绪论 生物化学简明教程
- 格式:ppt
- 大小:5.74 MB
- 文档页数:12
生物化学简明教程第一章绪论1.生物化学顾名思义是研究生物体的化学,是研究生物体分子组成及变化规律的基础学科。
其研究范畴主要包括:①生物体的化学组成,生物分子的结构、性质及功能;②生物分子的分解与合成,反应过程中的能量变化,及新陈代谢的调节与控制;③生物信息分子的合成及其调控,也就是遗传信息的贮存、传递和表达。
2.在蛋白质的结构领域,最值得珍视的是F.Sanger对胰岛素氨基酸顺序的测定结果。
F.Sanger 设计了一个巧妙的实验,用2,4—二硝基甲苯(DNFB)标记蛋白质N端的氨基酸,该蛋白质经水解生成黄色的DNP—氨基酸和游离氨基酸,可以利用纸层析加以分离。
终于在1953年,准确描述出含有51个氨基酸的胰岛素的一级结构。
3.蛋白质组:基因组所表达出的全部蛋白质。
4.蛋白质组学:对基因组所表达出的全部蛋白质进行分析建立的新技术体系。
5.常量元素(含量>0.01%):如C、H、O、N、P、S 6种主要元素约占机体的97.3%,Ca、K、Na、Cl、Mg在机体也占有较大的比例,这些元素被称为常见元素。
6.微量元素(含量<0.01%):如V、Ni、B、Sn、Si等及Fe、I、Zn、Mn、Co、Mo、Cu、Se 、Cr、F 10种元素为人体不可缺少的必需微量元素7.生物分子均是含碳的有机化合物。
生物在长期进化过程中之所以选择碳作为主要的生命元素,是由于碳原子具有特殊的成键性质。
碳原子最外层的4个电子可使碳形成4个共价键。
生物分子之所以复杂多变,种类繁多,正是由于碳骨架的复杂多变决定的。
8.因为功能基团都是极性基团而具有亲水性。
(功能基团如:氨基、羟基、羰基、羧基、基、磷酸基等)9.生物大分子组成的共同规律:生物大分子均由相同类型的构件通过一定的共价键聚合成链状,其主链骨架呈现周期性重复。
如:构成蛋白质的构件分子是20种基本氨基酸,氨基酸之间通过肽键相连,肽链具有方向性(N端→C端),蛋白质主链骨架呈“肽单位”重复;构成核酸的构件分子是核苷酸,核苷酸通过3',5'—磷酸二酯键相连,核酸链也具有方向性(5'→3'),核酸的主链骨架呈“磷酸—核糖(或脱氧核糖)”重复;构成脂质的构件分子是甘油、脂肪酸和一些其他取代基;构成多糖的构件分子是单糖,单糖间通过糖苷键相连。
生物化学简明教程(第4版)__张丽萍__课后答案1 绪论1(生物化学研究的对象和内容是什么,解答:生物化学主要研究:(1)生物机体的化学组成、生物分子的结构、性质及功能;(2)生物分子分解与合成及反应过程中的能量变化;(3)生物遗传信息的储存、传递和表达;(4)生物体新陈代谢的调节与控制。
2(你已经学过的课程中哪些内容与生物化学有关。
提示:生物化学是生命科学的基础学科,注意从不同的角度,去理解并运用生物化学的知识。
3(说明生物分子的元素组成和分子组成有哪些相似的规侓。
解答:生物大分子在元素组成上有相似的规侓性。
碳、氢、氧、氮、磷、硫等6种是蛋白质、核酸、糖和脂的主要组成元素。
碳原子具有特殊的成键性质,即碳原子最外层的4个电子可使碳与自身形成共价单键、共价双键和共价三键,碳还可与氮、氧和氢原子形成共价键。
碳与被键合原子形成4个共价键的性质,使得碳骨架可形成线性、分支以及环状的多种多性的化合物。
特殊的成键性质适应了生物大分子多样性的需要。
氮、氧、硫、磷元素构OC成了生物分子碳骨架上的氨基(—NH)、羟基(—OH)、羰基()、羧基(—COOH)、巯2基(—SH)、磷酸基(—PO)等功能基团。
这些功能基团因氮、硫和磷有着可变的氧化数及4氮和氧有着较强的电负性而与生命物质的许多关键作用密切相关。
生物大分子在结构上也有着共同的规律性。
