Matlab软件与基础数学实验程序(部分)
- 格式:doc
- 大小:1.11 MB
- 文档页数:21
程序设计实验报告(matlab)实验一: 程序设计基础实验目的:初步掌握机器人编程语言Matlab。
实验内容:运用Matlab进行简单的程序设计。
实验方法:基于Matlab环境下的简单程序设计。
实验结果:成功掌握简单的程序设计和Matlab基本编程语法。
实验二:多项式拟合与插值实验目的:学习多项式拟合和插值的方法,并能进行相关计算。
实验内容:在Matlab环境下进行多项式拟合和插值的计算。
实验方法:结合Matlab的插值工具箱,进行相关的计算。
实验结果:深入理解多项式拟合和插值的实现原理,成功掌握Matlab的插值工具箱。
实验三:最小二乘法实验目的:了解最小二乘法的基本原理和算法,并能够通过Matlab进行计算。
实验内容:利用Matlab进行最小二乘法计算。
实验方法:基于Matlab的线性代数计算库,进行最小二乘法的计算。
实验结果:成功掌握最小二乘法的计算方法,并了解其在实际应用中的作用。
实验六:常微分方程实验目的:了解ODE的基本概念和解法,并通过Matlab进行计算。
实验内容:利用Matlab求解ODE的一阶微分方程组、变系数ODE、高阶ODE等问题。
实验方法:基于Matlab的ODE工具箱,进行ODE求解。
实验结果:深入理解ODE的基本概念和解法,掌握多种ODE求解方法,熟练掌握Matlab的ODE求解工具箱的使用方法。
总结在Matlab环境下进行程序设计实验,使我对Matlab有了更深刻的认识和了解,也使我对计算机科学在实践中的应用有了更加深入的了解。
通过这些实验的学习,我能够灵活应用Matlab进行各种计算和数值分析,同时也能够深入理解相关的数学原理和算法。
这些知识和技能对我未来的学习和工作都将有着重要的帮助。
数学实验MATLAB版课程设计选题背景数学实验是数学教育中不可或缺的一部分。
随着科技的发展,各类软件工具也逐渐进入了数学实验领域。
MATLAB作为一款广泛应用于科技领域的数学计算软件,被越来越多的教师和学生所使用。
本课程设计旨在利用MATLAB软件,进行一系列有趣且具有实际意义的数学实验,以提高学生对数学的兴趣和实际应用能力。
选题内容本课程设计共包含以下三个实验项目:实验一:数学模型的建立与求解本实验旨在让学生了解数学模型的概念和建立方法,并通过MATLAB软件进行模型的求解。
具体步骤如下:1.学生自主选择一个实际问题,如某产品销售量的预测、某城市的交通流量分析等,并对问题进行分析,确定所需变量和关系。
2.学生利用所学知识建立相应的数学模型,并用MATLAB进行求解。
3.学生根据实际情况,对模型和求解结果进行分析和评价。
实验二:微积分理论的应用本实验旨在让学生了解微积分的基本理论和应用,以及MATLAB软件在微积分计算中的作用。
具体步骤如下:1.学生自主选择一个数学问题,如函数求极值、曲线积分计算等,并对问题进行分析。
2.学生利用所学知识,通过MATLAB软件进行计算和绘图,并对结果进行分析和评价。
实验三:离散数学的应用本实验旨在让学生了解离散数学的基本知识和应用,在MATLAB软件中实现离散数学的计算。
具体步骤如下:1.学生自主选择一个数学问题,如概率统计分析、图论问题等,并对问题进行分析。
2.学生利用所学知识,通过MATLAB软件进行计算和可视化,并对结果进行分析和评价。
实验要求1.学生需在规定时间内完成实验报告的撰写,并按要求提交。
2.学生需在实验前自行学习相关知识,具备独立思考和解决问题的能力。
3.学生需积极合作,认真对待实验和实验报告的撰写。
实验评估本课程设计采用综合评估方式,主要考虑以下四个方面:1.实验报告的撰写质量,包括实验目的、原理、步骤、结果和分析等。
2.实验过程中的表现,包括合作精神、独立思考能力、问题解决能力等。
数学实验报告院系:西安交通大学软件学院软件工程系;班级:软件11;项目:MATLAB软件与基础数学实验;指导教师:张芳;日期:2012年6月11日星期一;学生姓名:贺翔;学号:2111601006;题目【一】在同一坐标系下画出函数y=sin x, y=cos x, y=0.2e0.1x sin (0.5x)和y=0.2e0.1x cos(0.5x)在区间[0,2pi]的曲线图,并对该图进行修饰。
