空闲量,已知鱼群的年增长量y 吨和实际养殖量x 吨与空闲率的乘积成正比,比例系数为(0)k k >。
(1)写出y 关于x 的函数关系式,并指出这个函数的定义域; (2)求鱼群年增长量的最大值;(3)当鱼群的年增长量达到最大值时,求k 的取值范围。
高考数学初等函数知识点:函数模型及其应用第1篇:高考数学初等函数知识点:函数模型及其应用导语:常见的函数模型有一次函数模型、二次函数模型、指数函数模型、对数函数模型、分段函数模型等,下面就由小编为大家带来高考数学初等函数知识点:函数模型及其应用,大家一起去看看怎么做吧!1.我们目前已学习了以下几种函数:一次函数y=kx+b(k≠0),二次函数y=ax2+bx+c(a≠0),指数函数y=ax(a>0且a≠1),对数函数y=logax(a>0且a≠1),幂函数y=xa(a为常数)2.用已知函数模型解决实际问题的基本步骤:第一步,审清题意,设立变量;第二步,根据所给模型,列出函数关系式;第三步,利用函数关系求解;第四步,再将所得结论转译成具体问题的解答.3.在处理曲线拟合与预测的问题时,通常需要以下几个步骤:(1)能够根据原始数据、表格、绘出散点图;(2)通过考查散点图,画出“最贴近”的曲线,即拟合曲线;(3)根据所学函数知识,求出拟合曲线的函数解析式;(4)利用函数关系,根据条件对所给问题进行预测和控制,以便为决策和管理提供依据.4.解疑释惑(1)怎样理解“数学建模”和实际问题的关系?一般来说,对问题进行修改和简化,形成一种比较精确和简洁的表述,这时可称之为“实际模型”,它和“实际原形”不同,因为它被简化了,不是实际问题所有方面都得到了体现.而是在得到一个“实际模型”之后,再用数学符号和表达式来代替实际问题中的变量和关系,得到的结果是一个“数学模型”. (2)怎样才能搞好“数学建模”?在“数学建模”中要把握好下列几个问题:1理解问题:阅读理解,读懂文字叙述,认真审题,理解实际背景.弄清楚问题的实际背景和意义,设法用数学语言来描述问题.2数学建模:把握新信息,勇于探索,善于联想,灵活化归,根据题意建立变量或参数间的数学关系,实现实际问题数学化,引进数学符号,构建数学模型,常用的数学模型有方程、不等式、函数.3求解模型:以所学的数学*质为工具对建立的数学模型进行求解.○4检验模型:将所求的结果代回模型中检验,对模拟的结果与实际情形比较,以确定模型的有效*,如果不满意,要考虑重新建模.5评价与应用:如果模型与实际情形比较吻合,要对计算的结果作出解释并给出其实际意义,最后对所建立的模型给出运用范围.如果模型与实际问题有较大出入,则要对模型改进,并重复上述步骤.(3)“数学建模”中要注意什么问题?1有的应用题文字叙述冗长,或者选择的知识背景较为陌生,处理时,要注意认真、耐心地阅读和理解题意.2解决函数应用题时要注意用变化的观点分析和探求具体问题中的数量关系,寻找已知量与未知量之间的内在联系,然后将这些内在联系与数学知识联想,建立函数关系式或列出方程,利用函数*质或方程观点来求解,则可使应用题化生为熟,尽快得到解决.5.规律总结(1)如果实际问题中的规律很难用一个统一的关系式表示,可考虑用分段函数来表示它.另外,在实际问题的计算中应注意统一单位.(2)分类讨论建立函数模型在实际问题中较为常见,应引起充分注意.(3)建立“数学模型”常用的分析方法:(1)关系分析法:即通过寻找关键词和关键量之间的数量关系的方法来建立问题的数学模型的方法.(2)列表分析法:即通过列表的方式探索问题的数学模型的方法.(3)图象分析法:即通过对图象中的数量关系分析来建立问题的数学模型的方法.第2篇:高一数学函数模型及其应用知识点函数部分的知识最主要的是怎样运用,在考试中考察的也是应用及模型,因此掌握数学函数模型及其应用知识点是掌握本课内容的基础,希望大家可以认真学习。
函数模型及其应用【知识要点】建立函数模型就是将实际问题转化为数学问题,是数学地解决问题的关键.运用数学模型方法的过程,一般可分为三步:(1)建立模型:将实际问题数学抽象化,运用掌握的基本函数建立数学模型;(2)数学求解:运用各种相应的数学方法及计算工具求解,得出数学结论;(3)问题求解:将数学结论代入实际问题进行验证. 【典型例题】例1 一种产品年产量原来是a 件,在今后的m 年内,计划使年产量平均比上一年增加P%,写出产量随经过年数变化的函数关系式.例2 某工厂拟建一座平面图为矩形且面积为200m 2的污水处理池,由于地形限制长宽不能超过16m ,如果池外围壁造单价每半400元,中间池壁造价每半280元,池底造价年平方米80元.(1)写出总造价y (元)与污水池长x (米)的函数关系式;(2)当污水池长、宽为多少米时,总造价最低,并求出最低价.实际问题 数学化 数学问题 数学解答数学问题讨论 符合实际 实际问题结论 问题解决例3 某地现有耕地104公顷,规划10年后,粮食年产比现有增加22%,人均粮食产量比现在提高10%,如果人口增长率为1%,那么耕地每年至多只能减少多少公顷(精确到1公顷).例4 某工厂生产某种零件,每个零件的成本40元,出厂单价定为60元,该厂为鼓励销售商订购决定当一次订购量超过100个时,每多订购一个,订购的全部零件单价0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少时,实际出厂价恰为51元;(2)设一次订购量为x个时,零件实际出厂单价为P元,写出函数)P=的表达式;f(x (3)当销售一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个利润又是多少元?例5某蓄水池原有400吨水,当日零时同时打开进水闸和出水闸,出水闸流出的水量w吨与时间t小时的函数关系是:)=tw≤t120≤6240(,(1)若使次日零时蓄水池的水量仍有400吨,问每小时进水闸进水多少吨?(2)在(1)的情况下,问当日几点时,蓄水池的水量最少,最少为多少吨?例6 某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图a 所示的一条折线所示,西红柿的种植成本与上市时间的关系用图b 的抛物线表示.(1)由图a 写出市场售价与时间的函数关系)(t f P =,用图b 写出种植成本与时间的函数关系)(t g C =.(2)认定市场定价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?【课后练习】1.因电力紧缺,某地通过电价差来控制用电量,规定如下:用户每个月电量不超过100kwh ,则年kwh 的电价为0.5元,若超过100kwh ,则超过部100kwh ,则超过部分的电价为a 元/kwh (5.0>a )。
高中数学:函数模型及其应用在数学的世界里,函数是一个重要的概念,它描述了一个变量与另一个变量之间的关系。
而在高中数学中,函数模型及其应用成为了学生们必须掌握的重要内容。
一、函数模型的理解函数,对于很多人来说,可能是一个复杂的概念。
但实际上,函数却是极其普遍的存在。
在我们的日常生活中,函数无处不在。
比如,身高随着年龄的增长而增长,这就是一个函数关系。
在这个例子中,年龄是自变量,身高是因变量。
再比如,购买商品时,价格随着数量的增加而增加,这里数量是自变量,价格是因变量。
函数模型,就是用来描述这种变量之间关系的数学工具。
它将生活中的各种关系,转化为数学公式,使我们能更好地理解和分析这些关系。
二、函数模型的应用函数模型的应用广泛存在于我们的生活中。
比如,在商业领域,公司需要根据市场需求和价格来决定生产量。
这就需要使用函数模型来预测市场的趋势,从而做出最佳的决策。
在物理学中,牛顿的第二定律就是一个函数模型,它描述了力、质量和加速度之间的关系。
而在生物学中,细胞分裂的模型也是一个函数,它描述了细胞数量随时间的变化情况。
三、高中数学中的函数模型在高中数学中,我们主要学习了一些基本的函数模型,如线性函数、二次函数、指数函数和对数函数等。
