相对论1
- 格式:docx
- 大小:34.04 KB
- 文档页数:3
相对论是一种物理学理论,描述了时间和空间之间的关系以及物体在其中的运动方式。
下面是对相对论的通俗解释:
相对性原理:相对论的基础是相对性原理,即表明所有惯性参考系都是等效的,无法通过实验来区分相对于运动的物体和相对于静止的物体。
质能等价原理:相对论提出了质能等价原理,即质量和能量之间存在等价关系。
这意味着质量和能量之间可以相互转化,但总能量守恒。
时间和空间弯曲:相对论认为时间和空间是弯曲的,即时间和空间不是绝对的,而是与物体的运动状态有关。
当物体运动时,时间和空间会发生变化。
质速关系:相对论提出了质速关系,即物体的质量随着速度的增加而增加。
这意味着当物体接近光速时,其质量会变得非常大,因此需要更大的能量才能继续加速。
质能方程:相对论提出了质能方程E=mc²,其中E代表能量,m代表质量,c代表光速。
这意味着质量和能量之间存在等价关系,可以相互转化。
总之,相对论是一种描述时间和空间关系的物理学理论,它揭示了物体在高速运动时的行为和规律。
相对论的主要内容
相对论是由爱因斯坦于20世纪初提出的一种新的物理学理论,它颠覆了牛顿力学的经典观念,改变了人们对时间和空间的认知。
相对论的主要内容包括以下几个方面:
一、狭义相对论
1. 相对性原理:所有的物理定律在不同参考系中都是相同的,没有绝对的参考系。
2. 时空的相对性:时间和空间不再是绝对的概念,它们的测量都取决于观察者的运动状态。
3. 光速不变原理:真空中的光速对所有观察者都是恒定的,与光源和观察者的相对运动状态无关。
4. 质能关系式:E=mc²,能量和质量之间的等价关系,表示质量可以转化成能量,能量也可以转化成质量。
二、广义相对论
1. 引力的等效原理:质量的存在会扭曲周围的空间,造成物体之间的相互作用。
2. 时空的弯曲:质量的分布会改变周围的时空结构,使得时间和空间都呈现出弯曲的状态。
3. 黑洞理论:由于质量超越了一定的临界值,会形成一个超引力的区域,使得任何物质和辐射都无法逃脱。
4. 引力波:由于质量的加速变化,会产生一种类似电磁波的引力波,可以用于探测和观测宇宙中的重大事件。
相对论的理论内容十分丰富和深刻,它不仅改变了人们对时间和空间的观念,也揭示了物质的本质和宇宙的奥秘,是现代物理学中的重要一环。
1. 质量为M 的静止粒子衰变为两个粒子m 1和m 2求粒子m 1的动量和能量。
2. 电荷为e 质量为m 的粒子在均匀电场E 内运动,初速度为零,试确定粒子的运动轨迹与时间的关系,并研究非相对论情况。
3. 频率为ω的光子(能量为ω 动量为k )碰在静止的电子上,试证明:(1)电子不可能吸收光子,否则能量和动量守恒定律不能满足;(2)电子可以散射这个光子,散射后光子频率ω′比散射前光子频率ω小(不同于经典理论中散射光频率不变的结论)。
4. 一个总质量为M 0的激发原子,对所选定的坐标系静止,它在跃迁到能量比之低Δw 的基态时,发射一个光子(能量为ω 动量为k ),同时受到光子的反冲,因此光子的频率不能正好是,而要略小一些,证明这个频率5. 一个处于基态的原子吸收能量为h ν的光子跃迁到激发态基态能量比激发态能量低Δw 求光子的频率。
6. 在海拔100km 的地球大气层中产生了一个静能为140Mev 的π+介子,这个π+介子的总能量51.510MeV E =⨯,竖直向下运动,按它自身参考系中测定,它在产生后8210s -⨯衰变,问它在海平面以上多大高度处发生衰变的?7. 以速度v 运动、静止质量为m 的0π介子裂变成两个γ光子,设在0π介子静止的参考系内,γ光子按飞散方向的分布是各向同性的,试确定相对于实验参考系的下列各量:(1)其中一个γ光子按与0π介子运动方向成θ角飞散的概率;(2)一个γ光子以θ角飞散,另一个γ光子飞散的方向;(3)按(2)飞散的两个γ光子的能量。
8. 当光子与相对论性的高能电子碰撞时,光子将从高能电子获得能量,使散射光子的能量增大,其频率升高,这一现象称为逆康普顿散射。
总能量为E 的相对论性高能电子(其动能大于静止质量)与频率为ν的低能光子(能量小于静止能量)相向运动,而发生正向碰撞,碰撞后光子沿与原入射方向成θ角的方向散射。
求散射光子的能量(以E 、ν、θ和电子的静止能量0E 表示)。
