材料力学期末复习要点
- 格式:doc
- 大小:139.00 KB
- 文档页数:5
材料力学(一)轴向拉伸与压缩【内容提要】材料力学主要研究构件在外力作用下的变形、受力与破坏、失效的规律。
为设计既安全可靠又经济合理的构件,提供有关强度、刚度与稳定性分析的基本理论与方法。
【重点、难点】重点考察基本概念,掌握截面法求轴力、作轴力图的方法,截面上应力的计算。
【内容讲解】一、基本概念强度—-构件在外力作用下,抵抗破坏的能力,以保证在规定的使用条件下,不会发生意外的断裂或显著塑性变形.刚度-—构件在外力作用下,抵抗变形的能力,以保证在规定的使用条件下不会产生过分的变形。
稳定性--构件在外力作用下,保持原有平衡形式的能力,以保证在规定的使用条件下,不会产生失稳现象。
杆件——一个方向的尺寸远大于其它两个方向的尺寸的构件,称为杆件或简称杆。
根据轴线与横截面的特征,杆件可分为直杆与曲杆,等截面杆与变截面杆。
二、材料力学的基本假设工程实际中的构件所用的材料多种多样,为便于理论分析,根据它们的主要性质对其作如下假设。
(一)连续性假设-—假设在构件所占有的空间内均毫无空隙地充满了物质,即认为是密实的。
这样,构件内的一些几何量,力学量(如应力、位移)均可用坐标的连续函数表示,并可采用无限小的数学分析方法。
(二)均匀性假设——很设材料的力学性能与其在构件中的位置无关。
按此假设通过试样所测得的材料性能,可用于构件内的任何部位(包括单元体).(三)各向同性假设——沿各个方向均具有相同力学性能。
具有该性质的材料,称为各向同性材料。
综上所述,在材料力学中,一般将实际材料构件,看作是连续、均匀和各向同性的可变形固体。
三、外力内力与截面法(一)外力对于所研究的对象来说,其它构件和物体作用于其上的力均为外力,例如载荷与约束力.外力可分为:表面力与体积力;分布力与集中力;静载荷与动载荷等.当构件(杆件)承受一般载荷作用时,可将载荷向三个坐标平面(三个平面均通过杆的轴线,其中两个平面为形心主惯性平面)内分解,使之变为两个平面载荷和一个扭转力偶作用情况.在小变形的情况下,三个坐标平面内的力互相独立,即一个坐标平面的载荷只引起这一坐标平面内的内力分量,而不会引起另一坐标平面内的内力分量。
“材料力学”重点归纳
第一章静力学基础
掌握:静力学基本概念和定理:力、力偶、平衡力系、等效力系、合力投影定理、合力矩定理、力线平移定理、静力学的基本任务等。
重点掌握:掌握各种力系的简化和平衡方程应用。
了解材料力学的发展沿革,理解本课程的任务、内容、目的。
第二章材料力学绪论
掌握:了解材料力学的基本任务和杆件的基本变形。
重点掌握:材料力学的基本概念:弹性变形、塑性变形、破坏、强度、刚度、稳定性、内力、应力、应变等。
第三章应力分析和应变分析理论
掌握:应力状态、应力张量、应力张量不变量、空间应力圆、等效应力、八面体应力、变形位移、应变状态、应变张量、偏斜应力张量、偏斜应变张量等概念。
应力分析理论、应变分析理论。
重点掌握:应力状态、应力张量、应力张量不变量、空间应力圆、等效应力、八面体应力、变形位移、应变状态、应力分析理论。
第四章固体材料的弹性本构关系和塑性本构关系
掌握:固体材料弹性变形和塑性变形的主要特点、弹性本构关系(广义胡克定律)、主应力空间、屈服函数、常用屈服条件、常用强度理论等。
重点掌握:固体材料弹性变形和塑性变形的主要特点、弹性本构关系(广义胡克定律)、常用屈服条件和强度理论等。
第五章材料力学实验
了解和掌握金属材料单轴拉伸和压缩力学实验的原理和方法。
材料力学重点总结要点1、材料力学的任务:解决安全可靠与经济适用的矛盾。
研究对象:杆件强度:抵抗破坏的能力刚度:抵抗变形的能力稳定性:细长压杆不失稳。
2、材料力学中的物性假设连续性:物体内部的各物理量可用连续函数表示。
均匀性:构件内各处的力学性能相同。
各向同性:物体内各方向力学性能相同。
3、材力与理力的关系, 内力、应力、位移、变形、应变的概念材力与理力:平衡问题,两者相同;理力:刚体,材力:变形体。
内力:附加内力。
应指明作用位置、作用截面、作用方向、和符号规定。
应力:正应力、剪应力、一点处的应力。
应了解作用截面、作用位置(点)、作用方向、和符号规定。
正应力应变:反映杆件的变形程度变形基本形式:拉伸或压缩、剪切、扭转、弯曲。
4、物理关系、本构关系虎克定律;剪切虎克定律:适用条件:应力~应变是线性关系:材料比例极限以内。
5、材料的力学性能(拉压):一张σ-ε图,两个塑性指标δ、ψ,三个应力特征点:,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。
拉压弹性模量E,剪切弹性模量G,泊松比v,塑性材料与脆性材料的比较:变形强度抗冲击应力集中塑性材料流动、断裂变形明显拉压的基本相同较好地承受冲击、振动不敏感脆性无流动、脆断仅适用承压非常敏感6、安全系数、许用应力、工作应力、应力集中系数安全系数:大于1的系数,使用材料时确定安全性与经济性矛盾的关键。
过小,使构件安全性下降;过大,浪费材料。
许用应力:极限应力除以安全系数。
塑性材料脆性材料7、材料力学的研究方法1)所用材料的力学性能:通过实验获得。
2)对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理论应用的未来状态。
3)截面法:将内力转化成“外力”。
运用力学原理分析计算。
8、材料力学中的平面假设寻找应力的分布规律,通过对变形实验的观察、分析、推论确定理论根据。
1)拉(压)杆的平面假设实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。
材料⼒学重点及公式(期末复习)1、材料⼒学得任务:强度、刚度与稳定性;应⼒单位⾯积上得内⼒。
平均应⼒(1、1)全应⼒(1、2)正应⼒垂直于截⾯得应⼒分量,⽤符号表⽰。
切应⼒相切于截⾯得应⼒分量,⽤符号表⽰。
应⼒得量纲:线应变单位长度上得变形量,⽆量纲,其物理意义就是构件上⼀点沿某⼀⽅向变形量得⼤⼩。
外⼒偶矩传动轴所受得外⼒偶矩通常不就是直接给出,⽽就是根据轴得转速n与传递得功率P来计算。
当功率P单位为千⽡(kW),转速为n(r/min)时,外⼒偶矩为当功率P单位为马⼒(PS),转速为n(r/min)时,外⼒偶矩为拉(压)杆横截⾯上得正应⼒拉压杆件横截⾯上只有正应⼒,且为平均分布,其计算公式为 (3 -1)式中为该横截⾯得轴⼒,A为横截⾯⾯积。
正负号规定拉应⼒为正,压应⼒为负。
公式(3-1)得适⽤条件:(1)杆端外⼒得合⼒作⽤线与杆轴线重合,即只适于轴向拉(压)杆件;(2)适⽤于离杆件受⼒区域稍远处得横截⾯;(3)杆件上有孔洞或凹槽时,该处将产⽣局部应⼒集中现象,横截⾯上应⼒分布很不均匀;(4)截⾯连续变化得直杆,杆件两侧棱边得夹⾓时拉压杆件任意斜截⾯(a图)上得应⼒为平均分布,其计算公式为全应⼒ (3-2)正应⼒(3-3)切应⼒(3-4)式中为横截⾯上得应⼒。