(1)解题思路:首先按步长赋值法生成x向量,则生成相应函数值向量;然后运用plot命令,再添加网格或者其他修饰等。
(2)算法设计:x=0:0.07*pi:2*pi;y1=sin(x);y2=cos(x);y3=0.2.*exp(0.1.*x).*sin(0.5.*x);y4=0.2.*exp(0.1.*x).*cos(0.5.*x);plot(x,y1,'r--',x,y2,'k:',x,y3,'g.',x,y4,'b+','linewidth',3,'markersize',5); grid;xlabel('variable\it{x}')ylabel('variable\it{y}')title('four cruves')text(2.6,0.7,'sin(x)')text(3.5,0.3,'0.2.*exp(0.1.*x).*sin(0.5.*x)')text(5.8,0.8,'cos(x)')text(4.1,-0.4,'0.2.*exp(0.1.*x).*cos(0.5.*x)')(3)结果截图:题目【二】某农夫有一个半径10m的圆形牛栏,长满了草。
他要将一头牛拴在牛栏边界的栏桩上,但只让牛吃到一半草,问栓牛鼻的绳子应为多长?(1)解题思路:设R 为牛栏的半径,而栓牛绳长为r; 则根据数学公式:S=12R 2·4arcsin(r 2R )+ 12r 2·2arccos(r 2R )-2×12r √R 2−r 24;以及令S=12πR 2,即可解出方程的解。
MATLAB软件与数学实验课程设计课程背景数学实验课程作为大学数学课程的重要组成部分,旨在帮助学生将所学的数学知识应用于实际问题中,并通过实验过程中的探究与思考来提高其数学思维能力和创新能力。
同时,数学实验课程也是学生了解和掌握科学计算工具的机会之一。
MATLAB软件是一种科学计算软件,具有强大的数学分析和绘图功能,广泛应用于工程、科学、金融等领域。
通过将MATLAB软件与数学实验课程结合起来,可以帮助学生更好地理解和掌握数学知识,并加强其计算和编程能力,提高其实际问题解决能力。
课程设计本课程旨在通过MATLAB软件实现课程设计,为学生提供一种全新的数学实验教学方式。
具体的课程设计如下:第一章 MATLAB软件介绍在本章中,将介绍MATLAB软件的基本功能、常用命令和编程语言,以及MATLAB软件的安装和使用方法。
通过本章的学习,学生可以初步了解MATLAB软件,并为后续的课程设计打下基础。
第二章数据分析与统计本章将以数据分析与统计为主题,介绍如何使用MATLAB软件进行数据分析和统计。
通过实践,学生可以掌握基本的数据分析技巧和方法,并能够使用MATLAB软件对实际问题进行分析和建模。
第三章常微分方程本章将以常微分方程为主题,介绍如何使用MATLAB软件解常微分方程。
通过实践,学生可以掌握常微分方程的基本理论和方法,并运用MATLAB软件对常微分方程进行求解和模拟。
第四章线性代数本章将以线性代数为主题,介绍如何使用MATLAB软件进行线性代数的运算和分析。
学生可以通过本章的学习掌握线性代数的基本概念和方法,并能够使用MATLAB软件对实际问题进行线性代数运算和分析。
第五章数值计算本章将以数值计算为主题,介绍如何使用MATLAB软件进行数值计算。
通过实践,学生可以掌握数值计算的基本理论和方法,并能够使用MATLAB软件对实际问题进行数值计算和模拟。
课程实施本课程可以作为大学数学课程的实验教材,也可以单独作为一门课程开设。
MATLAB 软件与基础数学实验Saw H.Z实验1 MATLAB 基本特性与基本运算例1-1 求[12+2×(7-4)]÷32的算术运算结果。
>> clear>> s=(12+2*(7-4))/3^2 s = 2例1-2 计算5!,并把运算结果赋给变量y y=1;for i=1:5 y=y*i; end y例1-3 计算2开平方>> s=2^(0.5) s =1.4142 >>例1-4 计算2开平方并赋值给变量x (不显示)查看x 的赋值情况 a=2;x=a^(0.5); x例1-4 设75,24=-=b a ,计算|)tan(||)||sin(|b a b a ++的值。