这些函数模型可以帮助我们解决生活中的很多问题。
比如,线性函数可以帮助我们解决速度和时间的问题,二次函数可以帮助我们解决几何图形的问题,而指数函数和对数函数则可以帮助我们解决增长和衰减的问题。
四、总结函数模型是高中数学中的一个重要内容。
它不仅可以帮助我们解决生活中的问题,还可以帮助我们更好地理解这个世界。
因此,学生们应该积极学习函数模型及其应用,努力提高自己的数学素养。
高中数学函数的概念课件课件标题:高中数学函数的概念课件一、引言函数是高中数学的核心概念,是数学学习中不可或缺的一部分。
函数的概念是理解函数的基础,也是进一步学习函数性质和应用的前提。
本课件旨在帮助学生理解函数的基本概念,掌握函数的定义和性质,为后续的学习奠定坚实的基础。
函数模型及其应用一、基础知识1.常见的8种函数模型(1)正比例函数模型:f (x )=kx (k 为常数,k ≠0); (2)反比例函数模型:f (x )=kx (k 为常数,k ≠0);(3)一次函数模型:f (x )=kx +b (k ,b 为常数,k ≠0); (4)二次函数模型:f (x )=ax 2+bx +c (a ,b ,c 为常数,a ≠0); (5)指数函数模型:f (x )=ab x +c (a ,b ,c 为常数,a ≠0,b >0,b ≠1); (6)对数函数模型:f (x )=m log a x +n (m ,n ,a 为常数,m ≠0,a >0,a ≠1); (7)幂函数模型:f (x )=ax n +b (a ,b ,n 为常数,a ≠0,n ≠1); (8)“对勾”函数模型:y =x +ax(a >0).(1)形如f (x )=x +ax (a >0)的函数模型称为“对勾”函数模型,“对勾”函数的性质:①该函数在(-∞,-a ]和[a ,+∞)上单调递增,在[-a ,0)和(0,a ]上单调递减. ②当x >0时,x =a 时取最小值2a ,当x <0时,x =-a 时取最大值-2a .(2)函数f (x )=x a +bx (a >0,b >0,x >0)在区间(0,ab ]内单调递减,在区间[ab ,+∞)内单调递增.2.三种函数模型的性质幂函数模型y =x n (n >0)可以描述增长幅度不同的变化,当n ,值较小(n ≤1)时,增长较慢;当n 值较大(n >1)时,增长较快.考点一 二次函数、分段函数模型[典例] 国庆期间,某旅行社组团去风景区旅游,若每团人数在30或30以下,飞机票每张收费900元;若每团人数多于30,则给予优惠:每多1人,机票每张减少10元,直到达到规定人数75为止.每团乘飞机,旅行社需付给航空公司包机费15 000元.(1)写出飞机票的价格关于人数的函数; (2)每团人数为多少时,旅行社可获得最大利润?[解] (1)设每团人数为x ,由题意得0<x ≤75(x ∈N *),飞机票价格为y 元,则y =⎩⎪⎨⎪⎧900,0<x ≤30,900-10(x -30),30<x ≤75,即y =⎩⎪⎨⎪⎧900,0<x ≤30,1 200-10x ,30<x ≤75.(2)设旅行社获利S 元,则S =⎩⎪⎨⎪⎧900x -15 000,0<x ≤30,1 200x -10x 2-15 000,30<x ≤75,即S =⎩⎪⎨⎪⎧900x -15 000,0<x ≤30,-10(x -60)2+21 000,30<x ≤75.因为S =900x -15 000在区间(0,30]上为增函数,故当x =30时,S 取最大值12 000. 又S =-10(x -60)2+21 000,x ∈(30,75],所以当x =60时,S 取得最大值21 000. 故当x =60时,旅行社可获得最大利润. [解题技法]二次函数、分段函数模型解决实际问题的策略(1)在建立二次函数模型解决实际问题中的最值问题时,一定要注意自变量的取值范围,需根据函数图象的对称轴与函数定义域在坐标系中对应区间之间的位置关系讨论求解.(2)对于分段函数模型的最值问题,应该先求出每一段上的最值,然后比较大小. (3)在利用基本不等式求解最值时,一定要检验等号成立的条件,也可以利用函数单调性求解最值.[题组训练]1.某市家庭煤气的使用量x (m 3)和煤气费f (x )(元)满足关系f (x )=⎩⎪⎨⎪⎧C ,0<x ≤A ,C +B (x -A ),x >A .已知某家庭优质试题年前三个月的煤气费如表:若四月份该家庭使用了20 m 3的煤气,则其煤气费为( ) A .11.5元 B .11元 C .10.5元D .10元 解析:选A 根据题意可知f (4)=C =4,f (25)=C +B (25-A )=14,f (35)=C +B (35-A )=19,解得A =5,B =12,C =4,所以f (x )=⎩⎪⎨⎪⎧4,0<x ≤5,4+12(x -5),x >5,所以f (20)=4+12×(20-5)=11.5.2.A ,B 两城相距100 km ,在两城之间距A 城x (km)处建一核电站给A ,B 两城供电,为保证城市安全,核电站距城市距离不得小于10 km.已知供电费用等于供电距离(km)的平方与供电量(亿度)之积的0.25倍,若A 城供电量为每月20亿度,B 城供电量为每月10亿度.(1)求x 的取值范围;(2)把月供电总费用y 表示成x 的函数;(3)核电站建在距A 城多远,才能使月供电总费用y 最少? 解:(1)由题意知x 的取值范围为[10,90]. (2)y =5x 2+52(100-x )2(10≤x ≤90).(3)因为y =5x 2+52(100-x )2=152x 2-500x +25 000 =152⎝⎛⎭⎫x -10032+50 0003, 所以当x =1003时,y min =50 0003.故核电站建在距A 城1003km 处,能使月供电总费用y 最少.考点二 指数函数、对数函数模型[典例] 某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量y (微克)与时间t (小时)之间近似满足如图所示的曲线.(1)写出第一次服药后y 与t 之间的函数关系式y =f (t );(2)据进一步测定,每毫升血液中含药量不少于0.25微克时治疗疾病有效,求服药一次后治疗疾病有效的时间.[解] (1)由题图,设y =⎩⎪⎨⎪⎧kt ,0≤t ≤1,⎝⎛⎭⎫12t -a ,t >1,当t =1时,由y =4,得k =4,由⎝⎛⎭⎫121-a =4,得a =3.所以y =⎩⎪⎨⎪⎧ 4t ,0≤t ≤1,⎝⎛⎭⎫12t -3,t >1.(2)由y ≥0.25得⎩⎨⎧0≤t ≤1,4t ≥0.25或⎩⎪⎨⎪⎧t >1,⎝⎛⎭⎫12t -3≥0.25,解得116≤t ≤5.故服药一次后治疗疾病有效的时间是5-116=7916(小时).[解题技法]1.掌握2种函数模型的应用技巧(1)与指数函数、对数函数模型有关的实际问题,在求解时,要先学会合理选择模型,在三类模型中,指数函数模型是增长速度越来越快(底数大于1)的一类函数模型,与增长率、银行利率有关的问题都属于指数函数模型.(2)在解决指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函数解析式,再借助函数的图象求解最值问题,必要时可借助导数.2.建立函数模型解应用问题的4步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择模型. (2)建模:将文字语言转化为数学语言,利用数学知识建立相应的数学模型. (3)求模:求解数学模型,得出数学结论.(4)还原:将利用数学知识和方法得出的结论,还原到实际问题中. [题组训练]1.某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n 次涨停(每次上涨10%),又经历了n 次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为( )A .