数学——《集合的概念》教案
- 格式:doc
- 大小:127.22 KB
- 文档页数:2
集合的概念【教学目标】1.知识与技能:(1)通过实例,了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性、互异性、无序性;(4)会用集合语言表示有关数学对象;(5)培养学生抽象概括的能力。
2.过程与方法:(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义。
(2)让学生归纳整理本节所学知识。
3.情感、态度与价值观:使学生感受到学习集合的必要性,增强学习的积极性。
【教学重难点】教学重点:集合的含义与表示方法。
教学难点:表示法的恰当选择。
【教学过程】一、创设情景,揭示课题。
1.教师首先提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?引导学生回忆。
举例和互相交流。
与此同时,教师对学生的活动给予评价。
2.接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容。
二、研探新知。
1.教师利用多媒体设备向学生投影出下面9个实例:(1)1—20以内的所有质数;(2)我国古代的四大发明;(3)所有的正方形;(4)海南省在2004年9月之前建成的所有立交桥;(5)到一个角的两边距离相等的所有的点;(6)方程2560-+=的所有实数根;x xx->的所有解;(7)不等式30(8)国兴中学2004年9月入学的高一学生的全体。
2.教师组织学生分组讨论:这8个实例的共同特征是什么?3.每个小组选出—位同学发表本组的讨论结果,在此基础上,师生共同概括出8个实例的特征,并给出集合的含义。
一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set)(简称为集)。
a b c d…表4.教师指出:集合常用大写字母A,B,C,D,…表示,元素常用小写字母,,,示。
三、质疑答辩,排难解惑,发展思维。
1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难。
使学生明确集合元素的三大特性,即:确定性。
高一数学第一章《集合》教案高一数学第一章《集合》教案(通用6篇)作为一名辛苦耕耘的教育工作者,时常要开展教案准备工作,教案是保证教学取得成功、提高教学质量的基本条件。
那么什么样的教案才是好的呢?以下是店铺收集整理的高一数学第一章《集合》教案,欢迎大家分享。
高一数学第一章《集合》教案篇1教学目标:(1) 知识与技能:了解集合的含义,理解并掌握元素与集合的“属于”关系、集合中元素的三个特性,识记数学中一些常用的的数集及其记法,能选择自然语言、列举法和描述法表示集合。
(2) 过程与方法:从圆、线段的垂直平分线的定义引出“集合”一词,通过探讨一系列的例子形成集合的概念,举例剖析集合中元素的三个特性,探讨元素与集合的关系,比较用自然语言、列举法和描述法表示集合。
(3) 情感态度与价值观:感受集合语言的意义和作用,培养合作交流、勤于思考、积极探讨的精神,发展用严密谨慎的集合语言描述问题的习惯。
教学重难点:(1) 重点:了解集合的含义与表示、集合中元素的特性。
(2) 难点:区别集合与元素的概念及其相应的符号,理解集合与元素的关系,表示具体的集合时,如何从列举法与描述法中做出选择。
教学过程:【问题1】在初中我们已经学习了圆、线段的垂直平分线,大家回忆一下教材中是如何对它们进行定义的?[设计意图]引出“集合”一词。
【问题2】同学们知道什么是集合吗?请大家思考讨论课本第2页的思考题。
[设计意图]探讨并形成集合的含义。
【问题3】请同学们举出认为是集合的例子。
[设计意图]点评学生举出的例子,剖析并强调集合中元素的三大特性:确定性、互异性、无序性。
【问题4】同学们知道用什么来表示一个集合,一个元素吗?集合与元素之间有怎样的关系?[设计意图] 区别表示集合与元素的的符号,介绍集合中一些常用的的数集及其记法。
理解集合与元素的关系。
【问题5】“地球上的四大洋”组成的集合可以表示为{太平洋、大西洋、印度洋、北冰洋},“方程(x- 1)(x+2)=0的所有实数根”组成的集[设计意图]引出并介绍列举法。
中职数学基础模块上册(人教版)教案:集合的概念
第一章集合
1.1.1 集合的概念
【教学目标】
1. 初步理解集合的概念;理解集合中元素的性质.