a=(-24)/180*pi; b=75/180*pi; a1=abs(a); b1=abs(b); c=abs(a+b);s=sin(a1+b1)/(tan(c))^(0.5)例1-5 设三角形三边长为2,3,4===c b a ,求此三角形的面积。
a=4;b=3;c=2; p=(a+b+c)/2;s=(p*(p-a)*(p-b)*(p-c))^(0.5)例1-7 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=101654321A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=112311021B ,计算||,,A AB B A +,1-A 。
a=[1,2,3;4,5,6;1,0,1];b=[-1,2,0;1,1,3;2,1,1]; x=a+b; y=a*b; z=norm(a); q=inv(a); x,y,z,q例1-8 显示上例中矩阵A 的第2行第3列元素,并对其进行修改. a=[1,2,3;4,5,6;1,0,1];x=a(2,3);a(2,3)=input('change into=') x,a例1-9 分别画出函数x x y cos 2=和x xz sin =在区间[-6π,6π]上的图形。
MATLAB数学实验报告姓名:李帆班级:机械(硕)21学号:2120104008第一次数学实验报告——线性规划问题一,实验问题1,某饲养场饲养动物出售,设每头动物每天至少需要700g蛋白质,30g矿物质,100mg 维生素。
现有五种饲料可供选择,各种饲料的每千克营养成分含量和单价如下表。
是确定既能满足动物生长的营养需要,游客是费用最省的选用饲料方案。
2,某工厂生产甲、乙、丙三种产品,单位产品所需工时分别为2、3、1个;单位产品所需原料分别为3、1、5公斤;单位产品利润分别为2、3、5元。
工厂每天可利用的工时为12个,可供应的原料为15公斤。
为使总利润为最大,试确定日生产计划和最大利润。
二,问题分析1,1)该题属于采用线性规划的方式求出最优解的数学问题。
该题有以下特点,1.目标函数有线性,是求目标函数的最小值;2.约束条件为线性方程组;3.未知变量都有非负限制。
1,2)求解该类问题的方法有图解法,理论解法和软件解法。
图解法常用于解变量较少的线性规划问题。
理论解法要构建完整的理论体系。
目前用于解线性规划的理论解法有:单纯形法,椭球算法等。
在此,我们采用单纯形法的MATLAB软件解法来求解该问题。
1,3)此题中,要求既要满足动物生长的营养需要,又要使费用最省,则使每种饲料的选用量为变量,以总费用的最小值为所求量,同时每种饲料的使用量要符合营养成分的要求。
1,4)在此,首先确定建立线性规划模型。
设饲料i选用量为xi公斤,i=1,2,3,4,5.则有模型:Minz=0.2x1+0.7x2+0.4x3+0.3x4+0.8x5s.t.{3x1+2x2+6x4+18x5>=700;x1+0.5x2+0.2x3+2x4+0.5x5>=300.5x1+x2+0.2x3+2x4+0.8x5>=100Xj>=0,j=1,2,3,4,5解之得:x1=x2=x3=0X4=39.74359X5=25.14603Zmin=32.435902,1)该问题与第一题分析步骤相似,故只在此写出其线性规划模型Z=2x+3y+5z2x+3y+z<=123x+y+5z<=15三,程序设计流程图第一题:c=[0.2,0.7,0.4,0.3,0.8]A=[3,2,1,6,18;1,0.5,0.2,2,0.5;0.5,1,0.2,2,0.8;1,0,0,0,0;0,1, 0,0,0;0,0,1,0,0;0,0,0,1,0;0,0,0,0,1]b=[700,30,100,0,0,0,0,0][x,fval]=linprog(c,-A,-b)c=0.20000.70000.40000.30000.8000A=3.0000 2.0000 1.0000 6.000018.00001.00000.50000.20002.00000.50000.5000 1.00000.2000 2.00000.80001.000000000 1.000000000 1.000000000 1.000000000 1.0000b=7003010000000Optimization terminated.x=0.0000-0.00000.000039.743625.6410fval=32.4359第二题c=[-2-3-5]A=[231;315]b=[12;15]lb=[000][x,Z,exitflag,output]=linprog(c,A,b,[],[],lb,[])将上述程序输入matlab。