略有盈利B .略有亏损C .没有盈利也没有亏损D .无法判断盈亏情况解析:选B 设该股民购进这支股票的价格为a 元,则经历n 次涨停后的价格为a (1+10%)n =a ×1.1n 元,经历n 次跌停后的价格为a ×1.1n ×(1-10%)n =a ×1.1n ×0.9n =a ×(1.1×0.9)n =0.99n ·a <a ,故该股民这支股票略有亏损.2.声强级Y (单位:分贝)由公式Y =10lg ⎝⎛⎭⎫I10-12给出,其中I 为声强(单位:W/m 2).(1)平常人交谈时的声强约为10-6 W/m 2,求其声强级.(2)一般常人能听到的最低声强级是0分贝,求能听到的最低声强为多少? 解:(1)当声强为10-6 W/m 2时,由公式Y =10lg ⎝ ⎛⎭⎪⎫I 10-12,得Y =10lg ⎝ ⎛⎭⎪⎫10-610-12=10lg 106=60(分贝). (2)当Y =0时,由公式Y =10lg ⎝ ⎛⎭⎪⎫I 10-12,得10lg ⎝ ⎛⎭⎪⎫I 10-12=0.∴I 10-12=1,即I =10-12 W/m 2, 则最低声强为10-12 W/m 2.[课时跟踪检测]1.(优质试题·福州期末)某商场销售A 型商品.已知该商品的进价是每件3元,且销售单价与日均销售量的关系如下表所示:请根据以上数据分析,要使该商品的日均销售利润最大,则此商品的定价(单位:元/件)应为( )A .4B .5.5C .8.5D .10解析:选C 由数据分析可知,当单价为4元时销售量为400件,单价每增加1元,销售量就减少40件.设定价为x 元/件时,日均销售利润为y 元,则y =(x -3)·[400-(x -4)·40]=-40⎝⎛⎭⎫x -1722+1 210,故当x =172=8.5时,该商品的日均销售利润最大,故选C. 2.(优质试题·绵阳诊断)某单位为鼓励职工节约用水,作出如下规定:每位职工每月用水不超过10立方米的,按每立方米3元收费;用水超过10立方米的,超过的部分按每立方米5元收费.某职工某月的水费为55元,则该职工这个月实际用水为( ) A .13立方米 B .14立方米 C .15立方米D .16立方米解析:选C 设该职工某月的实际用水为x 立方米时,水费为y 元,由题意得y =⎩⎪⎨⎪⎧ 3x ,0≤x ≤10,30+5(x -10),x >10,即y =⎩⎪⎨⎪⎧3x ,0≤x ≤10,5x -20,x >10.易知该职工这个月的实际用水量超过10立方米,所以5x -20=55,解得x =15.3.利民工厂某产品的年产量在150吨至250吨之间,年生产的总成本y (万元)与年产量x (吨)之间的关系可近似地表示为y =x 210-30x +4 000,则每吨的成本最低时的年产量为( )A .240吨B .200吨C .180吨D .160吨解析:选B 依题意,得每吨的成本为y x =x 10+4 000x -30,则yx ≥2x 10 ·4 000x-30=10,当且仅当x 10=4 000x ,即x =200时取等号,因此,当每吨成本最低时,年产量为200吨.4.某工厂产生的废气经过过滤后排放,排放时污染物的含量不得超过1%.已知在过滤过程中废气中的污染物数量P (单位:毫克/升)与过滤时间t (单位:时)之间的函数关系为P =P 0e -kt (k ,P 0均为正常数).如果在前5个小时的过滤过程中污染物被排除了90%,那么排放前至少还需要过滤的时间是( )A.12小时 B.59小时C .5小时D .10小时解析:选C 由题意,前5个小时消除了90%的污染物. ∵P =P 0e -kt ,∴(1-90%)P 0=P 0e -5k , ∴0.1=e -5k ,即-5k =ln 0.1, ∴k =-15ln 0.1.由1%P 0=P 0e -kt ,即0.01=e -kt ,得-kt =ln 0.01, ∴⎝⎛⎭⎫15ln 0.1t =ln 0.01,∴t =10. ∴排放前至少还需要过滤的时间为t -5=5(时).5.(优质试题·蚌埠模拟)某种动物的繁殖数量y (单位:只)与时间x (单位:年)的关系式为y =a log 2(x +1),若这种动物第1年有100只,则到第7年它们发展到________只.解析:由题意,得100=a log 2(1+1),解得a =100,所以y =100log 2(x +1),当x =7时,y =100log 2(7+1)=300,故到第7年它们发展到300只.答案:3006.某人根据经验绘制了从12月21日至1月8日自己种植的西红柿的销售量y (千克)随时间x (天)变化的函数图象如图所示,则此人在12月26日大约卖出了西红柿________千克.解析:前10天满足一次函数关系,设为y =kx +b ,将点(1,10)和点(10,30)代入函数解析。
2.9函数模型及其应用1.函数的实际应用(1)基本函数模型:函数模型函数解析式一次函数模型二次函数模型指数型函数模型f(x)=ba x+c(a,b,c为常数,a>0且a≠1,b≠0)对数型函数模型f(x)=b log a x+c(a,b,c为常数,a>0且a≠1,b≠0)幂型函数模型f(x)=ax n+b(a,b为常数,a ≠0)(2)函数性质y=a x(a>1)y=log a x(a>1)y=x n(n>0)在(0,+∞)上的单调性单调____函数单调____函数单调____函数增长速度越来越____越来越____相对平稳图象的变化随x值增大,图象与____轴接近平行随x值增大,图象与____轴接近平行随n值变化而不同2.函数建模(1)函数模型应用的两个方面:①利用已知函数模型解决问题;②建立恰当的函数模型,并利用所得函数模型解释有关现象,对某些发展趋势进行预测.(2)应用函数模型解决问题的基本过程:_______、_______、_______、_______.自查自纠:1.(1)f(x)=ax+b(a,b为常数,a≠0)f(x)=ax2+bx+c(a,b,c为常数,a≠0)(2)增增增快慢yx2.审题建模解模还原(教材改编题)下列函数中,随x(x>0)的增大,y的增长速度越来越快,并会超过其他三个的是() A.y=e x B.y=100ln xC .y =x 100D .y =2x 解:“指数爆炸”,又e >2.故选A.(2016·湖北天门模拟)某部门为实现当地菜价稳定,提出四种绿色运输方案.据预测,这四种方案均能在规定的时间T 内完成预测的运输任务Q 0,各种方案的运输总量Q 与时间t 的函数关系如图所示,在这四种方案中,运输效率(单位时间的运输量)逐步提高的是 ()解:运输效率(单位时间的运输量)逐步提高,即对应曲线上的点的切线斜率逐渐增大,只有B 项符合要求.故选B.(2015·北京)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.加油时间加油量/升 加油时的累计里程/千米2015年5月1日12 35 0002015年5月15日48 35 600注:“累计里程”指汽车从出开始累计行驶的路程. 在这段时间内,该车每100千米平均耗油量为() A .6升 B .8升 C .10升 D .12升解:因为第一次(即5月1日)把油加满,而第二次把油加满加了48升,即汽车行驶35 600-35 000=600千米耗油48升,所以每100千米的耗油量为8升.故选B.要制作一个容积为16 m 3,高为1m 的无盖长方体容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________元. 解:设长方体底面矩形的长、宽分别为x ,y ,则y =16x,所以容器的总造价为z =2(x +y )×1×10+20xy =20⎝⎛⎭⎫x +16x +20×16,由基本不等式得,z =20⎝⎛⎭⎫x +16x +20×16≥40x ·16x+320=480,当且仅当x =y =4,即底面是边长为4的正方形时,总造价最低.故填480.