正负号规定:由横截⾯外法线转⾄斜截⾯得外法线,逆时针转向为正,反之为负。
拉应⼒为正,压应⼒为负。
对脱离体内⼀点产⽣顺时针⼒矩得为正,反之为负。
两点结论:(1)当时,即横截⾯上,达到最⼤值,即。
当=时,即纵截⾯上,==0。
(2)当时,即与杆轴成得斜截⾯上,达到最⼤值,即1.2 拉(压)杆得应变与胡克定律(1)变形及应变杆件受到轴向拉⼒时,轴向伸长,横向缩短;受到轴向压⼒时,轴向缩短,横向伸长。
如图3-2。
图3-2轴向变形轴向线应变横向变形横向线应变正负号规定伸长为正,缩短为负。
(2)胡克定律当应⼒不超过材料得⽐例极限时,应⼒与应变成正⽐。
即(3-5)或⽤轴⼒及杆件得变形量表⽰为 (3-6)式中EA称为杆件得抗拉(压)刚度,就是表征杆件抵抗拉压弹性变形能⼒得量。
第一章 绪 论一、基本要求(1)了解构件强度、刚度和稳定性的概念,明确材料力学课程的主要任务。
(2)理解变形固体的基本假设、条件及其意义。
(3)明确内力的概念、初步掌握用截面法计算内力的方法。
(4)建立正应力、剪应力、线应变、角应变及单元体的基本概念。
(5)了解杆件变形的受力和变形特点。
二、重点与难点1.外力与内力的概念外力是指施加到构件上的外部载荷(包括支座反力)。
在外力作用下,构件内部两部分间的附加相互作用力称为内力。
内力是成对出现的,大小相等,方向相反,分别作用在构件的两部分上,只有把构件剖开,内力才“暴露”出来。
2.应力,正应力和剪应力在外力作用下,根据连续性假设,构件上任一截面的内力是连续分布的。
截面上任一点内力的密集程度(内力集度),称为该点的应力,用p 表示0lim A P dP p A dA→∆==∆ P ∆为微面积A ∆上的全内力。
一点处的全应力可以分解为两个应力分量。
垂直于截面的分量称为正应力,用符号σ表示;和截面相切的分量称为剪应力,用符号τ表示。
应力单位为Pa 。
1MPa=610Pa, 1GPa=910Pa 。
应力的量纲和压强的量纲相同,但是二者的物理概念不同,压强是单位面积上的外力,而应力是单位面积的内力。
3.截面法截面法是求内力的基本方法,它贯穿于“材料力学”课程的始终。
利用截面法求内力的四字口诀为:切、抛、代、平。
一切:在欲求内力的截面处,假想把构件切为两部分。
二抛:抛去一部分,留下一部分作为研究对象。
至于抛去哪一部分,视计算的简便与否而定。
三代:用内力代替抛去部分队保留部分的作用力。
一般地说,在空间问题中,内力有六个分量,合力的作用点为截面形心。
四平:原来结构在外力作用下处于平衡,则研究的保留部分在外力与内力共同作用也应平衡,可建立平衡方程,由已知外力求出各内力分量。
4.小变形条件在解决材料力学问题时的应用由于大多数材料在受力后变形比较小,即变形的数量远小于构件的原始尺寸。
材料力学期末复习重点第一章绪论及基本概念P1构件正常工作的要求。
P5可变形固体的三个基本假设。
第二章轴向拉伸与压缩P10截面法、轴力及轴力图例题:2-1P15最大正应力公式(2-3)例题:2-2P20 拉压杆伸长公式(2-5b)例题2-5P39强度条件(2-13)*例题2-8-2-10第三章扭转P62 扭矩及扭矩图例题3-1P67扭转最大切应力公式(3-7)P68 切应力互等定理式(3-12)P72 强度条件式(3-14)例题3-4第四章弯曲应力P100 梁的剪力和弯矩例题4-1P102剪力方程与弯矩方程4-2-4-6P109弯矩、剪力与分布荷载集度间的微分关系及其应用例题4-9P116按叠加原理作弯矩图例题4-10P123任意点处的正应力(4-5)P125最大正应力(4-7b)例题4-13P126梁的正应力强度条件式(4-9)例题4-14-4-16P132 任意点的切应力式(4-10)P133 矩形截面最大切应力式(4-11)P134 工字形截面最大切应力式(4-13)例题4-17P138切应力强度条件式(4-17)例题4-18第五章梁弯曲时的位移P159梁的挠曲性近似微分方程式(5-2b)例题5-1-5-2P162积分常数的几何意义P165按叠加原理计算梁的挠度和转角例题5-5P173梁的刚度校核式(5-11)第六章简单的超静定问题P184 超静定问题及其解法6-1节,能识别超静的次数第七章应力状态和强度理论P214任意斜截面的应力(7-1)-(7-2)式P214 应力圆P216主应力与主平面(7-3)-(7-5)式例题7-2P223 空间应力状态的最大正应力(7-6)式,最大切应力(7-7)例题7-3P226广义胡克定律(7-8)式例题7-5P234 强度理论及其相当应力第一-第四强度理论及适用条件例题7-7附录I 截面的几何性质P334组合截面的静矩(I-3)式和形心(I-4)式例题I-2P336 极惯性矩、惯性矩、惯性积和惯性半径计算例题I-3P339 移轴公式(I-10)熟练利用移轴公式计算组合截面的惯性矩例题I-5-I-6。
南通大学建工学院材料力学考点复习(个人自己参考一些资料,总结的复习考点)01 本章小结1.材料力学研究的问题是构件的强度、刚度和稳定性。
2.构成构件的材料是可变形固体。
3.对材料所作的基本假设是:均匀性假设,连续性假设及各向同性假设。
4.材料力学研究的构件主要是杆件,且是小变形杆件。
5.内力是指在外力作用下,物体内部各部分之间的相互作用;显示和确定内力可用截面法;应力是单位面积上的内力。
点应力可用正应力与剪应力表示。
6.对于构件任一点的变形,只有线变形和角变形两种基本变形。
7.杆件的四种基本变形形式是:拉伸(或压缩),剪切,扭转以及弯曲。
02-1 本章小结1.本章主要介绍轴向拉伸和压缩时的重要概念:内力、应力、变形和应变、变形能等。
轴向拉伸和压缩的应力、变形和应变的基本公式是: 正应力公式AN=σ 胡克定律EEAll σε==∆,F 胡克定律是揭示在比例极限内应力和应变的关系,它是材料力学最基本的定律之一。
平面假设:变形前后横截面保持为平面,而且仍垂直于杆件的轴线。
轴向拉伸或压缩的变形能。
2.材料的力学性能的研究是解决强度和刚度问题的一个重要方面。
对于材料力学性能的研究一般是通过实验方法,其中拉伸试验是最主要、最基本的一种试验。
低碳钢的拉伸试验是一个典型的试验。
它可得到如下试验资料和性能指标:拉伸全过程的曲线和试件破坏断口;b s σσ,—材料的强度指标; ψδ,—材料的塑性指标。
其中E —材料抵抗弹性变形能力的指标;某些合金材料的2.0σ—名义屈服极限等测定有专门拉伸试验。
3.工程中一般把材料分为塑性材料和脆性材料。
塑性材料的强度特征是屈服极限 sσ和强度极限 b σ(或 2.0σ),而脆性材料只有一个强度指标,强度极限 b σ。
