集合的概念
- 格式:docx
- 大小:238.50 KB
- 文档页数:6
1. 集合的含义及基本关系(1)集合的概念:把某些特定的对象集在一起就叫做集合.(2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一.(4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{x |x 具有的性质},其中x 为集合的代表元素.④图示法:用数轴或韦恩图来表示集合.(5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.一、单选题1.给出下列四个关系式:(1)√3∈R ;(2)Z ∈Q ;(3)0∈ϕ;(4)ϕ⊆{0},其中正确的个数是( )A .1B .2C .3D .42.下列给出的对象中,能表示集合的是( ).A .一切很大的数B .无限接近零的数C .聪明的人D .方程x 2=2的实数根3.集合{x ∈N|x −3<2}用列举法表示是A .{1,2,3,4}B .{1,2,3,4,5}C .{0,1,2,3,4,5}D .{0,1,2,3,4}4.设集合M ={x|x ≥4},a =√11,则下列关系中正确的是( )A .a ∈MB .a ∉MC .{a}∈MD .{a}∉M5.下列各式:①1∈{0,1,2};②∅⊆{0,1,2};③{1}∈{0,1,2};④{0,1,2}={2,0,1},其中错误的个数是( )A .1个B .2个C .3个D .4个6.设集合A 只含有一个元素a ,则下列各式正确的是( )A .0∈AB .a ∉AC .a∈AD .a =A7.方程x 2–1=0的解集可表示为A .{x =1或x =–1}B .{x 2–1=0}C .1,–1D .{1,–1}8.下列元素与集合的关系表示正确的是( )①1-∈N *∉Z ;③32∈Q;④π∈Q A .①② B .②③C .①③D .③④ 9.已知集合{}1,2A =,则集合(){,|,}B x y x A y A =∈∈中元素的个数为( ) A .1 B .2 C .3 D .410.已知单元素集合A ={x|x 2−(a +2)x +1=0},则a =A .0B .−4C.−4或1D.−4或011.下列所给关系正确的个数是()①π∈R Q;③0∈*N;④|−4|∉*N.A.1B.2C.3D.4 12.设集合S={x|(x−2)(x−3)≥0},T={x|x>0},则S∩T=A.[2,3] B.(−∞,2]∪[3,+∞)C.[3,+∞)D.(0,2]∪[3,+∞)13.设集合A={0,2,4,6,8,10},B={4,8},则∁A B=A.{4,8}B.{0,2,6}C.{0,2,6,10}D.{0,2,4,6,8,10} 14.已知集合M={0,1},则下列关系式中,正确的是()A.{0}∈M B.{0}∉M C.0∈M D.0⊆M15.已知集合A={0,1},B={−1,0,a+3},若A⊆B,则a的值为A.−2B.−1C.0D.116.集合A={1,2,3},则集合A的子集个数是()A.6B.7C.8D.917.已知集合A={0,1,2},B={1,m}.若B⊆A,则实数m的值是()A.0 B.2 C.0或2 D.0或1或2二、填空题18.用符号“∈”或“∉”填空:(1)若集合P由小于√11的实数构成,则2√3_____P;(2)若集合Q由可表示为n2+1(n∈N∗)的实数构成,则5____ Q.19.已知集合A={−1,3,m},B={3,5},若B⊆A,则实数m的值为__________.20.满足条件{2,3}⊆A ⊂≠{1,2,3,4}的集合A有__________个.21.集合A={0,1},写出A的所有子集__________.本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