某汽车运输购买了一批豪华大客车投入营运,据市场分析,每辆客车营运的总利润y (单位:10万元)与营运年数x (x ∈N )满足如图所示的二次函数关系,则每辆客车营运________年,其营运的年平均利润yx最大.解:由图象知,营运总利润y =-(x -6)2+11.所以营运的年平均利润y x =-x -25x +12.当且仅当x =5时,yx 取最大值.故填5.类型一幂型函数模型为了保护环境,发展低碳经济,某单位在当地科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为:y =12x 2-200x +80 000,且每处理一吨二氧化碳得到可利用的化工产品的价值为400元.则该单位每月能否获利? 解:设该单位每月获利为S 元, 则S =400x -y=400x -⎝⎛⎭⎫12x 2-200x +80 000 =-12x 2+600x -80 000=-12(x -600)2+100 000,因为400≤x ≤600,所以当x =400时,S 有最小值80 000. 故该单位每月能获利. 点 拨:①列函数关系式时,注意自变量的取值范围;②求最值这里运用了配方法,要特别注意取等条件,通常换元法、导数法、均值不等式法也是解这类题比较常用的方法.某产品的总成本y (万元)与产量x (台)之间的函数关系是y =3 000+20x -0.1x 2(0<x <240,x ∈N *),若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是() A .100台 B .120台 C .150台 D .180台 解:设利润为f (x )万元,则 f (x )=25x -(3 000+20x -0.1x 2)=0.1x 2+5x -3 000(0<x <240,x ∈N *). 令f (x )≥0,得x ≥150,所以生产者不亏本时的最低产量是150台.故选C.类型二指数型函数模型一片森林原来面积为a ,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到原面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到2017年为止,森林剩余面积为原来的22. (1)求每年砍伐面积的百分比;(2)到2017年为止,该森林已砍伐了多少年? (3)从2017年起,还能砍伐多少年?解:(1)设每年降低的百分比为x (0<x <1), 则a (1-x )10=12a ,即(1-x )10=12,解得x =1-⎝⎛⎭⎫12110.(2)设经过m 年剩余面积为原来的22, 则a (1-x )m=22a ,即⎝⎛⎭⎫12m 10=⎝⎛⎭⎫1212,即m 10=12,解得m =5.故到2017年为止,该森林已砍伐了5年. (3)设从2017年起还能砍伐n 年, 则n 年后剩余面积为22a (1-x )n . 令2a 2(1-x )n ≥14a ,即(1-x )n ≥24, 所以⎝⎛⎭⎫12n10≥⎝⎛⎭⎫1232,解得n ≤15.故从2017年起还能砍伐15年. 点 拨:此类增长率问题,在实际问题中常可以用指数型函数模型y =N (1+p )x (其中N 是基础数,p 为增长率,x 为时间)和幂型函数模型y =a (1+x )n (其中a 为基础数,x 为增长率,n 为时间)的形式表示.解题时,往往用到对数运算.已知某生产某种产品的月产量y (单位:万件)与月份x 之间满足关系y =a ·0.5x +b ,现已知该产品1月、2月的产量分别为1万件、1.5万件,则该产品3月份的产量为________万件.解:由已知得⎩⎪⎨⎪⎧0.5a +b =1,(0.5)2a +b =1.5, 解得⎩⎪⎨⎪⎧a =-2,b =2, 故当x =3时,y =-2×0.53+2=1.75.故填1.75. 类型三对数型函数模型有一片树林现在的木材储蓄量为7 100 m 3,要力争使木材储蓄量20年后翻两番,即达到28 400 m 3,则平均每年木材储蓄量的增长率是________.(参考数据:lg2≈0.301 0,lg3≈0.477 1,lg5≈0.699 0,100.03≈1.072)解:设增长率为x ,由题意得28 400=7 100(1+x )20,所以(1+x )20=4,即20lg(1+x )=2lg2,lg(1+x )≈0.030 10,所以1+x ≈1.072,得x ≈0.072=7.2%.故填7.2%.点 拨:(1)善于利用已知条件,根据问题的实际意义列出方程(组)、不等式(组)等来解决问题.(2)解题过程中注意合理地使用对数式的运算法则进行运算.(2017·广州模拟)在某个物理实验中,测得变量x 和变量y 的几组数据,如下表:x 0.50 0.99 2.01 3.98 y -0.99 0.01 0.98 2.00则对x ,y 最适合的拟合函数是() A .y =2x B .y =x 2-1 C .y =ln x D .y =log 2x解:根据x =0.50,y =-0.99,代入各选项计算,可以排除A ;根据x =2.01,y =0.98,代入各选项计算,可以排除B ;将各数据代入函数y =log 2x ,可知满足题意.故选D.类型四分段函数模型某蔬菜基地种植西红柿,由历年市场行情得知,从2月1日起的300天内,西红柿市场售价与上市时间的关系可用图①中的一条折线表示;西红柿的种植成本与上市时间的关系可用图②中的抛物线段表示.(1)写出图①表示的市场售价与上市时间的函数关系P =f (t ),写出图②表示的种植成本与上市时间的函数关系式Q =g (t );(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大? (注:市场售价和种植成本的单位:元/公斤,时间单位:天)解:(1)由题图①可得市场售价与时间的函数关系为f (t )=⎩⎪⎨⎪⎧300-t ,0≤t ≤200,2t -300,200<t ≤300.由题图②可得种植成本与上市时间的函数关系为g (t )=1200(t -150)2+100,0≤t ≤300. (2)设上市时间为t 的西红柿纯收益为h (t ),则由题意得h (t )=f (t )-g (t ),即h (t )=⎩⎨⎧-t 2200+12t +1752,0≤t ≤200,-t 2200+72t -1 0252,200<t ≤300,当0≤t ≤200时, 配方整理得h (t )=-1200(t -50)2+100, 所以,当t =50时,h (t )取得区间[0,200]上的最大值100; 当200<t ≤300时, 配方整理得h (t )=-1200(t -350)2+100, 所以,当t =300时,h (t )取得区间(200,300]上的最大值87.5.由100>87.5可知,h (t )在区间[0,300]上可以取得最大值100,此时t =50,即从2月1日开始的第50天上市的西红柿纯收益最大. 点 拨:(1)实际问题的情况是复杂的,许多实际问题要使用分段函数模型求解.(2)解分段函数模型要注意定义域区间的分界点.(3)含有参数的实际应用题要注意分类讨论.(2017·河南省实验中学期中)国庆节期间,某旅行社组团去风景区旅游,若每团人数在30人或30人以下,飞机票每张收费900元;若每团人数多于30人,则给予优惠:每多1人,机票每张减少10元,直到达到规定人数75人为止.每团乘飞机,旅行社需付给航空包机费15 000元. (1)写出飞机票的价格关于人数的函数;(2)每团人数为多少时,旅行社可获得最大利润?解:(1)设旅游团人数为x 人,由题得0<x ≤75,飞机票价格为y 元,则y =⎩⎪⎨⎪⎧900,0<x ≤30,900-10(x -3030<x ≤75,即y =⎩⎪⎨⎪⎧900,0<x ≤30,1 200-10x ,30<x ≤75.