4.强度计算是材料力学研究的重要问题。
轴向拉伸和压缩时,构件的强度条件:[]σσ≤=AN它是进行强度校核、选定截面尺寸和确定许可载荷的依据。
5.应通过本章初步掌握拉压超静定问题的特点及解法。
《材料力学》复习要点——参考简答题答案1、什么是变形固体?材料力学中关于变形固体的基本假设是什么?【解答】:在外力作用下,一切固体都将发生变形,故称为变形固体。
材料力学中对变形固体所作的基本假设:连续性假设:认为整个物体体积内毫无空隙地充满物质。
均匀性假设:认为物体内的任何部分,其力学性能相同。
各向同性假设:认为在物体内各个不同方向的力学性能相同。
小变形假设:认为固体在外力作用下发生的变形比原始尺寸小得很多,因此在列平衡方程求约束力或者求截面内力时,一般按构件原始尺寸计算。
2、什么是截面法?简要说明截面法的四个基本步骤。
【解答】:用一个假想截面,将受力构件分开为两个部分,取其中一部分为研究对象,将被截截面上的内力以外力的形式显示出来,根据保留部分的平衡条件,确定该截面内力大小、内力性质(轴力、剪力、扭转还是弯矩,符号的正负)的一种方法。
截面法贯穿于材料力学的始终,一定要反复练习,熟练掌握。
截面法的四个基本步骤:(1)截:在需要确定内力处用一个假想截面将杆件截为两段。
(2)取:取其中任何一段为研究对象(舍弃另一段)。
(3)代:用被截截面的内力代替舍弃部分对保留部分所产生的作用。
(4)平:根据保留部分的平衡条件,确定被截截面的内力数值大小和内力性质。
3、什么是材料的力学性能?低碳钢拉伸试验要经历哪四个阶段?该试验主要测定低碳钢的哪些力学性能指标?【解答】:材料的力学性能是指:在外力作用下材料在变形和破坏方面所表现出的各种力学指标。
如强度高低、刚度大小、塑性或脆性性能等。
低碳钢拉伸试验要经历的四个阶段是:弹性阶段、屈服阶段、强化阶段、颈缩断裂阶段。
低碳钢拉伸试验主要测定低碳钢的力学性能指标有:屈服极限、强度极限、延伸率、断面收缩率等。
4、什么是极限应力?什么是许用应力?轴向拉伸和压缩的强度条件是什么(内容、表达式)?利用这个强度条件可以解决哪三类强度问题?【解答】:材料失效时所达到的应力,称为极限应力。
材料力学阶段总结一. 材料力学(de)一些基本概念1.材料力学(de)任务:解决安全可靠与经济适用(de)矛盾. 研究对象:杆件强度:抵抗破坏(de)能力 刚度:抵抗变形(de)能力 稳定性:细长压杆不失稳.2. 材料力学中(de)物性假设连续性:物体内部(de)各物理量可用连续函数表示. 均匀性:构件内各处(de)力学性能相同. 各向同性:物体内各方向力学性能相同.3. 材力与理力(de)关系, 内力、应力、位移、变形、应变(de)概念材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体.内力:附加内力.应指明作用位置、作用截面、作用方向、和符号规定.应力:正应力、剪应力、一点处(de)应力.应了解作用截面、作用位置(点)、作用方向、和符号规定.正应力⎩⎨⎧拉应力压应力应变:反映杆件(de)变形程度⎩⎨⎧角应变线应变变形基本形式:拉伸或压缩、剪切、扭转、弯曲.4. 物理关系、本构关系 虎克定律;剪切虎克定律:⎪⎩⎪⎨⎧==∆=Gr EA Pl l E τεσ夹角的变化。
剪切虎克定律:两线段——拉伸或压缩。
拉压虎克定律:线段的适用条件:应力~应变是线性关系:材料比例极限以内. 5. 材料(de)力学性能(拉压):一张σ-ε图,两个塑性指标δ、ψ,三个应力特征点:b s p σσσ、、,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段. 拉压弹性模量E ,剪切弹性模量G ,泊松比v ,)(V EG +=12塑性材料与脆性材料(de)比较:6. 安全系数、 许用应力、工作应力、应力集中系数安全系数:大于1(de)系数,使用材料时确定安全性与经济性矛盾(de)关键.过小,使构件安全性下降;过大,浪费材料. 许用应力:极限应力除以安全系数. 塑性材料[]ssn σσ=s σσ=0脆性材料[]bbn σσ=b σσ=07. 材料力学(de)研究方法1) 所用材料(de)力学性能:通过实验获得.2)对构件(de)力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理论应用(de)未来状态.3)截面法:将内力转化成“外力”.运用力学原理分析计算.8.材料力学中(de)平面假设寻找应力(de)分布规律,通过对变形实验(de)观察、分析、推论确定理论根据.1) 拉(压)杆(de)平面假设实验:横截面各点变形相同,则内力均匀分布,即应力处处相等. 2) 圆轴扭转(de)平面假设实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度.横截面上正应力为零. 3) 纯弯曲梁(de)平面假设实验:梁横截面在变形后仍然保持为平面且垂直于梁(de)纵向纤维;正应力成线性分布规律.9 小变形和叠加原理 小变形:① 梁绕曲线(de)近似微分方程 ② 杆件变形前(de)平衡③切线位移近似表示曲线④力(de)独立作用原理叠加原理:①叠加法求内力②叠加法求变形.10 材料力学中引入和使用(de)(de)工程名称及其意义(概念)1) 荷载:恒载、活载、分布荷载、体积力,面布力,线布力,集中力,集中力偶,极限荷载.2) 单元体,应力单元体,主应力单元体.3) 名义剪应力,名义挤压力,单剪切,双剪切.4) 自由扭转,约束扭转,抗扭截面模量,剪力流.5) 纯弯曲,平面弯曲,中性层,剪切中心(弯曲中心),主应力迹线,刚架,跨度, 斜弯曲,截面核心,折算弯矩,抗弯截面模量.6) 相当应力,广义虎克定律,应力圆,极限应力圆.7) 欧拉临界力,稳定性,压杆稳定性.8)动荷载,交变应力,疲劳破坏.二. 杆件四种基本变形(de)公式及应用1. 四种基本变形:2. 四种基本变形(de)刚度,都可以写成:刚度 = 材料(de)物理常数×截面(de)几何性质 1)物理常数:某种变形引起(de)正应力:抗拉(压)弹性模量E ; 某种变形引起(de)剪应力:抗剪(扭)弹性模量G . 2)截面几何性质:拉压和剪切:变形是截面(de)平移: 取截面面积 A ; 扭转:各圆截面相对转动一角度或截面绕其形心转动:取极惯性矩ρI ;梁弯曲:各截面绕轴转动一角度:取对轴(de)惯性矩Z I . 3. 四种基本变形应力公式都可写成:应力=截面几何性质内力对扭转(de)最大应力:截面几何性质取抗扭截面模量maxρ=ρI W p对弯曲(de)最大应力:截面几何性质取抗弯截面模量max y I W ZZ =4. 四种基本变形(de)变形公式,都可写成:变形=刚度长度内力⨯因剪切变形为实用计算方法,不考虑计算变形.