1.1集合的概念及表示【知识储备】1.集合的概念(1)含义:一般地,我们把所研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集).(2)集合相等:只要构成两个集合的元素是一样的,即这两个集合中的元素完全相同,就称这两个集合相等.[知识点拨]集合中的元素必须满足如下性质:(1)确定性:指的是作为一个集合中的元素,必须是确定的,即一个集合一旦确定,某一个元素属于或不属于这个集合是确定的,要么是该集合中的元素,要么不是,二者必居其一.(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的.(3)无序性:集合中的元素是没有顺序的,比如集合{1,2,3}与{2,3,1}表示同一集合.2.元素与集合的关系关系概念记法读法属于如果a是集合A中的元素,就说a属于集合Aa∈A a属于集合A不属于如果a不是集合A中的元素,就说a不属于集合Aa∉A a不属于集合A[知识点拨]符号“∈”和“∉”只能用于元素与集合之间,并且这两个符号的左边是元素,右边是集合,具有方向性,左右两边不能互换.3.集合的表示法(1)自然语言表示法:用文字语言形式来表示集合的方法.例如:小于3的实数组成的集合.(2)字母表示法:用一个大写拉丁字母表示集合,如A,B,C等,用小写拉丁字母表示元素,如a,b,c等.常用数集的表示:名称非负整数集(自然数集)正整数集整数集有理数集实数集符号N N*或N+Z Q R(3)列举法:把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.(4)描述法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.这种用集合所含元素的共同特征表示集合的方法叫做描述法.【题型精讲】【题型一集合概念的理解】必备技巧判断一组对象是否能构成集合的三个依据判断一组对象能否组成集合,关键看该组对象是否满足确定性,如果此组对象满足确定性,就可以组成集合;否则,不能组成集合.同时还要注意集合中元素的互异性、无序性.例1下列对象中不能构成一个集合的是()A.某校比较出名的教师B.方程−2=0的根C.不小于3的自然数D.所有锐角三角形例2(多选)下列各组对象能构成集合的是()A.拥有手机的人B.2024年高考数学难题C.所有有理数D.小于π的正整数【题型精练】1.给出下列说法:①在一个集合中可以找到两个相同的元素;②好听的歌能组成一个集合;③高一(1)班所有姓氏能构成集合;④把1,2,3三个数排列,共有6种情况,因此由这三个数组成的集合有6个.其中正确的个数为()A.0B.1C.2D.32.下列各组对象中能构成集合的是()A.充分接近的实数的全体B.数学成绩比较好的同学C.小于20的所有自然数D.未来世界的高科技产品【题型二用列举法表示集合】例3用列举法表示下列集合(1)11以内非负偶数的集合;(2)方程(+1)(2−4)=0的所有实数根组成的集合;(3)一次函数=2与=+1的图象的交点组成的集合.【题型精练】1.用列举法表示下列给定的集合:(1)大于1且小于6的整数组成的集合A;(2)方程2−9=0的实数根组成的集合B;(3)一次函数=+2与=−2+5的图象的交点组成的集合C.2.用列举法表示下列集合.(1)不大于10的非负偶数组成的集合A;(2)小于8的质数组成的集合B;(3)方程22−−3=0的实数根组成的集合C;(4)一次函数=+3与=−2+6的图象的交点组成的集合D.【题型三用描述法表示集合】必备技巧利用描述法表示集合的关注点(1)写清楚该集合代表元素的符号.(2)所有描述的内容都要写在花括号内.(3)在通常情况下,集合中竖线左侧元素的所属范围为实数集时可以省略不写.例4用适当的方法表示下列集合:(1)方程组2314,328x y x y -=⎧⎨+=⎩的解集;(2)方程2210x x -+=的实数根组成的集合;(3)平面直角坐标系内所有第二象限的点组成的集合;(4)二次函数2210y x x =+-的图象上所有的点组成的集合;(5)二次函数2210y x x =+-的图象上所有点的纵坐标组成的集合.【题型精练】1.用描述法表示下列集合:(1)不等式3+2>5的解集;(2)平面直角坐标系中第二象限的点组成的集合;(3)二次函数=2−2+3图象上的点组成的集合.(4)平面直角坐标系中第四象限内的点组成的集合;(5)集合1,12,13,14(6)所有被3整除的整数组成的集合;(7)方程2++1=0的所有实数解组成的集合.2.