同好结构框图比较广义相对论时空观实验检验伽利略变换洛仑兹变换绝对时空观狭义相对论时空观相对论动力学基础力学相对性原理狭义相对性原理推广广义相对性原理推广第八章狭义相对论狭义相对论:8学时前言:相对论产生的历史背景和物理基础经典物理:伽利略时期——19世纪末经过300年发展,达到全盛的“黄金时代”形成三大理论体系机械运动:以牛顿定律和万有引力定律为基础的经典力学电磁运动: 以麦克斯韦方程为基础的电动力学热运动: 以热力学三定律为基础的宏观理论,以分子运动、统计物理描述的微观理论物理学家感到自豪而满足,两个事例:在已经基本建成的科学大厦中,后辈物理学家只要做一些零碎的修补工作就行了。
也就是在测量数据的小数点后面添加几位有效数字而已。
—开尔芬(1899年除夕)理论物理实际上已经完成了,所有的微分方程都已经解出,青年人不值得选择一种将来不会有任何发展的事去做。
——约利致普朗克的信两朵乌云:迈克尔孙—莫雷实验的“零结果”黑体辐射的“紫外灾难”三大发现:电子:1894年,英国,汤姆孙因气体导电理论获1906年诺贝尔物理学奖.X射线:1895年,德国,伦琴1901年获第一个诺贝尔物理学奖.放射性:1896年,法国,贝克勒尔发现铀;居里夫妇发现钋和镭,共同获得1903年诺贝物理学奖.物理学还存在许多未知领域,有广阔的发展前景。
两朵乌云——20世纪初物理学危机新理论:相对论、量子力学,深刻影响现代科技和人类生活什么是相对论?任何回答有关相对运动中观察者的问题的物理理论就是相对性理论。
相对论的思想基础对称性观念大学物理对称性观念岸上的人?船上的人事物的相对性如何对待事物的相对性?(1)(2)“公说公有理,婆说婆有理”——相对主义(3)超越从个别角度认识问题的局限性,寻找不同参考系内各观测量之间的变换关系,以及变换过程中的不变性。
物理定律(是自然界与观测者无关的客观规律)万有引力定律现代物理学已经不是被动地去协调不同参考系中的观测数据,而是自觉地去探索不同参考系中物理量、物理规律之间的变换关系(相对性原理)和变换中的不变量(对称性),以便超越自我认识上的局限,去把握物理世界中更深层次的奥秘。
物理学中的相对论相对论是现代物理学的重要理论之一,由爱因斯坦在20世纪初提出。
它对我们理解宇宙的本质和物质的行为方式产生了深远的影响。
本文将探讨相对论的基本概念、实验验证以及对我们日常生活的影响。
一、相对论的基本概念相对论的核心思想是“相对性原理”,即物理定律在所有惯性参考系中都是一样的。
这与经典力学的观点不同,经典力学认为时间和空间是绝对的。
而相对论则认为时间和空间是相互关联的,取决于观察者的运动状态。
相对论的另一个重要概念是“光速不变原理”,即光在真空中的速度是恒定的,不受观察者的运动状态的影响。
这一原理颠覆了经典物理学中的观念,引发了对时间和空间的重新解释。
二、实验验证相对论的理论预言在实验中得到了广泛的验证。
其中最著名的实验是迈克尔逊-莫雷实验,该实验旨在测量光的传播速度是否与地球的运动有关。
实验结果表明,光速在任何方向上都是恒定的,与地球的运动无关。
这一结果与相对论的预言一致,证明了相对论的正确性。
除了迈克尔逊-莫雷实验,还有其他实验证据支持相对论。
例如,粒子加速器中的实验观测到质子的寿命延长,这可以通过相对论中的时间膨胀效应解释。
此外,GPS系统的运行也需要考虑相对论的修正,以确保定位的准确性。
三、相对论的影响相对论的理论对我们日常生活产生了深远的影响。
首先,相对论揭示了时间和空间的相互关系,引发了对时间旅行的想象。
虽然目前还没有实现时间旅行的技术,但相对论为科幻作品提供了丰富的创作素材。
其次,相对论对电子学和通信技术的发展产生了重要影响。
相对论中的狭义相对论理论为电子学提供了基础,使得现代电子设备得以发展。
而相对论中的广义相对论理论则为GPS系统的运行提供了关键的修正,确保了定位的准确性。
此外,相对论还对宇宙学的研究产生了重要影响。
宇宙学是研究宇宙的起源、演化和结构的学科。
相对论提供了描述宇宙大尺度结构和引力作用的数学框架,为宇宙学的研究提供了重要工具。
四、相对论的未解之谜尽管相对论在许多方面得到了验证,并被广泛应用于各个领域,但仍存在一些未解之谜。
相对论(1)——从欧式空间到黎曼空间
我们对空间的认识有两个基础,一个是居住的四四方方的房间,另一个就是初中的几何课程。