MATLAB与数学实验第二版教学设计1. 前言MATLAB作为一种通用的科学计算软件,已得到广泛地应用。
其提供的语言和工具使得数学实验教学在许多方面得到了极大的改进。
本文将介绍MATLAB与数学实验第二版的教学设计,包括教学目标、教学内容、教学策略等内容。
2. 教学目标本次教学的主要目标是:让学生掌握MATLAB软件的基本操作、实验数据的处理、以及MATLAB在数学实验中的应用。
通过本次课程的学习,学生应具备以下知识和能力:•掌握MATLAB软件基本操作;•理解实验数据的处理方法;•学会利用MATLAB进行数学实验分析。
3. 教学内容3.1 MATLAB软件基础本部分教学内容主要涵盖MATLAB软件的基础知识,包括MATLAB编程语言、MATLAB环境基础等。
3.2 实验数据处理本部分教学内容主要涵盖实验数据的处理方法,包括数据读入和输出、数据预处理、数据分析等。
3.3 MATLAB在数学实验中的应用本部分教学内容主要涵盖MATLAB在数学实验中的应用,包括实验模型建立、实验分析与可视化、数学模型解决等。
4. 教学策略本节将介绍本次教学中所采用的教学策略。
4.1 教学方法本次教学采用“理论结合实践”教学方法,旨在让学生通过理论学习和实践操作相结合,提高学生的动手能力和应用能力。
4.2 实验设计本次教学将通过数学实验的方式实现知识点的教学,旨在增强学生的实践操作能力。
实验的设计将分为三个部分:•第一部分:MATLAB软件基础操作练习;•第二部分:实验数据处理;•第三部分:MATLAB在数学实验中的应用。
4.3 教学环节本次教学将分为讲授和实践两部分。
在讲授环节中,教师将通过授课、演示等方式进行教学;在实践环节中,学生将通过实验操作的方式进行学习。
5. 教学评价本节将介绍本次教学的评价方式。
5.1 考试评价本次教学将通过考试的方式进行评价,考试内容将涵盖教学内容的全部知识点,旨在全面考核学生的学习效果和能力。
matlab基础知识实验原理Matlab是一种常用的科学计算软件,它具有强大的矩阵计算能力和丰富的工具箱,广泛应用于信号处理、图像处理、数字信号处理、控制系统设计等领域。
本文将介绍Matlab的基础知识,包括Matlab的环境搭建、基本语法、矩阵操作和图形绘制等内容。
一、Matlab环境搭建要使用Matlab,首先需要安装Matlab软件并激活。
安装完成后,打开Matlab,就可以进入Matlab的开发环境。
Matlab的界面分为命令窗口、编辑器窗口、工作空间窗口和图形窗口等部分。
在命令窗口中可以输入和执行Matlab命令;在编辑器窗口中可以编写和保存Matlab脚本;在工作空间窗口中可以查看和管理变量;在图形窗口中可以显示和编辑图形。
二、Matlab基本语法Matlab的基本语法与其他编程语言有些差异,但也有很多相似之处。
Matlab中的变量不需要事先声明,可以直接赋值使用。
Matlab支持多种数据类型,包括数值型、字符型、逻辑型等。
数值型可以是整数或浮点数,字符型用单引号或双引号括起来,逻辑型只有两个取值:true和false。
Matlab中的运算符包括算术运算符、关系运算符、逻辑运算符等,可以对变量进行加减乘除等运算。
Matlab还支持矩阵运算,可以直接对矩阵进行加减乘除等运算。
Matlab提供了丰富的数学函数,可以对变量或矩阵进行各种数学运算,如sin、cos、log等。
三、矩阵操作Matlab是一种以矩阵为基础的计算软件,因此矩阵的操作是Matlab的重要部分。
Matlab可以方便地定义矩阵、进行矩阵运算和矩阵变换等。
定义矩阵可以使用方括号和分号,方括号表示矩阵的开始和结束,分号表示换行。