试说明下列集合各表示什么?1|A y yx ⎧⎫==⎨⎬⎩⎭;{|B x y ==;()1,|C x y y x ⎧⎫==⎨⎬⎩⎭(),|13y D x y x ⎧⎫==⎨⎬-⎩⎭;{}0,1E x y ===;{}1,1F x y x y =+=-=-.【题型四元素与集合的关系】必备技巧判断元素和集合关系的两种方法(1)直接法:集合中的元素是直接给出的.(2)推理法:对于某些不便直接表示的集合,只要判断该元素是否满足集合中元素所具有的特征即可.例5用符号“∈”或“∉”填空:(1)0______∅;(2)2-_______2{|5}x x <;(3)(2,3)_______{(,)|23}x y x y +=;(4)2017_______{|41,}x x n n =-∈Z .例6(吉林长春市期中)已知集合M=6*,5a N a ⎧∈⎨-⎩且}a Z ∈,则M 等于()A .{2,3}B .{1,2,3,4}C .{1,2,3,6}D .{1-,2,3,4}【题型精练】1.(多选)(浙江高一期末)若集合{}22|,,A x x m n m n ==+∈Z ,则()A .1A∈B .2A∈C .3A∈D .4A∈2.已知集合{},M m m a a b Q ==+∈,则下列四个元素中属于M 的元素的个数是()①1+;;A .4B .3C .2D .1【题型五确定集合中的元素】必备技巧确定集合中的元素(1)充分理解集合的描述法,(2)注意检验元素互异性.例7(1)(山东济南高一期末)已知集合(){},2,,A x y x y x y N =+≤∈,则A 中元素的个数为()A .1B .5C .6D .无数个(2)集合*12|x N Z x ⎧⎫∈∈⎨⎬⎩⎭中含有的元素个数为()A .4B .6C .8D .12例8(1)(江苏苏州市期中)设集合{123}{45}}A C x B y x A y B ===+∈∈,,,,,,,则C 中元素的个数为()A .3B .4C .5D .6(2)(江苏南通市月考)已知集合(){},2,,A x y x y x Z y Z =+≤∈∈,则A 中元素的个数为()A .9B .10C .12D .13(3)(黑龙江大庆市期中)由实数2,,|,x x x -所组成的集合,最多可含有()个元素A .2B .3C .4D .51.若集合()(){}326A x N x x =∈--<,则A 中的元素个数为()A .3B .4C .5D .62.若集合{}0123A =,,,,()}{,,B x y x A y A x y A =∈∈-∈,,则B 中所含元素的个数为()A .4B .6C .7D .103.(青海高一月考)已知集合{1,2,3,4,5}A ={},(,),,B x y x A y A x y A =∈∈-∈,则B 中所含元素的个数为()A .3B .6C .8D .10【题型六元素特性中的求参问题】必备技巧利用集合中元素的确定性、互异性求参数的策略及注意点(1)策略:根据集合中元素的确定性,可以解出参数的所有可能值,再根据集合中元素的互异性对求得的参数值进行检验.(2)注意点:利用集合中元素的互异性解题时,要注意分类讨论思想的应用.例9(上海市进才中学高一期末)已知集合22{2,(1),33}Aa a a =+++,且1A∈,则实数a 的值为________.例10(山东济南月考)已知集合{}2210,A x ax x a R =++=∈.(1)若A 中只有一个元素,求a 的值;(2)若A 中至少有一个元素,求a 的取值范围;(3)若A 中至多有一个元素,求a 的取值范围.1.(吴起高级中学高一月考)若{}22111a a ∈++,,,则a =()A .2B .1或-1C .1D .-12.已知{}222,(1),33A a a a a =++++,若1A∈,则实数a 构成的集合B 的元素个数是()A .0B .1C .2D .33.(云南丽江市期末)若集合2{|210}A x kx x =++=中有且仅有一个元素,则k 的值为___________.。
集合的概念和定义
集合是由一些确定的对象所组成的整体。
可以将集合中的对象称为集合的元素。
集合的定义包括两个重要方面:元素的确定性和元素的无序性。
1. 元素的确定性:集合中的每个元素都是明确定义的,且不重复。