2. 初步理解“属于”关系的意义;知道常用数集的概念及其记法.
3. 引导学生发现问题和提出问题,培养独立思考和创造性地解决问题的意识.
【教学重点】
集合的基本概念,元素与集合的关系.
【教学难点】
正确理解集合的概念.
【教学方法】
本节课采用问题教学和讲练结合的教学方法,运用现代化教学手段,通过创设情景,引导学生自己独立地去发现、分析、归纳,形成概念.【教学过程】。
《集合的概念》参考教案一、教学目标1. 让学生理解集合的含义,掌握集合的表示方法。
2. 让学生了解集合之间的关系,包括子集、真子集、并集、交集、补集等。
3. 培养学生运用集合的概念解决实际问题的能力。
二、教学内容1. 集合的含义与表示方法2. 集合之间的关系3. 集合的运算三、教学重点与难点1. 重点:集合的含义、表示方法以及集合之间的关系。
2. 难点:集合的运算及其应用。
四、教学方法1. 采用讲授法,讲解集合的概念、表示方法以及集合之间的关系。
2. 运用案例分析法,让学生通过实际例子理解集合的运算。
3. 开展小组讨论,培养学生合作解决问题的能力。
五、教学步骤1. 导入新课:通过生活中的实例,引导学生思考集合的概念。
2. 讲解集合的含义与表示方法:讲解集合的定义,介绍常用的集合表示方法,如列举法、描述法等。
3. 讲解集合之间的关系:讲解子集、真子集、并集、交集、补集等概念,并通过图形演示集合之间的关系。
4. 练习与讲解:布置练习题,让学生巩固所学内容,并对学生的疑问进行解答。
5. 总结与展望:总结本节课的主要内容,布置课后作业,预习下一节课的内容。
六、课后作业1. 复习集合的概念与表示方法。
2. 复习集合之间的关系,包括子集、真子集、并集、交集、补集等。
3. 完成课后练习题,加深对集合概念的理解。
七、教学评价1. 课堂参与度:观察学生在课堂上的发言、提问以及小组讨论情况。
2. 课后作业:检查学生的作业完成情况,评估学生对集合概念的掌握程度。
3. 单元测试:进行单元测试,了解学生对集合知识的运用能力。
八、教学资源1. PPT课件:展示集合的图形,直观演示集合之间的关系。
2. 练习题:提供丰富的练习题,巩固所学内容。
3. 教学案例:选取生活中的实际案例,帮助学生理解集合的概念。
九、教学进度安排1. 第一课时:讲解集合的含义与表示方法。
2. 第二课时:讲解集合之间的关系。
3. 第三课时:讲解集合的运算。
《集合的概念》参考教案一、教学目标1. 让学生理解集合的概念,掌握集合的表示方法。
2. 培养学生运用集合语言描述现实生活中的数学问题。
3. 提高学生分析问题、解决问题的能力。
二、教学内容1. 集合的定义2. 集合的表示方法3. 集合之间的关系4. 集合的运算5. 集合在生活中的应用三、教学重点与难点1. 重点:集合的概念、表示方法及集合之间的关系和运算。
2. 难点:理解集合的表示方法,熟练运用集合语言描述问题。
四、教学方法1. 采用讲授法,讲解集合的概念、表示方法及集合之间的关系和运算。
2. 运用案例分析法,让学生在实际问题中运用集合的知识。
3. 开展小组讨论,培养学生合作学习的能力。
五、教学过程1. 导入:通过生活中的实例,引导学生思考集合的概念。
2. 讲解:详细讲解集合的定义、表示方法及集合之间的关系和运算。
3. 案例分析:分析实际问题,让学生运用集合的知识解决问题。
4. 小组讨论:让学生分组讨论,分享各自的想法和成果。
5. 总结:对本节课的内容进行总结,强调集合的概念及运用。
6. 作业布置:布置相关练习题,巩固所学知识。
六、教学评价1. 评价内容:学生对集合概念的理解、表示方法的掌握以及集合运算的应用能力。
2. 评价方法:课堂问答、练习题、小组讨论、课后作业等。
3. 评价标准:能正确理解并运用集合语言描述问题,掌握集合的基本运算,能解决实际生活中的集合问题。
七、教学资源1. 教材:高中数学教材相关章节。
2. 辅助材料:集合相关的图片、案例、练习题等。