Matlab提供了丰富的矩阵运算函数,可以对矩阵进行加减乘除、转置、求逆等运算。
矩阵乘法使用*运算符,矩阵转置使用'运算符,矩阵求逆使用inv函数。
此外,Matlab还提供了一些特殊的矩阵函数,如单位矩阵eye、零矩阵zeros、随机矩阵rand等。
MATLAB大学数学实验课程设计1. 引言MATLAB是一种基于数值算法的高级技术计算软件,可广泛应用于工程、科学及金融等领域。
在大学数学课程中,MATLAB也是一个常用的工具。
本文将介绍大学数学实验课程设计中MATLAB的应用以及实验的设计。
2. 实验设计2.1 球体体积计算实验目的:通过使用MATLAB计算球体的体积,掌握MATLAB的基本语法及数学计算方法。
实验步骤:1.打开MATLAB软件。
2.新建一个文件,在文件中输入以下命令:r = input('请输入球体的半径:');V = (4/3)*pi*r^3;fprintf('球体的体积为%.2f\', V);3.运行程序,输入球体的半径,计算出球体的体积。
2.2 线性方程组的解法实验目的:掌握MATLAB解决线性方程组的方式及方法。
实验步骤:1.打开MATLAB软件。
2.新建一个文件,在文件中输入以下命令:A = [4 3 2; -2 -3 5; 1 -1 2];B = [-3; 4; 1];X = inv(A)*B;fprintf('x的解为%.2f, y的解为%.2f, z的解为%.2f\', X);3.运行程序,计算出x、y、z的解。
2.3 拟合实验实验目的:通过拟合实验,掌握MATLAB的统计学方法。
实验步骤:1.打开MATLAB软件。
2.准备一个数据集,可以随意选择,不在此赘述。
3.在MATLAB中输入以下命令:x = [1 2 3 4 5];y = [1.1 3.0 4.9 7.2 8.9];p = polyfit(x,y,1);f = polyval(p,x);plot(x,y,'o',x,f)4.运行程序,可以看到对原始数据的拟合结果。
3. 结论通过以上实验设计及MATLAB的使用,我们可以看到MATLAB在数学课程中的优势,它不仅可以提供科学计算、数据分析及可视化的功能,还可以帮助学生更好地学习和理解数学相关知识。
追击问题:一敌舰在某海域内以椭圆轨迹航行,其在时间t时刻的坐标为:x(t)=10+20costy(t)=20+5sint我方战舰恰位于原点处,我战舰向敌舰发射制导鱼雷,鱼雷的速率为20,其运行方向始终指向敌舰,试问敌舰航行在何处将被击中?2. 若敌舰的运行轨迹变为x(t)=10+20costy(t)=20+20sint试问敌舰航行在何处将被击中?(无法击中)3. 若敌舰的运行轨迹变为x(t)=10+20costy(t)=20+20sint鱼雷速率提高至21,结果如何?%Matlab程序:clear;clch=;%时间步长k=1;t(1)=0;x(1)=0;y(1)=0;%初始值r=10;while r>= % k<=250 %m=(20+5*sin(t(k))-y(k))/(10+20*cos(t(k))-x(k) ++;if 10+20*cos(t(k))-x(k)>=0x(k+1)=x(k)+20*h/sqrt(1+m^2);elsex(k+1)=x(k)-20*h/sqrt(1+m^2);endif 20+5*sin(t(k))-y(k)>=0y(k+1)=y(k)+20*h/sqrt(1+1/m/m);elsey(k+1)=y(k)-20*h/sqrt(1+1/m/m);endr=(x(k)-10-20*cos(t(k)))^2+(y(k)-20-5*sin(t(k)))^2; r=sqrt(r);t(k+1)=h*k;k=k+1;plot(10+20*cos(t(k)),20+5*sin(t(k)), 'r*')hold onaxis([-10 32 -3 30]);plot(x,y, 'o')pauseendt=t(end),x=x(end),y=y(end)t =x =y =第二问:速度相同无法击中第三问:t = x = y =%Matlab程序:clear;clch=;%时间步长k=1;t(1)=0;x(1)=0;y(1)=0;%初始值r=10;while r>= % k<=250 %m=(20+20*sin(t(k))-y(k))/(10+20*cos(t(k))-x(k) ++;if 10+20*cos(t(k))-x(k)>=0x(k+1)=x(k)+22*h/sqrt(1+m^2);elsex(k+1)=x(k)-22*h/sqrt(1+m^2);endif 20+20*sin(t(k))-y(k)>=0y(k+1)=y(k)+22*h/sqrt(1+1/m/m);elsey(k+1)=y(k)-22*h/sqrt(1+1/m/m);endr=(x(k)-10-20*cos(t(k)))^2+(y(k)-20-20*sin(t(k)))^2; r=sqrt(r);t(k+1)=h*k;k=k+1;plot(10+20*cos(t(k)),20+20*sin(t(k)), 'r*')hold onaxis([-12 32 -2 42]);plot(x,y, 'o')pauseendt=t(end),x=x(end),y=y(end)课本P811. 某农夫有一个半径10米的圆形牛栏,长满了草.他要将一头牛栓在牛栏边界的栏桩上,但只让牛吃到一半草,问栓牛鼻的绳子应为多长?设拴牛的绳子长为r, 以圆形牛栏C1 的圆心为原点建立直角坐标系, 见图1, 不妨设拴牛的栏桩为图1中圆形牛栏C1 上的B 点, 其坐标为(10,0), 则所求问题转化为: 求出r,使得以B 点为圆心, 半径为r 的圆C2 与圆C1 相交部分的面积 是圆C1 面积的一半。
解法一:由于圆形牛栏C1 和圆C2 的方程分别为:C1: x 2+y 2=100C2: (x-10)2+y 2=r 2 (1)联立方程C1, C2, 可得两交点分别为:⎪⎭⎫ ⎝⎛--2240020,20110r r r C ,⎪⎭⎫ ⎝⎛---2240020,20110r r r D 设牛吃草的面积为S ,即圆C1与C2的相交部分,则根据题意,S 应为圆C1面积的一半,即()21021⨯=πS 由图可知,S 的面积可由下面的定积分计算得到: ()212I I S +=⎪⎪⎭⎫ ⎝⎛-+--=⎰⎰---dx x dx x r r r r 10201022201010222210)10(2 对于上式中的积分1I ,令u=x-10,则上式可化简为 S ⎪⎪⎭⎫ ⎝⎛-+-=⎰⎰---dx x dx u r r r r 10201022202222102 上式通过简单积分运算可化为f=inline('-r^3/800*sqrt(400-r^2)*r^2*asin(r/20)+*pi*r^*sqrt(400*r^2-r^4)+r^2/800*s qrt(400*r^2-r^4)-50*asin(1-r^2/200)','r');fzero(f,10)ans =另解:S0=1/2*pi*10^2;r=10; %给定r 的迭代初值;S=314;while abs(S-S0)>r=r+; %r 的值增加;u=- r::- r^2/20;s1=trapz(u,sqrt(r^2- u.^2));x=10- r^2/20::10;s2=trapz(x,sqrt(10^2- x.^2));S=2*(s1+s2);end %当误差小于eps 时, 循环结束;error=abs(S0-S) %显示误差;[r,S] %显示r 的值和面积;error =ans =11.5900解法二(几何方法):201021010cos 222x x x =⨯-+=α 20arccos x =α 200200101021010cos 2222x x -=⨯⨯-+=β 20arccos 2121221x x x S ==α ⎪⎪⎭⎫ ⎝⎛-=⋅=2001arccos 5010212222x x S β 410022102221023x x x x x x S -=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+= 321S S S S -+=410022001arccos 5020arccos 21222x x x x x --⎪⎪⎭⎫ ⎝⎛-+= π25=x=10::14;fx=*x.*x.*acos*x)+50*acos*x.*x)*x.*sqrt*x.