即对于任意一个元素来说,它要么属于该集合,要么不属于该集合。
例:集合A={1,2,3},集合B={a,b,c},集合A中的元素是1、2、3,集合B中的元素是a、b、c。
2. 元素的无序性:集合中的元素没有顺序关系,即无论元素的排列顺序如何,都不改变集合的本质。
例如,集合{1,2,3}和{3,2,1}是相同的集合。
例:集合A={1,2,3}和集合B={3,2,1}是相同的集合。
集合的表示方法:通常用大写字母表示集合,集合中的元素用花括号{}包围,元素之间用逗号隔开。
例:集合A={1,2,3},集合B={a,b,c}。
特殊集合:
1. 空集:不包含任何元素的集合,用符号∅或{}表示。
例:∅表示空集。
2. 全集:包含一切可能元素的集合。
在具体场景中,根据问题的背景确定全集。
例:全体自然数的集合,全集用符号N表示。
需要注意的是,元素的确定性和元素的无序性是集合的定义的两个基本特征,即使集合中元素的值相同,但是它们的顺序不同,这仍然是相同的集合。
第一节集合的概念及其表示1、集合的概念(1)集合:把一些具有共同特征的对象集在一起构成集合.(2)元素:集合中每个对象叫做这个集合的元素.集合通常用大写的拉丁字母表示,如A、B、C、……元素通常用小写的拉丁字母表示,如a、b、c、……2、元素与集合的关系(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A(2)不属于:如果a不是集合A的元素,就说a不属于A,记作a AÏ要注意“∈”的方向,不能把a∈A颠倒过来写.3、集合分类根据集合所含元素个数不同,可把集合分为如下几类:(1)把不含任何元素的集合叫做空集Ф(2)含有有限个元素的集合叫做有限集(3)含有无穷个元素的集合叫做无限集注:应区分F,{}F,}0{,0等符号的含义根据集合的不同类型,可以把集合分为:数集、点集、集合集等4、常用数集及其表示方法(1)非负整数集(自然数集):全体非负整数的集合.记作N(2)正整数集:非负整数集内排除0的集.记作N*或N+(3)整数集:全体整数的集合.记作Z(4)有理数集:全体有理数的集合.记作Q(5)实数集:全体实数的集合.记作R注:(1)自然数集包括数0.,(2)非负整数集内排除0的集.记作N*或N+应用示例:用符号∈或Ï填空:(1)1______N,0______N,-3______N,0.5______N,2______N;(2)1______Z,0______Z,-3______Z,0.5______Z,2______Z;(3)1______Q,0______Q,-3______Q,0.5______Q,2______Q;(4)1______R,0______R,-3______R,0.5______R,2______R.3、集合中元素的特性(1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了. (2)互异性:集合中的元素一定是不同的.(3)无序性:集合中的元素没有固定的顺序.例1.下列各组对象不能组成集合的是( )A.大于6的所有整数B.高中数学的所有难题C.被3除余2的所有整数D.函数y=x1图象上所有的点 变式训练:1.下列条件能形成集合的是( )A.充分小的负数全体B.爱好足球的人C.中国的富翁D.某公司的全体员工例2.在数集{2x,x 2-x}中,实数x 的取值范围是__________________。
集合的含义和表示知识点一:集合的含义集合的概念:一般地,我们将研究对象称为元素,把一些元素组成的总体叫为集合(简称集)。
元素用小写字母a,b,c表示,集合用大写字母A,B,C表示。
集合中元素的性质:确定性:即那些元素是属于这个集合的,那些元素不属于这个集合是明确的。
比如高山就不构成集合,胖人也不构成集合。
互异性:集合中的元素互不相同。
无序性:元素之间是没有顺序的,如:{0,1}={1,0}元素与集合的关系:“属于”和“不属于”(1)如果a是集合A的元素,就说a属于A,记作a∈A(2)如果a不是集合A的元素,就说a不属于A,记作a A(“∈”的开口方向,不能把a∈A颠倒过来写)集合的分类:1、有限集:含有有限个元素的集合。
2、无限集:含有无限个元素的集合。