(2)设旅行社获利S 元,则S =⎩⎪⎨⎪⎧900x -15 000,0<x ≤30,x (1 200-10x )-15 000,30<x ≤75,即S =⎩⎪⎨⎪⎧900x -15 000,0<x ≤30,-10(x -60)2+21 000,30<x ≤75.因为S =900x -15 000在区间(0,30]上为单调增函数, 故当x =30时,S 取最大值12 000元,又S =-10(x -60)2+21 000在区间(30,75]上,当x =60时,取得最大值21 000. 故每团人数为60人时,旅行社可获得最大利润.1.解函数应用问题的步骤(1)审题:数学应用问题的文字叙述长,数量关系分散且难以把握,因此,要认真读题,缜密审题,准确理解题意,明确问题的实际背景,收集整理数据信息,这是解答数学问题的基础.(2)建模:在明确了问题的实际背景和收集整理数据信息的基础上进行科学的抽象概括,将自然语言转化为数学语言,将文字语言转化为符号语言,合理引入自变量,运用已掌握的数学知识、物理知识及其他相关知识建立函数关系式(也叫目标函数),将实际问题转化为数学问题,即实际问题数学化,建立数学模型. (3)解模:利用数学的方法将得到的常规数学问题(即数学模型或目标函数)予以解答,求得结果. (4)还原:将求解数学模型所得的结果还原为实际问题的意义,回答数学应用题提出的问题. 以上过程可以用示意图表示为:模拟函数的过程可以用下面框图表示:2.函数模型的选择解题过程中选用哪种函数模型,要根据题目具体要求进行抽象和概括,灵活地选取和建立数学模型.一般来说:如果实际问题的增长特点为直线上升,则选择直线模型;若增长的特点是随着自变量的增大,函数值增大的速度越来越快(指数爆炸),则选择指数型函数模型;若增长的特点是随着自变量的增大,函数值的增大速度越来越慢,则选择对数型函数模型;如果实际问题中变量间的关系,不能用同一个关系式表示,则选择分段函数模型等.另外,常见的出租车计费问题、税收问题、商品销售等问题,通常用分段函数模型;面积问题、利润问题、产量问题常选择幂型函数模型,特别是二次函数模型;而对于利率、细胞分裂、物质衰变,则常选择指数型函数模型.1.(2015·湖北模拟)在我国大西北,某地区荒漠化土地面积每年平均比上一年增长10.4%,经过x (x ∈R ,x ≥0)年可增长到原来的y 倍,则函数y =f (x )的图象大致为 ()解:由题意可得y =(1+10.4%)x .故选D.2.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶,甲、乙两车的速度曲线分别为v 甲和v 乙,如图所示,那么对于图中给定的t 0和t 1,下列判断中一定正确的是 () A .在t 1时刻,甲车在乙车前面 B .t 1时刻后,甲车在乙车后面 C .在t 0时刻,两车的位置相同 D .t 0时刻后,乙车在甲车前面解:由图象可知,曲线v 甲比v 乙在0~t 0,0~t 1与t 轴所围成的图形面积大,则在t 0,t 1时刻,甲车均在乙车前面.故选A .3.(2017·德阳一诊)将甲桶中的a L 水缓慢注入空桶乙中,t min 后甲桶中剩余的水量符合指数衰减曲线y =ae nt .假设过5 min 后甲桶和乙桶的水量相等,若再过m min 甲桶中的水只有a4 L ,则m 的值为 ()A .5B .8C .9D .10解:因为5 min 后甲桶和乙桶的水量相等, 所以函数y =f (t )=ae nt 满足f (5)=ae 5n =12a ,可得n =15ln 12,所以f (t )=a ·⎝⎛⎭⎫12t 5, 因此,当k min 后甲桶中的水只有a4L 时,f (k )=a ·⎝⎛⎭⎫12k 5=14a ,即⎝⎛⎭⎫12k5=14, 所以k =10,由题可知m =k -5=5.故选A .4.利民某产品的年产量在150吨至250吨之间,年生产的总成本y (万元)与年产量x (吨)之间的关系可近似地表示为y =x 210-30x +4 000,则每吨的成本最低时的年产量(吨)为 ()A .240B .200C .180D .160解:依题意,得每吨的成本为y x =x 10+4 000x -30,则yx≥2x 10·4 000x-30=10, 当且仅当x 10=4 000x,即x =200时取等号,因此,当每吨成本最低时,年产量为200吨.故选B .5.(2015·北京)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程.下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是 ()A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油解:对于A 选项,从图中可以看出当乙的行驶速度不小于40 km /h 时燃油效率大于5 km /L ,A 错误.对于B 选项,由图可知甲车消耗汽油最少,B 错.对于C 选项,甲车以80 km /h 的速度行驶时的燃油效率为10 km /L ,故行驶1小时的路程为80千米,消耗8 L 汽油,C 错.对于D 选项,当最高限速为80 km /h 且速度相同时丙车的燃油效率大于乙车的燃油效率,故用丙车比用乙车更省油,D 正确.故选D .6.某地兴修水利要挖一条渠道,渠道的横截面为等腰梯形,如图所示,腰与水平线的夹角为60°,要求横截面的周长(实线部分)为定值m ,则流量(横截面的面积)最大时,渠深h = ()A.14mB.13mC.34mD.36m 解:由题知,等腰梯形的腰为233h ,周长为m ,下底为m -433h ,上底为m -433h +233h =m -233h ,得等腰梯形的面积S =12⎝⎛⎭⎫2m -633h h =-3h 2+mh =-3⎝⎛⎭⎫h -3m 62+312m 2⎝⎛⎭⎫0<h <34m ,当h =36m 时,S max =312m 2,此时流量最大.故选D . 7.A 、B 两只船分别从在东西方向上相距145 km 的甲乙两地开出.A 从甲地自东向西行驶.B 从乙地自北向南行驶,A 的速度是40 km /h ,B 的速度是16 km /h ,经过________小时,AB 间的距离最短.解:设经过x h ,A 、B 相距为y km ,则y =(145-40x )2+(16x )2⎝⎛⎭⎫0≤x ≤298, 求得函数取最小值时x 的值为258.故填258.8.(2016·北京朝阳区二模)一个容器装有细沙a cm 3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为y =ae -bt (cm 3),经过8 min 后发现容器内还有一半的沙子,再经过________ min ,容器中的沙子只有开始时的八分之一. 解:依题意有a ·e-b ×8=12a ,所以b =ln28, 所以y =a ·t e ⋅-82ln .若容器中只有开始时的八分之一,则有a ·t e ⋅-82ln =18a . 解得t =24,所以经过的时间为24-8=16 min.故填16.9.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热屋,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm)满足关系C (x )=k3x +5(0≤x ≤10),若不建隔热层,每年能源消耗费用为8万元.设f (x )为隔热层建造费用与20年的能源消耗费用之和. (1)求k 的值及f (x )的表达式;(2)隔热层修建多厚时,总费用f (x )达到最小,并求最小值. 解:(1)由已知条件得C (0)=8,则k =40,因此f (x )=6x +20C (x )=6x +8003x +5(0≤x ≤10).(2)f (x )=6x +10+8003x +5-10≥2(6x +10)·8003x +5-10=70(万元),当且仅当6x +10=8003x +5,即x =5时等号成立.