*x)-25*pi;plot(x,fx)gridy=inline('*x.*x.*acos(x/20)+50*acos(1-x.*x/200)*x.*sqrt*x.*x)-25*pi')fzero(y,[10,14])ans =2. 如图所示,为了在海岛I与某城市C之间铺设一条地下光缆,每千米光缆铺设成本在水下部分是C1,在地下的部分是C2,为使的铺设该光缆的总成本最低,光缆C1的转折点P(海岸线上)应取在何处?如果实际测得海岛I与城市C之间水平距离L=30km,海岛距海岸垂直距离h1=15km,城市距海岸线垂直距离h=10km,C1=3000万元/km,C2=1500万元/km,求p点坐标(误差<10-3km)ezplot('3000*sqrt((30-x)^2+225)+1500* sqrt(x^2+100)',[0,30])syms xz =3000*sqrt((30-x)^2+225)+1500* sqrt(x^2+100);f=inline('1500/(1125-60*x+x^2)^(1/2)*(-60+2*x)+1500/(x^2+100)^(1/2)*x');a=20;b=25;dlt=;k=1;while abs(b-a)>dltc=(a+b)/2;if f(c)==0break;elseif f(c)*f(b)<0a=c;else b=c;endk=k+1end %二分法求根x=c %距城市C的水平位置;L=eval(z) % 最低成本x =L =+0043.有一艘宽为5m的长方形驳船,欲过某河道的直角弯,经测量知河道的宽度10m和12m,如图所示,设问,驳船要驶过直角弯,驳船的长度不能超过多少米?(误差<310 m)ezplot('10/sin(x)+12/cos(x)-5*tan(x)-5/tan(x)',[0,pi/2])syms xz =10/sin(x)+12/cos(x)-5*tan(x)-5/tan(x);f=inline('-10/sin(x)^2*cos(x)+12/cos(x)^2*sin(x)-5-5*tan(x)^2+5/tan(x)^2*(1+tan(x) ^2)');a=;b=;dlt=;k=1;while abs(b-a)>dltc=(a+b)/2;if f(c)==0break;elseif f(c)*f(b)<0a=c;else b=c;endk=k+1end %二分法求根x=c %角度值L=eval(z) % 驳船的长度输出结果:x =L =4.一个对称的地下油库,横截面为圆,中心位置上的半径为3m ,上下底上的半径为2m ,高为12m ,纵截面的两侧是顶点在中心位置的抛物线。
(1) 试求:油库内油面的深度为h (从底部算起)时,库内油量的容积V(h);(2) 根据刻度能读出油库内油量的多少,试给出V=20,30的高度。
建立坐标系求出抛物线方程:抛物线方程可设为:x=ay 2+by+c ,通过A(3,0)、B(2,6)、C(2,-6) 得:363x 2y -= dy y V 22363d ⎪⎪⎭⎫ ⎝⎛-=π dy y V h ⎰-⎪⎪⎭⎫ ⎝⎛-=622363π ⎥⎦⎤⎢⎣⎡++-=5216918648035h h h V π程序clc;clear;h=input(' Please input h=');if h>=0&h<=12 %转化为标准高度!h=h-6;v=pi*(h^5/6480-h^3/18+9*h+216/5);fprintf('v= %.4f\n',v);elsefprintf('输入数据超出高度范围');end(2) 由体积反求高度clear; clc;f20=inline('pi*(h^5/6480-h^3/18+9*h+216/5)-20','h'); f30=inline('pi*(h^5/6480-h^3/18+9*h+216/5)-30','h'); h20=fzero(f20,[-6,6])+6h30=fzero(f30,[-6,6])+6h20 =h30 =课本P911.Feigenbaum 在做研究时,对超越函数)sin(x y πλ=(λ为非负实数)进行了分岔与混沌的研究,试利用迭代格式)sin(1k k x x πλ=+,做出相应的Feigenbaum 图。