3. 教学工具:黑板、多媒体设备等。
八、教学进度安排1. 第1周:讲解集合的概念和表示方法。
2. 第2周:讲解集合之间的关系和运算。
3. 第3周:案例分析,运用集合知识解决实际问题。
4. 第4周:小组讨论,分享成果,巩固所学知识。
5. 第5周:总结集合的概念和运用,布置课后作业。
九、教学反思1. 反思内容:教学方法的适用性、学生的学习效果、教学目标的达成情况等。
集合的概念【教学目标】1.知识与技能:(1)通过实例,了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性、互异性、无序性;(4)会用集合语言表示有关数学对象;(5)培养学生抽象概括的能力。
2.过程与方法:(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义。
(2)让学生归纳整理本节所学知识。
3.情感、态度与价值观:使学生感受到学习集合的必要性,增强学习的积极性。
【教学重难点】教学重点:集合的含义与表示方法。
教学难点:表示法的恰当选择。
【教学过程】一、创设情景,揭示课题。
1.教师首先提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?引导学生回忆。
举例和互相交流。
与此同时,教师对学生的活动给予评价。
2.接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容。
二、研探新知。
1.教师利用多媒体设备向学生投影出下面9个实例:(1)1—20以内的所有质数;(2)我国古代的四大发明;(3)所有的正方形;(4)海南省在2004年9月之前建成的所有立交桥;(5)到一个角的两边距离相等的所有的点;(6)方程的所有实数根;2560x x -+=(7)不等式的所有解;30x ->(8)国兴中学2004年9月入学的高一学生的全体。
2.教师组织学生分组讨论:这8个实例的共同特征是什么?3.每个小组选出—位同学发表本组的讨论结果,在此基础上,师生共同概括出8个实例的特征,并给出集合的含义。
一般地,我们把研究对象统称为元素(element ),把一些元素组成的总体叫做集合(set )(简称为集)。
4.教师指出:集合常用大写字母A ,B ,C ,D ,…表示,元素常用小写字母…,,,a b c d 表示。
三、质疑答辩,排难解惑,发展思维。
1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难。
高中数学集合的定义教案
教学重点:集合的定义、元素、子集、集合的表示法以及集合的运算。
教学难点:集合运算的理解及应用。
教学准备:教材、PPT、黑板、教案、讲义。
教学过程:
一、导入:通过举例介绍集合的概念及作用,引导学生思考集合在日常生活中的应用。
二、讲解:1. 集合的定义:集合是指将若干个确定的对象组合在一起成为一个整体的概念。
2. 集合的元素:集合中的每个对象称为元素,用小写字母表示。
3. 集合的表示法:集合可以用列举法或描述法表示,例如:A={1,2,3}或B={x|x是自
然数}。
4. 子集:若集合A的每个元素都属于集合B,则称A是B的子集,记作A⊆B。
5. 集合的运算:并集、交集、差集、补集等。
三、练习:让学生练习集合的基本运算,巩固所学知识。
四、应用:通过生活实例或问题,让学生运用集合的知识进行解题。
五、归纳总结:复习本节课的重点知识,强化学生对集合的理解。
六、作业:布置相应的习题,让学生巩固所学内容。
七、反馈:检查学生的作业完成情况,及时纠正错误。
教学反思:此教案主要围绕高中数学集合的定义展开,通过生动的例子和实际练习,帮助
学生更好地理解和运用集合的相关知识。
同时,教师需要灵活运用不同的教学方法,激发
学生学习的兴趣和积极性。