所以当隔热层厚度为5 cm 时,总费用f (x )达到最小值,最小值为70万元.10.(2017·实验中学月考)某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元、0.5万元.(1)分别写出两类产品的收益与投资额的函数关系;(2)若该家庭有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大收益,其最大收益是多少万元?解:(1)设两类产品的收益与投资的函数分别为f (x )=k 1x ,g (x )=k 2x . 由已知得f (1)=18=k 1,g (1)=12=k 2,所以f (x )=18x (x ≥0),g (x )=12x (x ≥0).(2)设投资债券类产品为20-x 万元,则投资股票类产品为x 万元. 依题意得y =f (20-x )+g (x )=20-x 8+12x =-x +4x +208(0≤x ≤20). 所以x =2,即x =4时,收益最大,y max =3万元.故投资债券类产品16万元,投资股票类产品4万元时获得最大收益,为3万元.11.(2017·实验中学月考)候鸟每年都要随季节的变化而进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v (单位:m/s)与其耗氧量Q 之间的关系为v =a +b log 3Q10(其中a 、b 是实数).据统计,该种鸟类在静止时其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1 m/s. (1)求出a 、b 的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2 m /s ,则其耗氧量至少要多少个单位?解:(1)由题意可知,当这种鸟类静止时,它的速度为0 m/s ,此时耗氧量为30个单位,故有a +b log 33010=0,即a +b =0;当耗氧量为90个单位时,速度为1 m /s ,故有a +b log 39010=1,整理得a +2b =1.解方程组⎩⎪⎨⎪⎧a +b =0,a +2b =1, 得⎩⎪⎨⎪⎧a =-1,b =1.(2)由(1)知,v =-1+log 3Q 10.所以要使飞行速度不低于2 m /s ,则有v ≥2,即-1+log 3Q 10≥2,即log 3Q10≥3,解得Q ≥270.所以若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要270个单位.(2016·郑州模拟)已知某物体的温度θ(单位:摄氏度)随时间t (单位:分钟)的变化规律:θ=m ·2t +21-t(t ≥0,并且m >0).(1)如果m =2,求经过多少分钟,物体的温度为5摄氏度; (2)若物体的温度总不低于2摄氏度,求m 的取值范围. 解:(1)若m =2,则θ=2·2t +21-t =2⎝⎛⎭⎫2t +12t , 当θ=5时,2t +12t =52,令2t =x ≥1,则x +1x =52,即2x 2-5x +2=0,解得x =2或x =12(舍去),此时t =1.所以经过1分钟,物体的温度为5摄氏度. (2)物体的温度总不低于2摄氏度,即θ≥2恒成立, 亦即m ·2t +22t ≥2⇔m ≥2⎝⎛⎭⎫12t -1t 恒成立. 令12t =x ,则0<x ≤1,不等式化为m ≥2(x -x 2), 由于x -x 2≤14⎝⎛⎭⎫当x =12,即t =1时取等号,所以m ≥12. 因此,当物体的温度总不低于2摄氏度时,m 的取值范围是⎣⎡⎭⎫12,+∞. 另解:由m ·2t +22t ≥22m ≥2求解.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.函数f (x )=2x -1log 3x的定义域为 () A .(0,+∞) B.⎣⎡⎭⎫12,+∞ C.⎣⎡⎭⎫12,1D.⎣⎡⎭⎫12,1∪(1,+∞)解:由⎩⎪⎨⎪⎧2x -1≥0,x >0,log 3x ≠0,得x ≥12且x ≠1.故选D .2.下列函数中,在(0,+∞)上是增函数的是 () A .y =2 019xB .y =sin xC .y =tan xD .y =ln x 解:只有y =ln x 合要求.故选D.3.已知幂函数f (x )=k ·x α的图象过点⎝⎛⎭⎫12,14,则α-k = () A.12B .1 C.32D .2 解:k =1,⎝⎛⎭⎫12α=14α=2,所以α-k =1.故选B .4.函数y =-x 2+x +2的值域是 () A .[0,+∞) B.⎝⎛⎦⎤-∞,32 C .[0,2]D.⎣⎡⎦⎤0,32 解:由-x 2+x +2≥0⇒x ∈[-1,2],而 -12×(-1)=12∈[-1,2].当x =12时,y =94.所以y ∈⎣⎡⎦⎤0,32.故选D.5.(2016·西安模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a =()A.12 B.45C .2D .9解:f (0)=20+1=2,f (f (0))=f (2)=4+2a =4a ,解得a =2.故选C.6.(2015·西安模拟)已知a =313,b =log 1312, c =log 123,则 ()A .a >b >cB .b >c >aC .c >b >aD .b >a >c解:因为a =313>1,b =log 1312=log 32∈(0,1),c =log 123<0,所以a >b >c .故选A.7.若函数y =f (x )的图象如图所示,则函数y =-f (x +1)的图象大致为 ()解:先将y =f (x )的图象关于x 轴对称得到y =-f (x )的图象,然后再向左平移一个单位得到y = -f (x +1)的图象,根据上述步骤可知C 正确.故选C.8.(2017·全国卷Ⅰ)已知函数f (x )=ln x +ln(2-x ),则 ()A .f (x )在(0,2)单调递增B .f (x )在(0,2)单调递减C .y =f (x )的图象关于直线x =1对称D .y =f (x )的图象关于点(1,0)对称解:由题意知,f (2-x )=ln(2-x )+ln x =f (x ),所以f (x )的图象关于直线x =1对称,C 正确,A ,B ,D 错误.故选C.9.(2015·湖南模拟)若函数y =f (x )为偶函数,当x ≥0时,f (x )=⎝⎛⎭⎫12x,则满足不等式f (x )≥12的x 的取值范围为()A .(-1,1)B .[-1,1]C .(-∞,1]D .[-1,+∞)解:因为函数y =f (x )为偶函数,所以当x <0时,f (x )=f (-x )=⎝⎛⎭⎫12-x=2x .由f (x )≥12得⎩⎪⎨⎪⎧⎝⎛⎭⎫12x≥12,x ≥0或⎩⎪⎨⎪⎧2x ≥12,x <0,解得-1≤x ≤1.故选B.10.已知函数f (x )=⎩⎪⎨⎪⎧(a -3)x +5,x ≤1,2a x ,x >1是(-∞,+∞)上的减函数,则实数a 的取值范围是()A .(0,3)B .(0,3]C .(0,2)D .(0,2]解:因为f (x )为(-∞,+∞)上的减函数,所以⎩⎪⎨⎪⎧a -3<0,2a >0,(a -3)×1+5≥2a1,解得0<a ≤2.故选D.11.(2017·郑州模拟)已知函数f (x )是定义在R 上以2为周期的奇函数,当x ∈(0,1)时,有f (x )=ln11-x,则函数f (x )在x ∈(3,4)时是一个 ()A .增函数且f (x )<0B .增函数且f (x )>0C .减函数且f (x )<0D .减函数且f (x )>0解:当x ∈(0,1)时,f (x )=ln 11-x 是增函数且f (x )>0,又f (x )是奇函数,则当x ∈(-1,0)时,f (x )是增函数且f (x )<0,因为f (x )的周期为2,所以当x ∈(3,4)时,f (x )是增函数且f (x )<0.