弯曲变形(de)曲率221dxyd x ±=ρ)(,一段长为 l (de)纯弯曲梁有: z x EI l M x l=ρ=θ)(补充与说明:1、关于“拉伸与压缩”指简单拉伸与简单压缩,即拉力或压力与杆(de)轴线重合;若外荷载作用线不与轴线重合,就成为拉(压)与弯曲(de)组合变形问题;杆(de)压缩问题,要注意它(de)长细比λ(柔度).这里(de)简单压缩是指“小柔度压缩问题”. 2、关于“剪切”实用性(de)强度计算法,作了剪应力在受剪截面上均匀分布(de)假设.要注意有不同(de)受剪截面: a.单面受剪:受剪面积是铆钉杆(de)横截面积; b.双面受剪:受剪面积有两个:考虑整体结构,受剪面积为2倍销钉截面积;运用截面法,外力一分为二,受剪面积为销钉截面积.c.圆柱面受剪:受剪面积以冲头直径d 为直径,冲板厚度 t 为高(de)圆柱面面积. 3.关于扭转表中公式只实用于圆形截面(de)直杆和空心圆轴.等直圆杆扭转(de)应力和变形计算公式可近似分析螺旋弹簧(de)应力和变形问题是应用杆件基本变形理论解决实际问题(de)很好例子. 4.关于纯弯曲纯弯曲,在梁某段剪力 Q=0 时才发生,平面假设成立.横力弯曲(剪切弯曲)可以视作剪切与纯弯曲(de)组合,因剪应力平行于截面,弯曲正应力垂直于截面,两者正交无直接联系,所以由纯弯曲推导出(de)正应力公式可以在剪切弯曲中使用.5.关于横力弯曲时梁截面上剪应力(de)计算问题为计算剪应力,作为初等理论(de)材料力学方法作了一些巧妙(de)假设和处理,在理解矩形截面梁剪应力公式时,要注意以下几点:1) 无论作用于梁上(de)是集中力还是分布力,在梁(de)宽度上都是均匀分布(de).故剪应力在宽度上不变,方向与荷载(剪力)平行.2) 分析剪应力沿梁截面高度分布变化规律时,若仅在截面内,有Q bdh h n=τ⎰)(,因 )(h τ=τ (de)函数形式未知,无法积分.但由剪应力互等定理,考虑微梁段左、右内力(de)平衡,可以得出:bI QS z Z *=τ剪应力在横截面上沿高度(de)变化规律就体现在静矩*z S 上, *z S 总是正(de).剪应力公式及其假设: a.矩形截面假设1:横截面上剪应力τ与矩形截面边界平行,与剪应力Q(de)方向一致; 假设2:横截面上同一层高上(de)剪应力相等. 剪应力公式:b I y QS y z z )()(*=τ ,⎥⎦⎤⎢⎣⎡-=22*22y y b y S Z)()( 平均ττ2323max=⋅=bh Q b. 非矩形截面积假设1: 同一层上(de)剪应力τ作用线通过这层两端边界(de)切线交点,剪应力(de)方向与剪力(de)方向.假设2:同一层上(de)剪应力在剪力Q 方向上(de)分量y τ相等.剪应力公式:z z y I y b y QS y )()()(*=τ2322*)(32)(y R y S z -=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-ℜ•=222134)(R y Q y y πτ 平均ττ34max =c.薄壁截面假设1:剪应力τ与边界平行,与剪应力谐调. 假设2:沿薄壁t,τ均匀分布. 剪应力公式:zz tI QS *=τ学会运用“剪应力流”概念确定截面上剪应力(de)方向. 三.梁(de)内力方程,内力图,挠度,转角遵守材料力学中对剪力 Q 和弯矩 M (de)符号规定.在梁(de)横截面上,总是假定内力方向与规定方向一致,从统一(de)坐标原点出发划分梁(de)区间,且把梁(de)坐标原点放在梁(de)左端(或右端),使后一段(de)弯矩方程中总包括前面各段.均布荷载 q 、剪力Q 、弯矩M 、转角θ、挠度 y 间(de)关系:由: ,M dxyd EI =22 Q dx dM =, q dx dQ = 有 )()(x q dxyd EI x Q dx dMdxy d EI ===4433设坐标原点在左端,则有:q: q dxyd EI =44, q 为常值Q : A qx dxyd EI +=33:M B Ax x q dx y d EI ++=2222 :θC Bx x A x qdx dy EI +++=2326:y D Cx x B x A x q y EI ++++=⋅2342624 其中A 、B 、C 、D 四个积分常数由边界条件确定. 例如,如图示悬臂梁:则边界条件为:430080600000lq D y lq C B M A Q l x l x x x =→=-=→=θ=→==→=====|||| 8624434ql x ql x q y EI +-=⋅EIql yx 84==截面法求内力方程:内力是梁截面位置(de)函数,内力方程是分段函数,它们以集中力偶(de)作用点,分布(de)起始、终止点为分段点;1)在集中力作用处,剪力发生突变,变化值即集中力值,而弯矩不变;2)在集中力偶作用处,剪力不变,弯矩发生突变,变化值即集中力偶值;3)剪力等于脱离梁段上外力(de)代数和.脱离体截面以外另一端,外力(de)符号同剪力符号规定,其他外力与其同向则同号,反向则异号;4)弯矩等于脱离体上(de)外力、外力偶对截面形心截面形心(de)力矩(de)代数和.外力矩及外力偶(de)符号依弯矩符号规则确定.梁内力及内力图(de)解题步骤:1)建立坐标,求约束反力;2)划分内力方程区段;3)依内力方程规律写出内力方程;4)运用分布荷载q、剪力Q、弯矩M(de)关系作内力图;关系:()()()()()()⎪⎩⎪⎨⎧+=+====⎰⎰dcdcCDCDxdxQMMxdxqQQxQdxdMxqdxdQdxMd,22规定:①荷载(de)符号规定:分布荷载集度q向上为正;②坐标轴指向规定:梁左端为原点,x轴向右为正.剪力图和弯矩图(de)规定:剪力图(de) Q轴向上为正,弯矩图(de) M轴向下为正.5)作剪力图和弯矩图:①无分布荷载(de)梁段,剪力为常数,弯矩为斜直线;Q>0,M图有正斜率(﹨);Q<0,有负斜率(/);②有分布荷载(de)梁段(设为常数),剪力图为一斜直线,弯矩图为抛物线;q<0,Q图有负斜率(﹨),M 图下凹(︶);q>0,Q图有正斜率(/),M图上凸(︵);③ Q=0(de)截面,弯矩可为极值;④集中力作用处,剪力图有突变,突变值为集中力之值,此处弯矩图(de)斜率也突变,弯矩图有尖角;⑤集中力偶作用处,剪力图无变化,弯矩图有突变,突变值为力偶之矩;⑥在剪力为零,剪力改变符号,和集中力偶作用(de)截面(包括梁固定端截面),确定最大弯矩(maxM);⑦指定截面上(de)剪力等于前一截面(de)剪力与该两截面间分布荷载图面积值(de)和;指定截面积上(de)弯矩等于前一截面(de)弯矩与该两截面间剪力图面积值(de)和.