3、空集:不含任何元素的集合。
记作Φ,如:例:1,①接近于0的数的全体;②比较小的正整数全体;③平面上到点O的距离等于1的点的全体;④正三角形的全体;⑤2的近似值的全体.其中能构成集合的组数有( )A.2组B.3组C.4组D.5组2对于集合A={2,4,6},若a∈A,则6-a∈A,那么a的值是______.3集合{3,x,x2-2x}中,x应满足的条件是______知识点二:常用数集的记法(1)非负整数集(自然数集):全体非负整数的集合记作N ,{} ,2,1,0=N(2)正整数集:非负整数集内排除0的集记作N*或N+{} ,3,2,1*=N (3)整数集:全体整数的集合记作Z , {} ,,,210±±=Z (4)有理数集:全体有理数的集合记作Q , {}整数与分数=Q (5)实数集:全体实数的集合记作R {}数数轴上所有点所对应的=R 注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0(2)非负整数集内排除0的集记作N*或N+。
例: ①1______N ,0______N .-3______Q ,0.5______Z ,2______R .②21______R ,5______Q ,|-3|______N +,|-3|______Z .知识点三:集合的表示方法(1)列举法:把集合中的元素一一列举出来,写在大括号内。
高数集合的概念知识点
1. 集合的定义和表示:集合是具有某种特定性质的事物的总体。
例如,所有的水果,所有的偶数等。
2. 集合的元素和包含关系:集合中的事物被称为元素。
如果一个元素在某个集合中,则说这个元素属于这个集合。
如果所有在A集合中的元素也在B集合中,则说A集合是B集合的子集。
3. 空集:不包含任何元素的集合被称为空集。
4. 集合的并和交:两个集合的并集是包含这两个集合的所有元素的集合。
这两个集合的交集是同时在这两个集合中的元素组成的集合。
5. 集合的补集:如果A集合是全集U的一个子集,那么U集合中不属于A集合的元素组成的集合称为A集合的补集。
6. 集合的差集:如果A和B是两个集合,那么属于A但不属于B的元素组成的集合称为A和B的差集,记作A-B。
7. 无穷集合:如果一个集合的元素可以和自然数一一对应,那么这个集合就叫做可数集。
可数集包括有穷集和无穷集。
8. 集合的等价和相等:如果两个集合的元素可以一一对应,那么这两个集合就是等价的。
如果两个集合的元素完全相同,那么这两个集合就是相等的。
9. 基数:一个集合的基数是表示该集合包含的元素个数的一个数。
对于有限集,其基数为集合元素的数量。
映射提供了度量无限集合大小的方法,如果两个集合的元素可以构造一一对应,那么它们具有相同的基数。
10. 势:用于比较无穷集合“大小”的概念。
同基数一样,两个集合的势相等意味着它们的元素可以一一对应。
11. 序偶和笛卡尔积:序偶是有顺序的元素对,笛卡尔积是两个集合中所有可能的序偶构成的集合。
集合的概念详细讲解集合是数学中的一个基本概念,它指的是由多个元素组成的一个整体。
集合中的元素可以是任何类型,例如整数、实数、字符串、对象等等。
集合的概念在数学中有着广泛的应用,例如在集合论、函数论、代数、拓扑学等学科中都有重要的应用。
一、集合的定义集合的定义通常是指在一个特定的范围内,由一个或多个元素组成的整体。
集合中的元素可以是任何类型,例如整数、实数、字符串、对象等等。
在数学中,我们通常用大写字母来表示集合,例如A、B、C等等。
二、集合的表示集合的表示通常有两种方式:列举法和描述法。
列举法是将集合中的所有元素一一列举出来,例如{1, 2, 3}表示一个包含三个整数的集合。
描述法是用一个数学表达式来描述集合中的元素,例如{x|x^2+1=0}表示一个包含所有满足方程x^2+1=0的实数的集合。
三、集合的性质集合具有以下性质:1.确定性:一个元素要么属于某个集合,要么不属于某个集合,不存在第三种情况。
2.互异性:集合中的元素互不相同,即集合中没有重复的元素。
3.无序性:集合中的元素没有固定的顺序,即任意两个元素可以交换位置而不改变集合本身。
4.封闭性:如果一个新元素与集合中的某个元素相等,则该新元素也属于该集合。
5.空集存在性:没有任何元素的集合称为空集,空集是任何非空集合的真子集。