故选A . 12.已知函数f (x )满足: ①定义域为R ;②对任意x ∈R ,有f (x +2)=2f (x ); ③当x ∈[-1,1]时,f (x )=1-x 2.若函数g (x )=⎩⎪⎨⎪⎧e x (x ≤0ln x (x >0则函数y =f (x )-g (x )在区间[-5,5]上零点的个数是 ()A .7B .8C .9D .10解:由条件可作出函数y =f (x )及y =g (x )的图象如图,当x ≤0时,y =f (x )与y =e x 的图象有6个交点;当x >0时,y =f (x )与y =ln x 的图象有4个交点,共10个交点.故选D.二、填空题:本题共4小题,每小题5分,共20分.13.若已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,9-x +1,x ≤0, 则f (f (1))+f ⎝⎛⎭⎫log 312的值是________. 解:f (1)=log 21=0,所以f (f (1))=f (0)=2.因为log 312<0,所以f ⎝⎛⎭⎫log 312=21log 39-+1=4+1=5,所以f (f (1))+f ⎝⎛⎭⎫log 312=2+5=7.故填7. 14.(教材改编题)已知函数f (x )=x 2-kx -8在[1,4]上具有单调性,则实数k 的取值范围是________. 解:k 2≤1或k2≥4,得k ≤2或k ≥8.故填(-∞,2]∪[8,+∞).15.若函数f (x )=a x (a >0,a ≠1)在[-1,2]上的最大值为4,最小值为m ,且函数g (x )=(1-4m )x 在[0,+∞)上是增函数,则a =________.解:函数g (x )在[0,+∞)上为增函数,则1-4m >0,即m <14.若a >1,则函数f (x )在[-1,2]上的最小值为1a =m ,最大值为a 2=4,解得a =2,12=m ,与m <14矛盾;当0<a <1时,函数f (x )在[-1,2]上的最小值为a 2=m ,最大值为a -1=4,解得a =14,m =116<14.所以a =14.故填 14.16.(2017·湖北荆州一模)若函数f (x )=⎩⎪⎨⎪⎧log a x ,x >2,-x 2+2x -2,x ≤2 (a >0,且a ≠1)的值域是(-∞,-1],则实数a的取值范围是________.解:x ≤2时,f (x )=-x 2+2x -2=-(x -1)2-1,f (x )在(-∞,1)上递增,在(1,2]上递减,所以f (x )在(-∞,2]上的最大值是-1,又f (x )的值域是(-∞,-1],所以当x >2时,log a x ≤-1,故0<a <1,且log a 2≤-1, 所以12≤a <1.故填⎣⎡⎭⎫12,1.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)作出下列函数的图象: (1)y =sin|x |; (2)y =x +2x +3.解:(1)当x ≥0时,y =sin|x |与y =sin x 的图象完全相同,又y =sin|x |为偶函数,其图象关于y 轴对称,故作出其图象如图所示.(2)y =x +2x +3=1-1x +3,该函数图象可由函数 y =-1x 向左平移3个单位再向上平移1个单位得到,故作出其图象如图所示.18.(12分)已知y =f (x )是二次函数,且f ⎝⎛⎭⎫-32+x =f ⎝⎛⎭⎫-32-x 对x ∈R 恒成立,f ⎝⎛⎭⎫-32=49,方程f (x )=0的两实根之差的绝对值等于7.求此二次函数的解析式.解:由x ∈R ,f ⎝⎛⎭⎫-32+x =f ⎝⎛⎭⎫-32-x 知,f (x )的对称轴为x =-32.又f ⎝⎛⎭⎫-32=49,则二次函数f (x )的顶点坐标为⎝⎛⎭⎫-32,49,故设f (x )=a ⎝⎛⎭⎫x +322+49(a ≠0). 解法一:设方程f (x )=a ⎝⎛⎭⎫x +322+49=0的两根为x 1,x 2, x 1+x 2=-3,x 1x 2=94+49a ,则|x 1-x 2|=(x 1+x 2)2-4x 1x 2 =-49×4a=7, 解得a =-4,所以f (x )=-4⎝⎛⎭⎫x +322+49, 即f (x )=-4x 2-12x +40.解法二:设f (x )=0的两根为x 1,x 2,且x 1<x 2,由两实根之差的绝对值为7得x 1=-32-72=-5, x 2=-32+72=2,将x 1或x 2代入f (x )=0得a =-4.从而得到f (x )=-4x 2-12x +40. 19.(12分) 设函数f (x )=log 3(9x )·log 3(3x ),19≤x ≤9.(1)若m =log 3x ,求m 的取值范围;(2)求f (x )的最值,并给出取最值时对应的x 的值. 解:(1)因为19≤x ≤9,m =log 3x 为增函数,所以-2≤log 3x ≤2,即m 的取值范围是[-2,2]. (2)由m =log 3x 得:f (x )=log 3(9x )·log 3(3x ) =(2+log 3x )·(1+log 3x ) =(2+m )·(1+m )=⎝⎛⎭⎫m +322-14, 又因为-2≤m ≤2,所以当m =log 3x =-32,即x =39时f (x )取得最小值-14, 当m =log 3x =2,即x =9时f (x )取得最大值12.20.(12分)已知a 是正实数,函数f (x )=2ax 2+2x -3-a .如果函数y =f (x )在区间[-1,1]上有零点,求a 的取值范围.解:f (x )=2ax 2+2x -3-a 的对称轴为x =-12a .①当-12a ≤-1,即0<a ≤12时,须使⎩⎪⎨⎪⎧f (-1)≤0,f (1)≥0, 即⎩⎪⎨⎪⎧a ≤5,a ≥1,所以a 的解集为.②当-1<-12a <0,即a >12时,须使⎩⎪⎨⎪⎧f ⎝⎛⎭⎫-12a ≤0,f (1)≥0, 即⎩⎪⎨⎪⎧-12a -3-a ≤0,a ≥1,解得a ≥1,所以a 的取值范围是[1,+∞).21.(12分) 已知函数f (x )=a -1|x |.(1)求证:函数y =f (x )在(0,+∞)上是增函数.(2)若f (x )<2x 在(1,+∞)上恒成立,求实数a 的取值范围. 解:(1)证明:当x ∈(0,+∞)时,f (x )=a -1x ,设0<x 1<x 2,则x 1x 2>0,x 2-x 1>0, f (x 2)-f (x 1)=⎝⎛⎭⎫a -1x 2-⎝⎛⎭⎫a -1x 1=1x 1-1x 2=x 2-x 1x 1x 2>0, 所以f (x )在(0,+∞)上是增函数. (2)由题意a -1x <2x 在(1,+∞)上恒成立,设h (x )=2x +1x ,则a <h (x )在(1,+∞)上恒成立.任取x 1,x 2∈(1,+∞)且x 1<x 2, h (x 1)-h (x 2)=(x 1-x 2)⎝⎛⎭⎫2-1x 1x 2. 因为1<x 1<x 2,所以x 1-x 2<0,x 1x 2>1, 所以2-1x 1x 2>0,所以h (x 1)<h (x 2),所以h (x )在(1,+∞)上单调递增.故a ≤h (1)即a ≤3,所以实数a 的取值范围是(-∞,3]..(12分)(2015·安徽模拟)设函数f (x )=ka x -a -x (a >0且a ≠1)是定义域为R 的奇函数. (1)若f (1)>0,试求不等式f (x 2+2x )+f (x -4)>0的解集;(2)若f (1)=32,且函数g (x )=a 2x +a -2x -4f (x ),求函数g (x )在[1,+∞)上的最小值.解:因为f (x )是定义域为R 的奇函数,所以f (0)=0,所以k -1=0,所以k =1,f (x )=a x -a -x . (1)因为f (1)>0,所以a -1a>0.