共轭梁法求梁(de)转角和挠度:要领和注意事项:1)首先根据实梁(de)支承情况,确定虚梁(de)支承情况2)绘出实梁(de)弯矩图,作为虚梁(de)分布荷载图.特别注意:实梁(de)弯矩为正时,虚分布荷载方向向上;反之,则向下.3)虚分布荷载()x q (de)单位与实梁弯矩()xM单位相同()mKN⋅若为,虚剪力(de)单位则为2mKN⋅,虚弯矩(de)单位是3mKN⋅4)由于实梁弯矩图多为三角形、矩形、二次抛物线和三次抛物线等.计算时需要这些图形(de)面积和形心位置.叠加法求梁(de)转角和挠度:各荷载对梁(de)变形(de)影响是独立(de).当梁同时受n 种荷载作用时,任一截面(de)转角和挠度可根据线性关系(de)叠加原理,等于荷载单独作用时该截面(de)转角或挠度(de)代数和.四. 应力状态分析 1.单向拉伸和压缩应力状态划分为单向、二向和三向应力状态.是根据一点(de)三个主应力(de)情况而确定(de). 如:x σ=σ1,032==σσ 单向拉伸有:EXX σε=,x z Y v εεε-==主应力只有x σ=σ1,但就应变,三个方向都存在.若沿 α 和 2π+α 取出单元体,则在四个截面上(de)应力为: ⎪⎪⎩⎪⎪⎨⎧ασ-=τασ=σασ=τασ=σπ+απ+ααα22222222Sin Sin Sin Cos x x x x ,, 看起来似乎为二向应力状态,其实是单向应力状态.2.二向应力状态. 有三种具体情况需注意1)已知两个主应力(de)大小和方向,求指定截面上(de)应力⎪⎪⎩⎪⎪⎨⎧ασ-σ=τασ-σ+σ+σ=σαα22222212121Sin Cos由任意互相垂直截面上(de)应力,求另一任意斜截面上(de)应力⎪⎪⎩⎪⎪⎨⎧ατ+ασ-σ=τατ-ασ-σ+σ+σ=σαα2222222Cos Sin Sin Cos x y xx yx Y x由任意互相垂直截面上(de)应力,求这一点(de)主应力和主方向⎪⎪⎩⎪⎪⎨⎧σ-στ-=ατ-σ-σ±σ+σ=⎭⎬⎫σσyx xxy x y x tg 222202221)((角度 α 和 0α 均以逆时针转动为正)2) 二向应力状态(de)应力圆 应力圆在分析中(de)应用:a) 应力圆上(de)点与单元体(de)截面及其上应力一一对应;b) 应力圆直径两端所在(de)点对应单元体(de)两个相互垂直(de)面; c)应力圆上(de)两点所夹圆心角(锐角)是应力单元对应截面外法线间夹角(de)两倍2;d) 应力圆与正应力轴(de)两交点对应单元体两主应力;e)应力圆中过圆心且平行剪应力轴而交于应力圆(de)两点为最大、最小剪应力及其作用面.极点法:确定主应力及最大(小)剪应力(de)方向和作用面方向.3) 三方向应力状态,三向应力圆,一点(de)最大应力(最大正应力、最大剪应力)广义虎克定律:弹性体(de)一个特点是,当它在某一方向受拉时,与它垂直(de)另外方向就会收缩.反之,沿一个方向缩短,另外两个方向就拉长. 主轴方向:[]()[]()[]⎪⎪⎪⎩⎪⎪⎪⎨⎧σ+σ-σ=εσ+σ-σ=εσ+σ-σ=ε213313223211111v E v E v E )( 或()()()()[]()()()()[]()()()()[]⎪⎪⎪⎩⎪⎪⎪⎨⎧ε+ε+ε+-+=σε+ε+ε--+=σε+ε+ε--+=σ213313223211121112111211v v v V E v v v v E v v v v E非主轴方向:()[]()[]()[]⎪⎪⎪⎩⎪⎪⎪⎨⎧σ+σ-σ=εσ+σ-σ=εσ+σ-σ=εy x z z x z y y z y x x v E v E v E 111体积应变:()32132121σσσεεε++-=++Ev五. 强度理论1.计算公式.强度理论可以写成如下统一形式:[]σσ≤r其中:r σ:相当应力,由三个主应力根据各强度理论按一定形式组合而成.[]σ:许用应力,[]nσσ=,0σ:单向拉伸时(de)极限应力,n :安全系数.1)最大拉应力理论(第一强度理论)11σ=σr , 一般:[]nbσσ=2) 最大伸长线应变理论(第二强度理论)()3212σσσσ+-=v r ,一般:[]nbσσ=3) 最大剪应力理论(第三强度理论)313σσσ+=r , 一般:[]nsσσ=4) 形状改变比能理论(第四强度理论)()()()[]213232221421σσσσσσσ-+-+-=r , 一般:[]nsσσ=5) 莫尔强度理论[][]31σσσ-σ=σ-+M , []n+=σσ, 0+σ:材料抗拉极限应力强度理论(de)选用:1)一般,脆性材料应采用第一和第二强度理论;塑性材料应采用第三和第四强度理论.2)对于抗拉和抗压强度不同(de)材料,可采用最大拉应力理论3)三向拉应力接近相等时,宜采用最大拉应力理论;4)三向压应力接近相等时,宜应用第三或第四强度理论.六.分析组合形变(de)要领材料服从虎克定律且杆件形变很小,则各基本形变在杆件内引起(de)应力和形变可以进行叠加,即叠加原理或力作用(de)独立性原理.分析计算组合变形问题(de)要领是分与合:分:即将同时作用(de)几组荷载或几种形变分解成若干种基本荷载与基本形变,分别计算应力和位移.合:即将各基本变形引起(de)应力和位移叠加,一般是几何和.分与合过程中发现(de)概念性或规律性(de)东西要概念清楚、牢记.斜弯曲:平面弯曲时,梁(de)挠曲线是荷载平面内(de)一条曲线,故称平面弯曲;斜弯曲时,梁(de)挠曲线不在荷载平面内,所以称斜弯曲.斜弯曲时几个角度间(de)关系要清楚:ϕ力作用角(力作用平面):α斜弯曲中性轴(de)倾角:斜弯曲挠曲线平面(de)倾角:θϕ=αtg I I tg y zϕ=θtg I I tg yzθ=α∴即:挠度方向垂直于中性轴一般,α≠ϕθ≠ϕ或即:挠曲线平面与荷载平面不重合.强度刚度计算公式:[]σ≤⎪⎪⎭⎫ ⎝⎛ϕ+ϕ=σsin cos max max c z zW W W M 22z y f f f +=ϕ==cos zz y y EI pl EI l P f 3333ϕ==sin yy z z EI pl EI l P f 3333拉(压)与弯曲(de)组合:拉(压)与弯曲组合,中性轴一般不再通过形心,截面上有拉应力和压应力之区别偏心拉压问题,有时要求截面上下只有一种应力,这时载荷(de)作用中心与截面形心不能差得太远,而只能作用在一个较小(de)范围内这个范围称为截面(de)核心.强度计算公式及截面核心(de)求解:[]σ≤±=σzW M A N max minmax012020=++yp zp iz z iy y⎪⎪⎩⎪⎪⎨⎧-=-=pyzpz y z i a y i a 22扭转与弯曲(de)组合形变:机械工程中常见(de)一种杆件组合形变,故常为圆轴. 