6.反身性:任何非空集合是其本身的子集。
7.幂等律:若一集合有n个元素,则其幂集(所有子集的集合)的元素个数为2^n个。
8.互补律:若一集合有n个元素,则其补集(不属于该集合的元素组成的子集)的元素个数为(n-1)个。
9.子集基数量定律:任何一个集合都必须包含它自身作为子集,并且至多包含两个其他不同的子集(空集和全集)。
10.子集完全互补定律:任何一个集合都必须包含它的所有子集作为元素的并集,并且至多包含两个其他不同的子集(空集和全集)。
11.互补完全性定律:任何一个集合都必须包含它的所有补集作为元素的并集,并且至多包含两个其他不同的子集(空集和全集)。
集合的概念
一、集合的有关概念
由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的。
我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素。
定义:一般地,某些指定的对象集在一起就成为一个集合。
1、集合的概念
(1)集合:某些指定的对象集在一起就形成一个集合(简称集)
(2)元素:集合中每个对象叫做这个集合的元素
2、常用数集及记法
(1)非负整数集(自然数集):全体非负整数的集合记作
(2)正整数集:非负整数集内排除0的集记作
(3)整数集:全体整数的集合记作
(4)有理数集:全体有理数的集合记作
(5)实数集:全体实数的集合记作
3、元素对于集合的隶属关系
(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A
(2)不属于:如果a不是集合A的元素,就说a不属于A,记作A
a∉
4、集合中元素的特性
(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可
(2)互异性:集合中的元素没有重复
(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)
5、⑴集合通常用大写的拉丁字母表示,如
元素通常用小写的拉丁字母表示,如
⑵“∈”的开口方向,不能把a∈A颠倒过来写
二、集合的表示方法
1.列举法:将所给集合中的元素出来,写在里,元素与元素之间用分开适用情况:
(1)集合是有限集,元素又不太多;例如:15的所有正因数构成的集合表示为:
(2)集合是有限集,元素较多但有一定规律;例如:不大于100的正整数的全体构成的集合表示为:
(3)有规律的无限集;例如:
2.描述法:将所给集合中元素的共同特征和性质用文字或符号语言描述出来。
其一般格式如下:{x|x适合的条件}大括号内竖线左边的x表示:;
大括号内竖线右边表示:;
3.Venn图
三、集合的基本关系
1.子集一般地,对于两个集合,如果A中任意一个元素都是B的元素,称集合A是集合B的子集,记作A ⊆B.读作“A包含于B”或“B包含A”.这时说集合A是集
合B的子集.
2.真子集如果A⊆B,但存在元素x ∈B,且x ∉A,称A是B的真子集.
3.空集不含任何元素的集合为空集,记作∅.规定:空集是任何集合的子集,空集是任何集合的真子集.
4.集合相等对于两个集合A与B,若A⊆B且B⊆A,则这两个集合相等,记为A=B.两个非空集合相等当且仅当它们的元素完全相同.
例1⑴写出集合{a,b}的所有子集;⑵写出所有{a,b,c}的所有子集;
⑶写出所有{a,b,c,d }的所有子集
总结:一般地,集合A含有n个元素,则A的子集共有2n个,A的真子集共有2n-1个. 例2 设集合A={1, a, b},B={a, a2, ab},若A=B,求实数a,b.
例3 已知A={x | x2-2x-3=0},B={x | ax-1=0},若B⊆A, 求实数a的值.
四、集合的基本运算
1.并集
(1)并集的定义
由所有属于集合A或属于集合B的元素所组成的集合称为集合A与B的并集,记作A ∪B(读作“A并B”);
(2)并集的符号表示
A∪B={x|x∈A或x∈B}.
并集定义的数学表达式中“或”字的意义应引起注意,用它连接的并列成分之间不一定是互相排斥的.
x∈A,或x∈B包括如下三种情况:
①x∈A,但x∉B;②x∈B,但x∉A;③x∈A,且x∈B.