又a >0且a ≠1,所以a >1.当a >1时,y =a x 和y =-a -x 在R 上均为增函数,所以f (x )在R 上为增函数.原不等式可化为f (x 2+2x )>f (4-x ),故x 2+2x >4-x ,即x 2+3x -4>0,解得x >1或x <-4.所以不等式f (x 2+2x )+f (x -4)>0的解集为{x |x >1或x <-4}.(2)因为f (1)=32,所以a -1a =32,即2a 2-3a -2=0,解得a =2或a =-12(舍去).所以g (x )=x +2-2x -4(2x -2-x)=(2x -2-x )2-4(2x -2-x )+2.令t =h (x )=2x -2-x (x ≥1),则g (t )=t 2-4t +2.因为h (x )在[1,+∞)上为增函数(由(1)可知),所以h (x )≥h (1)=32,即t ≥32.因为g (t )=t 2-4t +2=(t -2)2-2,t ∈⎣⎡⎭⎫32,+∞,所以当t =2时,g (t )取得最小值-2,即g (x )取得最小值-2,此时x =log 2(1+2).故当x =log 2(1+2)时,函数g (x )在[1,+∞)上有最小值-2.。
函数模型及应用一.知识梳理1.解决实际问题的解题过程(1)对实际问题进行抽象概括:研究实际问题中量与量之间的关系,确定变量之间的主、被动关系,并用x、y分别表示问题中的变量;(2)建立函数模型:将变量y表示为x的函数,在中学数学内,我们建立的函数模型一般都是函数的解析式;(3)求解函数模型:根据实际问题所需要解决的目标及函数式的结构特点正确选择函数知识求得函数模型的解,并还原为实际问题的解.二、典例解析【例1】某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?【变式训练2】某集团公司在2000年斥巨资分三期兴建垃圾资源化处理工厂,如下表:如果每期的投次从第二年开始见效,且不考虑存贷款利息,设2000年以后的x年的总收益为f(x)(单位:千万元),试求f(x)的表达式,并预测到哪一年能收回全部投资款。
巩固练习 A 组1.在一定范围内,某种产品的购买量y 吨与单价x 元之间满足一次函数关系.如果购买1 000吨,每吨为800元;购买2 000吨,每吨为700元.一客户购买400吨,单价应该是( )A .820元B .840元C .860元D .880元2.2()f x x =,()2x g x =,2()log h x x =,当(4,)x ∈+∞时,三个函数增长速度比较,下列选项中正确的是( )A. ()f x >()g x >()h xB. ()g x >()f x >()h xC. ()g x >()h x >()f xD. ()f x >()h x >()g x 2.某人2003年1月1日到银行存入一年期存款a 元,若按年利率为x ,并按复利计算,到2008年1月1日可取回款( ).A. a (1+x )5元B. a (1+x )6元C. a (1+x 5)元D. a (1+x 6)元 某工厂生产总值月平均增长率为p ,则年平均增长率为().A. pB. 12pC. (1+p )12D. (1+p )12-13.用长度为24的材料围一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为( )A .3B .4C .6D .12 4.电视台播出的一档节目中有这样一道抢答题:小蜥蜴体长15 cm,体重15 g,已知小蜥蜴的体积与体长的立方成正比,问:当小蜥蜴长到体长为20 cm 时,它的体重大约是( )A.20 gB.25 gC.35 gD.40 g5.进货单价为80元的商品400个,按90元一个可以全部卖出,已知这种商品每涨价1元,其销售量就减少20个,问售价多少元时获得的利润最大?( )A .85B .90C .95D .1005.某产品的总成本y (万元)与产量x (台)之间的函数关系式是y =3 000+20x -0.1x 2,x ∈(0,240).若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量为_ _____台.6.在国内投寄平信,每封信不超过20克重付邮资80分,超过节20克重而不超过40克重付邮资160分,将每封信的应付邮资(分)表示为信重(040)x x <≤克的函数,其表达式为()f x = .7.(2010年浙江)某商家一月份至五月份累计销售额达3 860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、八月份销售总额相等.若一月至十月份销售总额至少达7 000万元,则x 的最小值是______.8.某商场宣传在节假日对顾客购物实行一定的优惠,商场规定:①如一次购物不超过200元,不予以折扣;②如一次购物超过200元,但不超过500元,按标价予以九折优惠; ③如一次购物超过500元的,其中500元给予九折优惠,超过500元的给予八五折优惠;某人两次去购物,分别付款176元和432元,如果他只去一次购买同样的商品,则应付款__ ______ 元.9.如图K3-8-1(1)是反映某条公共汽车线路收支差额(即营运所得票价收入与付出成本的差)y 与乘客量x 之间关系的图象.由于目前该条公交线路亏损,公司有关人员提出了两种调整的建议,如图K3-8-1(2)(3)所示.图K3-8-1给出以下说法:(1) 图(2)的建议是:提高成本,并提高票价;(2) 图(2)的建议是:降低成本,并保持票价不变; (3) 图(3)的建议是:提高票价,并保持成本不变; (4) 图(3)的建议是:提高票价,并降低成本. 其中所有说法正确的序号是_______.10.某商店计划投入资金20万元经销甲或乙两种商品.已知经销甲商品与乙商品所获得的利润分别为P 和Q(万元),且它们与投入资金x(万元)的关系是P=42,Q x ax (a>0).若不管资金如何投放,经销这两种商品或其中的一种商品所获得的纯利润总不小于5万元,求 a 的最小值B 组1.为了得到函数y =3×3x 的图象,可以把函数y =3x的图象( ) A .向左平移3个单位长度 B .向右平移3个单位长度 C .向左平移1个单位长度 D .向右平移1个单位长度 2.函数y =ln(1-x )的大致图象为( )3.设函数f (x )(x ∈R )满足f (-x )=f (x ),f (x +2)=f (x ),则函数y =f (x )的图象是( )A BC D4.函数f (x )=1x-x 的图象关于( )A .y 轴对称B .直线y =-xC .坐标原点对称D .直线y =x5.一般地,家庭用电量(千瓦时)与气温(℃)有一定的关系,如图2—1所示,图(1)表示某年12个月中每月的平均气温.图(2)表示某家庭在这年12个月中每个月的用电量.根据这些信息,以下关于该家庭用电量与其气温间关系的叙述中,正确的是( )A .气温最高时,用电量最多B .气温最低时,用电量最少C .当气温大于某一值时,用电量随气温增高而增加D .当气温小于某一值时,用电量随气温渐低而增加6.函数()y f x =与()y g x =的图像如下图:则函数()()y f x g x =⋅的图像可能是( )y=f(x)oyxy=g(x)o yxoyxo yxoyxo yxA B C D7.关于x 的方程|x 2-4x +3|-a =0有三个不相等的实数根,则实数a 的值是_ _. 8.已知下列曲线:以下编号为①②③④的四个方程:①x -y =0;②|x |-|y |=0;③x -|y |=0;④|x |-y =0.请按曲线A 、B 、C 、D 的顺序,依次写出与之对应的方程的编号_ _______. 9 作函数()11f x x =-的简图 10.使2log ()1x x -<+成立的x 德取值范围是 。