分析步骤:根据杆件(de)受力情况分析出扭矩和弯矩和剪力.找出危险截面:即扭矩和弯矩均较大(de)截面.由扭转和弯曲形变(de)特点,危险点在轴(de)表面.剪力产生(de)剪应力一般相对较小而且在中性轴上(弯曲正应力为零).一般可不考虑剪力(de)作用.弯扭组合一般为复杂应力状态,应采用合适(de)强度理论作强度分析,强度计算公式:[]σ≤τ+σ=σ2234r[]σ≤⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛=σ2234P T r W M A P[]σ≤τ+σ=σ2243r[]σ≤⎪⎪⎭⎫⎝⎛+⎪⎭⎫⎝⎛=σ2243PT r W M A P 扭转与拉压(de)组合:杆件内最大正应力与最大剪应力一般不在横截面或纵截面上,应选用适当强度理论作强度分析.强度计算公式[]σ≤+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=τ+σ=σ22222231244T T r M M WW M W M[]σ≤+=τ+σ=σ2222475013T r M M W.七.超静定问题:总结:分析步骤关键点:变形协调条件—力力—简单超静定梁问题拉压压杆的超静定问⎪⎭⎪⎬⎫求解简单超静定梁主要有三个步骤:1) 解得超静定梁(de)多余约束而以其反力代替;2) 求解原多余约束处由已知荷载及“多余”约束反力产生(de)变形; 3)由原多余支座处找出变形协调条件,重立补充方程.能量法求超静定问题:⎰⨯=ldx U 022刚度内力⎰⎰⎰⎰A +I M +EI M +EA N =ρτl l l ldx G kQ dx G dx dx U 002202022222卡氏第一定理:应变能对某作用力作用点上该力作用方向上(de)位移(de)偏导数等于该作用力,即:i iP U=δ∂∂注1:卡氏第一定理也适用于非线性弹性体; 注2:应变能必须用诸荷载作用点(de)位移来表示.卡氏第二定理:线弹性系统(de)应变能对某集中荷载(de)偏导数等于该荷载作用点上沿该荷载方向上(de)位移,即i iP Uδ=∂∂*若系统为线性体,则:U U=*注1: 卡氏第二定理仅适用于线弹性系统;卡氏第二定理(de)应变能须用独立荷载表示.注2: 用卡氏定理计算,若得正号,表示位移与荷载同向;若得负号,表示位移与荷载反向.计算(de)正负与坐标系无关.八.压杆稳定性(de)主要概念压杆失稳破坏时横截面上(de)正应力小于屈服极限(或强度极限),甚至小于比例极限.即失稳破坏与强度不足(de)破坏是两种性质完全不同(de)破坏.临界力是压杆固有特性,与材料(de)物性有关(主要是E),主要与压杆截面(de)形状和尺寸,杆(de)长度,杆(de)支承情况密切相关.计算临界力要注意两个主惯性平面内惯矩I和长度系数μ(de)对应.压杆(de)长细比或柔度表达了欧拉公式(de)运用范围.细长杆(大柔度杆)运用欧拉公式判定杆(de)稳定性,短压杆(小柔度杆)只发生强度破坏而一般不会发生失稳破坏;中长杆(中柔度杆)既有强度破坏又有较明显失稳现象,通常根据实验数据处理这类问题,直线经验公式是最简单实用(de)一种.折剪系数ψ 是柔度 λ (de)函数,这是因为柔度不同,临界应力也不同.且柔度不同,安全系数也不同.压杆稳定性(de)计算公式:欧拉公式及ψ系数法(略)九. 动荷载、交变应力及疲劳强度 1.动荷载分析(de)基本原理和基本方法:1)动静法,其依据是达朗贝尔原理.这个方法把动荷(de)问题转化为静荷(de)问题.2) 能量分析法,其依据是能量守恒原理.这个方法为分析复杂(de)冲击问题提供了简略(de)计算手段.在运用此法分析计算实际工程问题时应注意回到其基本假设逐项进行考察与分析,否则有时将得出不合理(de)结果.构件作等加速运动或等角速转动时(de)动载荷系d k 为:stdd k σσ=这个式子是动荷系数(de)定义式,它给出了 d k (de)内涵和外延. d k (de)计算式,则要根据构件(de)具体运动方式,经分析推导而定.构件受冲击时(de)冲击动荷系数 d k 为:stdst d d k ∆∆σσ==这个式子是冲击动荷系数(de)定义式,其计算式要根据具体(de)冲击形式经分析推导而定.两个d k 中包含丰富(de)内容.它们不仅能给出动(de)量与静(de)量之间(de)相互关系,而且包含了影响动载荷和动应力(de)主要因素,从而为寻求降低动载荷对构件(de)不利影响(de)方法提供了思路和依据.2.交变应力与疲劳失效基本概念:应力循环,循环周期,最大、最小循环应力,循环特征(应力比),持久极限,条件持久极限,应力集中系数,构件(de)尺寸系数,表面质量系数,持久极限曲线等.应力寿命曲线:表示一定循环特征下标准试件(de)疲劳强度与疲劳寿命之间关系(de)曲线,称应力寿命曲线,也称S —N 曲线:持久极限曲线:构件(de)工作安全系数:m a r k n σψ+σβεσ=σσ=σσσ-σ1max构件(de)疲劳强度条件为:nn ≥σ十.平面图形(de)几何性质:意义总结:计算公式、物理心主惯矩及其计算公式惯性主轴、主惯矩、形惯矩、惯积的转轴公式公式惯矩、惯积的平行移轴性积及其求解惯性矩、极惯性矩、惯静矩、形心及其求解⎪⎪⎪⎭⎪⎪⎪⎬⎫1.静矩:平面图形面积对某坐标轴(de)一次矩.定义式:⎰=Ay zdA S ,⎰=Az ydA S量纲为长度(de)三次方.2. 惯性矩:平面图形对某坐标轴(de)二次矩.⎰=Ay dA z I 2,⎰=Az dA y I 2量纲为长度(de)四次方,恒为正.相应定义:惯性半径AI i y y =,AI i zz=为图形对y 轴和对 z轴(de)惯性半径.3. 极惯性矩:⎰=Ap dA I 2ρ因为222zy +=ρ所以极惯性矩与(轴)惯性矩有关系:()z y Ap I I dA z y I +=+=⎰224. 惯性积:⎰=Ayz yzdA I定义为图形对一对正交轴y 、z轴(de)惯性积.量纲是长度(de)四次方. yz I 可能为正,为负或为零. 5. 平行移轴公式⎪⎩⎪⎨⎧+=+=+=abA II A b I I A a I I C C CC z y yzz z y y 226. 转轴公式:αα2sin 2cos 22211yz zy zy Ay I I I I I dA z I ---+==⎰αα2sin 2cos 221yz zy zy z I I I I I I +--+=αα2cos 2sin 211yz zy z y I I I I +-=7. 主惯性矩(de)计算公式:()2242120yzz y z y y I I I I I I +-++=()2242120yzz y zy z I I II I I +--+=截面图形(de)几何性质都是对确定(de)坐标系而言(de),通过任意一点都有主轴.在强度、刚度和稳定性研究中均要进行形心主惯性矩(de)计算.。