在欧几里得创立的几何学里,你绝对不会认为地球的赤道是直线,因为那是圆。
于是我们所认识的空间就被初中的几何课塑造的四四方方,在三维坐标系中,x、y、z三轴沿着三个互相垂直的方向无限延伸,直到宇宙的尽头还是不能有丝毫的弯曲。
在这样的空间内,过直线外一点有且仅有一条唯一的直线与之平行,任意平面三角形的内角和必然是180度……
欧几里得给我们塑造的空间
这些在我们看来是天经地义的事情。
这种均匀分布的空间经过欧几里得的系统归纳
已经成为一门近乎完美的学科,到了牛顿那里就被称作是绝对空间。
在牛顿看来,绝对空间是脱离物质而存在,是人类生活以及天体运动的大背景,而且遥远的宇宙中心是真正意义上的绝对静止,以此建立的参考系就是绝对惯性参考系。
真的是这样吗?那么就重新认识一下空间的定义。
利用坐标系定义空间首先我们要
搞清楚直线和长度这两个概念。
时光回到欧几里得的时代,埃及的尼罗河流域内人们需要分配土地,在大量划界丈量的实践活动中,欧几里得总结出了直线和长度的概念:铲刀在地面上方向不变的运动所留下的痕迹就是直线(今天几何学中的线段),再截取一个固定长度的木棍,规定这个木棍的长度就是单位,再通过记录直线上能容纳的木棍数量就得到长度概念。
以上是我对埃及人和欧几里得的猜测,虽然无从考证,但我在也找不出直线和长度更加原始的定义方式了。
总结起来,要确定直线,就离不开物体方向不变的运动;要确定长度,也离不开用实际物体来规定单位长度(注:1889年的第一界国际计量大会确定“米原器”为国
际长度基准,它规定1米就是米原器在0摄氏度时两端的两条刻线间的距离。
)
这么来看欧式空间从诞生之时就没有离开物质和物质的运动,那么牛顿的绝对空间为
什么就轻易的脱离物质而虚幻般的存在?我们来对比一下两种空间。
假如你站在地球北极点上,看到一束笔直的光线从你的头顶略过(这条直线和地球相切于北极点),这时你追随这条光的直线而前进,并坚信自己所走的就是直线(运动方向不变)。
那么在最开始的一段时
间内,你和光线如影随形,亲密无间。
可是当你沿着子午经线还远没有走到赤道时,你总会发现你和光线分道扬镳了。
如果光线所代表的欧式直线没有“向上”翘起,那么就是你所在的地面“向下”沉了。
到底谁走
的是直线呢?我们先来确定一个评判标准,那就是直线必须依附于物质而存在,当初尼罗河畔的铲刀在定义直线时总是划在地面上的,总不至于划向太空吧!因此沿着子午经线走的你,始终坚信每一步都是沿着直线的,于是牛顿绝对空间里那条和地球北极相切的直线竟然是弯曲的,因为它没有物质存在的基础。
可是你脚踏实地的直线无限延伸的结果居然是回到出发点。
于是你困惑了,哪一个空间才是真实的?这时你需要坚定一个信念,空间是物质运动的空间。
数学家黎曼为我们描述了一个球面的二维空间,比如依附于地球表面而存在的球面,
这是一个典型的非欧式空间。
在这个球面空间内,直线两端的无限延伸必然结合,三角形的内角和大于180度。
举一个很典型的例子:如果把世界地图压缩成平面图,那么从北京到同纬度纽约的航班沿着北纬40度飞行不是最近最省油的吗?而实际上,飞机从北京起航后
先向东北飞行,绕道白令海峡再向东南方向奔向纽约。
有人肯定会笑话,这不是绕弯子自找麻烦吗?其实不然,在真实的球面上,两点之间最短的距离是短程线的长度。
所谓短程线是指两点和球心所确定的平面和球体相交所切的大圆上,这两点所夹的优弧。
(在地球上通常称为测地线)。
我利用高中的立体几何知识就可以证明这个问题。
欧式的绝对平面让…‟两点之间直线最短的规律“深入人心,头脑被矩形化的我们把这
些欧式几何规律任意扩展黎曼空间,结果与事实不符。
事实上,黎曼空间中还有很多让人意想不到的结论。
例如,在欧式空间中,过直线外一点有且只有一条直线与之平行。
但在黎曼空间中,过赤道外一点,没有一条直线与赤道平行(证明略)。
结论:
1、任何形式的空间,都要依靠物质及其运动来建构,绝对空间是不存在的。
2、欧式空间是和我们日常生活经验相符合的平整空间,黎曼空间是依附于地球球面而存在
的扭曲了的空间(当然其他非欧式空间的扭曲方式不一样,比如罗氏空间是一马鞍面)。
3、欧式平直空间是非欧式扭曲空间在狭小的局部范围内的高度近似,欧式空间的一切结论
不能随意推广到其他费欧式空间。
(足球场的中圈在场外看是圆形,但圈上的蚂蚁在它的视野内感觉自己处在直线上。
)。