《集合概念》教案设计第一章:集合的定义与表示1.1 集合的概念:元素与集合的关系,集合的表示方法(列举法、描述法)1.2 集合的分类:直积集、子集、真子集、幂集1.3 集合的基本运算:并、交、补集第二章:集合的性质与运算规律2.1 集合的性质:无序性、确定性、互异性2.2 集合运算的交换律、结合律、分配律2.3 集合运算的德摩根定律、对偶性原理第三章:维恩图与集合的关系3.1 维恩图的概念与绘制方法3.2 利用维恩图表示集合的关系:并集、交集、补集、对称差3.3 维恩图在实际问题中的应用第四章:集合的划分与基数4.1 集合的划分:有限划分与无限划分4.2 集合的基数:势、阿列夫数4.3 集合的基数与集合的关系:基数相等、基数不等、基数极限第五章:图灵机与集合5.1 图灵机的概念与结构5.2 图灵机的运算:读写操作、状态转移5.3 图灵机与集合的关系:图灵机识别的语言、图灵机计算的问题第六章:集合论的基本公理系统6.1 集合论公理系统的概念6.2 ZFC公理系统:集合论的基础公理、替换公理、选择公理6.3 公理系统的完备性、一致性、独立性第七章:集合论的应用7.1 集合论在数学分析中的应用:实数集、函数集7.2 集合论在图论中的应用:顶点集、边集7.3 集合论在其他数学分支中的应用:代数结构、拓扑空间第八章:函数与集合8.1 函数的概念:函数的定义、函数的表示方法8.2 函数的性质:一一映射、单射、满射、双射8.3 函数与集合的关系:函数的定义域、值域、函数的复合第九章:关系的集合论性质9.1 关系的概念:关系的定义、关系的表示方法9.2 关系的性质:自反性、对称性、传递性9.3 关系的集合论表示:关系矩阵、关系代数第十章:集合论的进一步研究10.1 无穷集合:无穷的概念、无穷集合的类型10.2 集合论的新发展:类别论、模型论、公理化方法10.3 集合论在现代数学中的地位与作用第十一章:集合论与逻辑11.1 集合论与命题逻辑:命题的集合表示、逻辑运算符的应用11.2 集合论与谓词逻辑:个体、谓词、量词、逻辑运算11.3 集合论在数理逻辑中的应用:形式系统、公理化逻辑第十二章:集合论与组合数学12.1 组合数学的基本概念:排列、组合、图论基本概念12.2 集合论在组合数学中的应用:计数原理、鸽巢原理、包含-排除原理12.3 组合数学中的极限问题:卡塔兰数、Stirling 数第十三章:集合论与数理逻辑13.1 数理逻辑的基本概念:命题逻辑、谓词逻辑、形式系统13.2 集合论在数理逻辑中的应用:模型论、公理化方法13.3 数理逻辑在计算机科学中的应用:自动机理论、程序语言设计第十四章:集合论与拓扑学14.1 拓扑学的基本概念:拓扑空间、开集、闭集、连通性14.2 集合论在拓扑学中的应用:度量空间、拓扑关系、连通性14.3 拓扑学在其他数学领域中的应用:微分几何、泛函分析第十五章:集合论与计算机科学15.1 计算机科学中的集合概念:数据结构、算法、编程语言15.2 集合论在计算机科学中的应用:计算复杂性、形式语言、编译原理15.3 集合论在中的应用:知识表示、推理机制、专家系统重点和难点解析重点:1. 集合的基本概念和表示方法。
集合教案优秀3篇高中数学集合教案设计篇一1、知识内容与结构分析集合论是现代数学的一个重要的基础。
在高中数学中,集合的初步知识与其他内容有着密切的联系,是学习、掌握和使用数学语言的基础,集合论以及它所反映的数学思想在越来越广泛的领域中得到应用。
课本从学生熟悉的集合(自然数集合、有理数的集合等)出发,结合实例给出了元素、集合的含义,学生通过对具体实例的抽象、概括发展了逻辑思维能力。
2、知识学习意义分析通过自主探究的学习过程,了解集合的含义,体会元素与集合的“属于”关系,能选择合适的语言描述不同的具体问题,感受集合语言的意义和作用。
3、教学建议与学法指导由于本节新概念、新符号较多,虽然内容较为浅显,但不应讲得过快,应在讲解概念的同时,让学生多阅读课本,互相交流,在此基础上理解概念并熟悉新符号的使用。