材料力学期末复习总结材料力学是研究材料在外力作用下的变形与破坏行为的学科。
它是工程力学的一个重要分支,是工程技术领域中不可或缺的一门专业课程。
期末考试作为对学生掌握教材知识的一次综合性评估,理解材料力学的基本原理和方法是非常重要的。
以下是材料力学期末复习的总结,希望对大家复习备考有所帮助。
第一部分:弹性力学1.弹性力学基本概念弹性力学是研究物体在外力作用下发生弹性变形的学问。
弹性变形是指物体在受力作用下会发生形变,但在去除外力后又能恢复到原来的形状和大小。
(比如弹簧的拉伸和恢复、弹性材料的压缩和回弹等)2.基本假设弹性力学的基本假设有两个:胡克定律和平面应力假设。
胡克定律:弹性变形与应力成正比,即应力应变具有直线关系。
胡克定律可以用Hooke's Law表示:σ=Eε,其中σ为应力,E为弹性模量,ε为应变。
平面应力假设:在材料中,只发生一个平面上的应力。
3.弹性常数弹性常数是用来描述材料对外力作用下的响应情况的参数。
弹性常数有三个:弹性模量(Young's modulus),剪切模量(Shear modulus)和泊松比(Poisson's ratio)。
弹性模量描述材料受拉伸或压缩力作用下的应力应变关系,即E=σ/ε。
剪切模量描述材料受剪切力作用下的应力应变关系,即G=τ/γ。
泊松比描述材料在拉伸或压缩时沿垂直方向的应变与沿拉伸或压缩方向的应变之比,即ν=-ε_z/ε_x。
4.弹性体力学方程弹性体力学方程包括平衡方程、应力-应变关系和互斥条件。
平衡方程:ΣFx=0,ΣFy=0,ΣFz=0,ΣMx=0,ΣMy=0,ΣMz=0。
应力-应变关系:σ_xx=E(ε_xx - νε_yy - νε_zz),σ_yy=E(ε_yy - νε_xx - νε_zz),σ_zz=E(ε_zz - νε_xx -νε_yy)。
互斥条件:γ_xy=Gγ_xy,γ_yx=Gγ_yx,γ_xz=Gγ_xz,γ_zx=Gγ_zx,γ_yz=Gγ_yz,γ_zy=Gγ_zy。
材料力学复习要点一、 固体力学的基本概念、材料的力学性能、应力、应变关系(广义胡克定律)、强度理论、应力应变状态(主应力、主方向、主平面、最大剪应力、主应变、主方向、最大正应变)二、 杆件分析1、 杆件的内力轴力、扭矩、剪力、弯矩内力的符号规定用截面法求内力利用内力荷载之间的微积分关系(()()dx x dM x Q =、()()dx x dQ x q =)画出杆件结构的内力图杆件的危险截面的确定(第一个层次)2、 杆件的应力(强度)A P N =σ (拉压)⎪⎪⎭⎫ ⎝⎛==P P W T I T max τρτ(上述公式的推导过程 )(扭转) z I My =σz W M =max σ(上述公式的推导过程 )(弯曲)*注意中性轴是对称轴和非对称轴的区别危险面上的正应力和切应力的计算Z Z bI QS *=τ A Q k =max τ记住k 值,且最大切应力总是出现在中性层上杆的危险点的确定(第二个层次)3、 杆件的变形(刚度)EA Nl l dx EA N l l =∆⇒=∆⎰0(等截面的二力杆) l l ∆=ε P l P GI Tl dx GI T =⇒=⎰ϕϕ0 l ϕθ= (等截面且扭矩为常数)梁的挠度v v v v v '''''''''',,,,,θ用积分法和叠加法求梁的挠度4、超静定问题拉压、扭转、弯曲超静定问题5、 组合变形:拉、弯;拉、弯、扭;斜弯曲(圆轴不存在斜弯曲)的应力分析,变形分析,单元体的描述,主应力的求解及相当应力的计算和四个常用强度准则的应用6、杆件横截面的几何性质、平行移轴公式等 7、 杆件稳定性问题(压杆稳定)?=cr F ?=cr σs P λλλ,,大、中、小柔度杆的分类计算及其用安全系数法的强度校核三、 应力、强度理论???2tan ?2tan ????max ,==='=====τσααγετσααααj i 强度理论?)4,3,2,1(==i eqi σ第三、第四强度理论在拉弯扭及弯扭组合变形形式下的具体应用。
材料力学期末复习材料力学是材料科学与工程中的一门重要课程,是研究物质的内在性质和外部力作用下的力学行为的一门学科。
本篇文章将围绕材料力学的基本概念、应力应变关系、弹性力学、塑性力学等内容进行复习和总结。
一、基本概念与应力应变关系1.应力与应变:应力是指物体内部单位面积上的力,通常用σ表示,应变是物体在受力作用下产生的形变,通常用ε表示。
2.线弹性与面弹性:线弹性是指材料在受力下产生的形变与受力成正比,面弹性是指材料在受力下产生的形变与受力成正比,但仅限于弹性区域。
3.胡克定律:弹性力学中,材料的应力与应变之间存在线性关系,即胡克定律,可以用数学表达为σ=Eε,其中E为弹性模量。
4.拉伸与压缩:拉伸是指物体在外力作用下呈现线向延长的形变,压缩是指物体在外力作用下呈现线向缩短的形变。
二、弹性力学1.杨氏模量:杨氏模量是一个衡量材料抗拉强度和刚性的物理量,可以表示为E=σ/ε。
2.泊松比:泊松比是描述材料在拉伸或压缩过程中横向收缩或伸长程度的物理量,可以用v表示,其计算公式为v=ε横向/ε纵向。
3.弹性极限:材料的弹性极限是指在一定温度下,材料仍然可以恢复原状的最大应力值。
4.弹性延伸量和弹性压缩量:弹性延伸量和弹性压缩量是指材料受到拉伸或压缩时,在弹性变形阶段产生的形变量。
三、塑性力学1.破坏应变:在材料的塑性变形中,当应力超过一定临界值时,材料将发生不可逆的塑性形变,这一临界值称为破坏应变。
2.屈服点和屈服应力:屈服点是指材料开始发生塑性变形的那个点,屈服应力是指达到屈服点时的应力值。
3.塑性延伸量和塑性压缩量:塑性延伸量和塑性压缩量是指材料在塑性变形过程中产生的不可逆形变量。
4.强度和刚度:强度是指材料抵抗变形和破坏的能力,刚度是指材料抵抗变形的能力。
综上所述,材料力学是材料科学与工程中的一门重要课程,涉及到材料的基本概念、应力应变关系、弹性力学和塑性力学等内容。
在复习过程中,我们应该重点掌握材料的应力应变关系、弹性力学与塑性力学的基本原理和应用,以及材料的强度和刚度等知识点。
第一章绪论§1.1 材料力学的任务二、基本概念1、构件:工程结构或机械的每一组成部分。
(例如:行车结构中的横梁、吊索等)理论力学—研究刚体,研究力与运动的关系。
材料力学—研究变形体,研究力与变形的关系。
2、变形:在外力作用下,固体内各点相对位置的改变。
(宏观上看就是物体尺寸和形状的改变)弹性变形—随外力解除而消失塑性变形(残余变形)—外力解除后不能消失刚度:在载荷作用下,构件抵抗变形的能力3、内力:构件内由于发生变形而产生的相互作用力。