由集合A中元素的互异性知,A与B的公共元素在A∪B中只出现一次,因此,A∪B是由所有至少属于A、B两者之一的元素组成的集合.
2、交集
(1)交集的定义
由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A∩B(读作“A交B”).
(2)交集的符号表示
A∩B={x|x∈A且x∈B}.
(3)交集的图形表示如下所示Venn图.
B
A
)(
)
2
3
(
1
)(
图(1)表示集合A与集合B的关系是A⊆B,此时集合A与B的公共部分就是A,即A∩B=A.
图(2)表示集合A与集合B的公共部分不是空集,但不是A,也不是B,即A∩B≠A,且A∩B ≠B.
图(3)表示集合A与集合B的公共部分是空集,即A∩B=∅.
3、补集
一般地,设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集
合,叫做S 中子集A 的补集(或余集)记作CsA.
例4 已知M ={y |y =2x 2+1,x ∈R },N ={y |y =-x 2+1,x ∈R },则M ∩N =________,M ∪N =________.
例5 设A ={x |x 2+4x =0},B ={x |x 2+2(a +1)x +a 2-1=0}.
(1)若A ∩B =B ,求a 的值;(2)若A ∪B =B ,求a 的值.
1. 下列说法正确的是 ( )
A.{}1,2,{}2,1是两个集合
B.{}(0,2)中有两个元素
C.6|x Q N x ⎧
⎫∈∈⎨⎬⎩⎭
是有限集 D.{}2|20x Q x x ∈++=且是空集 2.将集合{}|33x x x N -≤≤∈且用列举法表示正确的是 ( )
A.{}3,2,1,0,1,2,3--- B.{}2,1,0,1,2-- C.{}0,1,2,3 D.{}1,2,3
3.{},0.3,0,00R Q N +
∉∈∈其中正确的个数是( ) A.1个 B.2个 C.3个 D.4个
4.方程组25x y x y +=⎧⎨-=⎩
的解集用列举法表示为____________. 5.已知集合A={}
20,1,x x -则x 在实数范围内不能取哪些值___________.
6.已知集合{},,S a b c =中的三个元素是ABC ∆的三边长,那么ABC ∆一定不是 ( )
A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形
一、选择题
1.已知{}|22,M x R x a π=∈≥=,给定下列关系:①a M ∈,②{}
a M ③a M ④{}a M ∈其中正确的是 ( )
A①② B④ C③ D①②④
2.若,x y R ∈,集合{}(,)|,(,)|1y A x y y x B x y x ⎧
⎫====⎨⎬⎩⎭
,则A,B的关系为( ) A A=B B A⊆B C A
B D BA 3.若,A B A
⊆C,且A中含有两个元素,{}{}0,1,2,3,0,2,4,5B C ==则满足上述条件的集合A可能为( ).
A {}0,1 B {}0,3 C {}2,4 D {}0,2
4.满足{}a M ⊆{},,,a b c d 的集合M共有( )
A6个 B7个 C8个 D9个
二、填空题
5.已知{}{}{}A B C ===菱形正方形平行四边形,则集合A,B,C之间的关系为__________. 6.已知集合{}{}2|320,|10A x x x B x ax =-+==-=若B A ,则实数a 的值为__.
7.已知集合{}{}|40,|12A x R x p B x x x A B =∈+≤=≤≥⊆或且,则实数p 的取值集合为_______. 8.集合{}|21,A x x k k Z ==-∈,集合{}|21,B x x k k Z ==+∈,则A与B的关系为___________. 9.已知A={},a b ,{}|B x x A =∈,集合A与集合B的关系为_________.
三.解答题
10.写出满足{},a b A
⊆{},,,a b c d 的所有集合A.
11.已知集合{}{}22,,,2,2,A x y B x y A B ===且,求,x y 的值.
12.已知{}{}|25,|121A x x B x a x a =-≤≤=+≤≤-,B A ⊆,求实数a 的取值范围.。