通过问题探究、自主探索、合作交流、自我总结等形式,调动学生的积极性。
在初中,学生学习过一些点的集合或轨迹,如:平面内到一个定点的距离等于定长的点的集合(圆);到一条线段的两个端点的距离相等的点的集合(线段的垂直平分线)。
这对学生学习本节课的知识有一定的帮助,只不过现在我们要把这个“集合”推广,它不仅仅是点的集合或图形的集合,而是“指定的某些对象的全体”。
集合语言是现代数学的基本语言,使用这种语言,不仅有助于简洁、准确地表达数学内容,还可以用来刻画和解决生活中的许多问题。
学习集合,可以发展同学们用数学语言进行交流的能力。
1、知识与技能(1)学生通过自主学习,初步理解集合的概念,理解元素与集合间的关系,了解集合元素的确定性、互异性,无序性,知道常用数集及其记法;(2)掌握集合的常用表示法——列举法和描述法。
2、过程与方法通过实例了解集合的含义,体会元素与集合的“属于”关系,能选择合适的语言(如自然语言、图形语言、集合语言)描述不同的具体问题,提高语言转换和抽象概括能力,树立用集合语言表示数学内容的意识。
3、情态与价值在掌握基本概念的基础上,能够解决相关问题,获得数学学习的成就感,提高学生分析问题和解决问题的能力,培养学生的应用意识。
§1.1集合的概念
一、教学目标:
① 掌握集合的概念,初步理解集合三要素,了解常用数集的符号
② 会使用∈∉、判断元素与集合之间的关系
③ 培养学生严谨的学习态度.
二、重点:集合的概念
难点:常用数集的范围,含义,符号。
三、知识点精讲:
① 集合的概念。
集合是一个不加定义的概念。
指 特定对象的全体。
② 元素三要素:i ) 确定性:对于集合A 和某一对象a ,要么a A ∈要么a A ∉。
ii ) 互异性:集合中相同的元素只能算是一个。
iii )无序性:集合中的元素是不排序的。
――元素的“平等地位”
区分:{1,2}与{2,1}以及{(1,2)}与{(2,1)}的关系。
③ 对于集合的理解,一定要把集合和它的元素(哪怕是元素的全体)严格的区分开来。
档我们把一些对象看成集合时,就把它们看成了整体。
④符号∈∉、的用法。
符号∈∉、是表示元素与集合之间的关系,不能用来表示集合之间的关系。
这在以后的学习中会有体现。
四、相关知识渗透:点坐标、列举法、文恩图。
五、教学过程:
① 本章展望:
⎧⎪⎪⎪⎧⎪⎪⎪⎨⎪⎪⎩⎪⎪⎧⎪⎨⎪⎩⎨⎪⎧⎪⎪⎪⎨⎪⎪⎪⎩⎪⎧⎪⎪⎪⎨⎪⎪⎪⎩⎩
元素、元素与集合的关系文氏图法集合的表示法:列举法
性质描述法有限集集合的分类无限集
集合子集集合与集合之间的关系真子集相等交集集合的运算并集补集 一、引言:(实例)用到过的“正数的集合”、“负数的集合”
如:2x-1>3⇒x>2所有大于2的实数组成的集合称为这个不等式的解集。
如:几何中,圆是到定点的距离等于定长的点的集合。
如:自然数的集合 0,1,2,3,……
如:高一(5)全体同学组成的集合。
结论:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
指出:“集合”如点、直线、平面一样是不定义概念。
二、集合的表示: { … } 如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}
用拉丁字母表示集合:A={我校的篮球队员} ,B={1,2,3,4,5}
常用数集及其记法:
1.非负整数集(即自然数集)记作:N
2.正整数集N*或 N+
3.整数集 Z
4.有理数集Q
5.实数集R
集合的三要素: 1。
元素的确定性; 2。
元素的互异性; 3。
元素的无序性
(例子略)
三、关于“属于”的概念
集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集A 记作a∈A ,相反,a不属于集A 记作 a∉A (或a∈A)
⑤应用、小组讨论、及时反馈。
、。
⑥小结:集合三要素、常用数集、∈∉
⑦作业:
⑧板书设计:
配套课件:。