(内力随外力的增大而增大)强度:在载荷作用下,构件抵抗破坏的能力。
4、稳定性:在载荷作用下,构件保持原有平衡状态的能力。
强度、刚度、稳定性是衡量构件承载能力的三个方面,材料力学就是研究构件承载能力的一门科学。
三、材料力学的任务材料力学的任务就是在满足强度、刚度和稳定性的要求下,为设计既经济又安全的构件,提供必要的理论基础和计算方法若:构件横截面尺寸不足或形状不合理,或材料选用不当—不满足上述要求,不能保证安全工作.若:不恰当地加大横截面尺寸或选用优质材料—增加成本,造成浪费研究构件的强度、刚度和稳定性,还需要了解材料的力学性能。
因此在进行理论分析的基础上,实验研究是完成材料力学的任务所必需的途径和手段。
四、材料力学的研究对象构件的分类:杆件、板壳*、块体*材料力学主要研究杆件﹜直杆——轴线为直线的杆曲杆——轴线为曲线的杆等截面杆——横截面的大小形状不变的杆变截面杆——横截面的大小或形状变化的杆等截面直杆——等直杆§1.2 变形固体的基本假设在外力作用下,一切固体都将发生变形,故称为变形固体。
在材料力学中,对变形固体作如下假设:1、连续性假设:认为整个物体体积内毫无空隙地充满物质灰口铸铁的显微组织球墨铸铁的显微组织22、均匀性假设:认为物体内的任何部分,其力学性能相同普通钢材的显微组织 优质钢材的显微组织3 4如右图,δ不计。
计算得到很大的简化。
第一章 绪论
1、 构件能够正常工作的性能要求:
1) 强度要求:指构件有足够的抵抗破坏的能力;
2) 刚度要求:指构件有足够的抵抗变形的能力;
3) 稳定性要求:指构件有足够的保持原有平衡形态的能力。
2、 变形固体的基本假设:
连续性假设;均匀性假设;各向同性假设
3、 截面法的基本步骤:截、留、平
4、 应变:线应变和切应变(角应变)
5、 杆件变形的基本形式:轴向拉伸或压缩、剪切、扭转、弯曲
第二章 拉压和剪切
1、 内力、应力计算及轴力图绘制
2、 低碳钢拉伸时的力学性能
弹性阶段、屈服阶段、强化阶段、局部变形阶段、伸长率和断面收缩率、卸载定律及冷作硬化
3、 轴向拉压的强度条件:[]N F A σσ=
≤ 4、 轴向拉压的变形:N F l l EA
∆=
5、 拉压静不定问题:
解题步骤:
1) 静力平衡方程 2变形协调方程 3物力方程 4将物力方程代入变形协调方程,得补充方程 5联立求解静力平衡方程和补充方程,得结果。
6、 剪切和挤压
课后习题:2-1、2-12、2-45
第三章 扭转、
1、 扭矩的计算和扭矩图的绘制
2、 切应力互等定理
3、 切应变:r l
ϕγ= 4、 剪切胡克定律:G τγ=
5、 横截面上距圆心为ρ的任意一点的切应力:p T I ρτ=,最大切应力:max p t
TR T I W τ== 6、 实心圆截面:432p D I π=
316t D W π= 空心圆截面:()()4
44413232p D I D d ππα=-=- ,()()3
444
11616t D W D d d D π
π=-=- 7、 扭转强度条件:[]max max t T W ττ=
≤ 8、 相对扭转角:1n i i i p Tl GI ϕ==∑ 单位长度扭转角:'p
d T dx GI ϕϕ== 9、 扭转刚度条件:[]max max ''p T GI ϕϕ=
≤ 课后习题:3-2、单元测试:6、7
第四章 弯曲内力
1、 弯曲内力的计算
2、 剪力图和弯矩图的绘制
课后习题:4-1、4-4
第五章:弯曲应力
1、纯弯曲时正应力的计算公式:z
My I σ= 2、横力弯曲最大正应力:max max max max z M y M I W
σ== 3、抗弯截面系数: 矩形:26bh W = 实心圆:332
d W π= 4、弯曲的强度条件:[]max max M W
σσ=≤ 5、矩形截面梁弯曲切应力:*S z z F S I b τ= 工字形截面梁弯曲切应力:*0
S z z F S I b τ= 6、提高弯曲强度的措施:
1)合理安排梁的受力情况:
a :合理布置梁的支座
b :合理布置载荷
2)合理设计梁的截面
a :截面放置方式
b :截面的形状的不同
课后习题:5-2、5-3、5-4
第六章 弯曲变形
1、挠曲线的近似微分方程:22d w M dx EI
= 2、积分法求变形的常见边界条件:
1)固定端:挠度和转角都为零 2)铰支座:挠度等于零
3、连续条件:在挠曲线上任意一点,有唯一的挠度和转角
4、弯曲变形的刚度条件:[]
[]max max ||||w w θθ≤≤
5、用叠加法求弯曲变形:
熟记悬臂梁、简支梁受单个载荷时的挠度和转角;尤其悬臂梁自由端的挠度和转角。
6、提高弯曲刚度的措施
1)改善结构形式,减小弯矩的数值;2)选择合理的截面形状
课后复习题:6-1、6-4、6-10
第七章 应力和应变分析 强度理论
1、基本概念:
1)主平面2)主应力 3)单向应力状态 4)二向或平面应力状态 5)三向或空间应力状态
2、二向应力状态分析——解析法
1
)极值正应力:max min 2x y σσσσ+⎫=±⎬⎭ 2)主平面确定:02tan 2xy
x y τασσ=--
3
)极值切应力:max min ττ⎫=⎬⎭ 4)主平面确定:1tan 22x y xy
σσατ-= 3、二向应力状态分析——图解法
应力圆的绘制,注意应力圆与单元体的对照:包括半径,极值应力,方向角
3、 广义胡克定律()()()111,,x x y z y y z x z z x y xy yz zx xy yz zx E E E G G G
εσμσσεσμσσεσμσστττγγγ⎫⎡=
-+⎪⎣⎪⎪⎡=-+⎬⎣⎪⎪⎡=-+⎪⎣⎭=
== 4、 四种强度理论 1) 最大拉应力理论:适用脆性材料的拉伸、扭转 最大伸长线应变: 最大切应力理论:
2) 畸变能密度理论
适用范围:铸铁,石料,混凝土,玻璃等脆性材料,通常以断裂的形式失效,宜采用第一和第二强度理论; 碳钢,铜,铝等塑性材料,通常以屈服的形式失效,宜采用第三和第四强度理论。
相当应力:()
11
21233134r r r r σσσσμσσσσσσ==-+=-=
课后复习题:7-3,7-4,7-5,7-7,7-18
第八章 组合变形
1、组合变形:构件同时发生两种或两种以上的基本变形
2、组合变形的强度计算方法:
a :将外力简化成符合各基本变形的外力作用条件下的静力等效力系。
b :由各基本变形的内力图及应力变化规律确定构件危险点的位置。
c :计算各基本变形下危险点的应力,并将同类应力进行叠加。
d :由危险点的应力状态,建立强度条件。
3、轴向拉压和弯曲的组合 强度条件:[]max max max ||y N z y z
M F M A W W σσ=++≤ 4、扭转和弯曲组合(只考虑圆截面杆)
强度条件:
[]σ≤
[]σ
[]σ≤
[]σ。