生物大分子均由相同类型的构件通过一定的共价键聚合成链状,其主链骨架呈现周期性重复。
构成蛋白质的构件是20种基本氨基酸。
氨基酸之间通过肽键相连。
肽链具有方向性(N 端?C端),蛋白质主链骨架呈“肽单位”重复;核酸的构件是核苷酸,核苷酸通过3′, 5′-磷酸二酯键相连,核酸链也具有方向性(5′、?3′ ),核酸的主链骨架呈“磷酸-核糖(或脱氧核糖)”重复;构成脂质的构件是甘油、脂肪酸和胆碱,其非极性烃长链也是一种重复结构;构成多糖的构件是单糖,单糖间通过糖苷键相连,淀粉、纤维素、糖原的糖链骨架均呈葡萄糖基的重复。
兰州科技职业学院课程名称:生物化学授课教师:李妮 No: __4___第一章绪论生物化学:研究生物体的化学组成和生命过程中化学变化规律的科学,称为生物化学。
分子生物学:通常将生物大分子的结构、功能及其代谢调控等的研究,称为分子生物学。
从广义的角度可将分子生物学视为生物化学的重要组成部分。
一、生物化学发展简史生物化学是既古老又年轻的一门学科。
在我国可追溯到公元前21世纪,而欧洲约为200年前。
直到 1903年才由德国科学家C.A. Neuberg 提出“Biochemistry” 而成为一门独立的学科。
(一)古代生物化学的发展1. 公元前21世纪我国人民已能用曲(麯 )造酒,称曲为酒母,即酶。
2. 公元前12世纪前,我们的祖先已能利用豆、谷、麦等为原料,制成酱、饴和醋,饴是淀粉酶催化淀粉水解的产物,这足已表明是酶学的萌芽时期。
3. 汉代淮南王刘安制作豆腐,说明当时在提取豆类蛋白质方面已经应用了近代生物化学及胶体化学的方法。
4. 公元7世纪孙思邈用猪肝治疗雀目的记载,实际上是用富含维生素A的猪肝治疗夜盲症。
5. 北宋沈括记载的“秋石阴炼法”,实际上就是采用皂角汁沉淀等方法从尿中提取性激素制剂。
6. 明末宋应星记载的用石灰澄清法将甘蔗制糖的工艺,被近代公认为最经济的方法。
(二)近代生物化学的发展1. 18世纪下半叶,德国药师K.Scheele首次从动植物材料中,分离出乳酸、柠檬酸、酒石酸、苹果酸、尿酸和甘油等。
2.法国化学家voisier的实验证明,有机体的呼吸和蜡烛的燃烧同样都是碳氢化合物的氧化。
在氧化过程中,氧被消耗而水和二氧化碳被生成,同时放出热能。
这一发现被视为生物氧化研究的开端。
3. 1868年瑞士青年医生F.Miescher发现了核素,后来定名为核酸,为后续的研究作出了重要贡献。
(三)现代生物化学的发展1. 20世纪初期德国化学家E. Fischer在发现缬氨酸、脯氨酸和羟脯氨酸之后,又用化学方法合成了18个氨基酸的多肽。
生物化学简明教程
第一章蛋白质化学(于洺)第一节蛋白质通论
第二节氨基酸
第三节蛋白质结构
第四节蛋白质结构与功能
第五节蛋白质性质
第六节分离方法与测定
第二章酶化学(于洺)
第一节酶的分类和命名
第二节酶结构基础和催化策略
第三节酶促反应的动力学
第四节重要的酶类
第五节酶的分离纯化和活力测定
第三章维生素化学(王翔)第一节维生素的分类和命名
第二节重要的脂溶性维生素
第三节重要的水溶性维生素
第四章激素化学(王翔)
第一节激素概念和分类
第二节重要动物激素
第三节激素调控体系
第四节激素的作用原理和细胞信号传递
第五章糖与糖代谢(王翔)
第一节代谢通论和研究方法
第二节糖化学
第三节糖的分解代谢
第四节糖的合成代谢
第五节糖代谢调节
第六节生物氧化
第六章核酸化学(王翔)
第一节DNA结构
第二节核酸变性、复性和杂交
第三节限制性内切酶和DNA测序
第四节染色体结构
第七章DNA的复制、修复
第一节
第八章RNA转录、剪接和修饰第九章蛋白质的合成、修饰附录:生物化学实验(于洺)。
1、氨基酸:就是含有一个碱性氨基与一个酸性羧基的有机化合物,氨基一般连在α-碳上2、等电点:使氨基酸分子处于兼性离子状态,即分子的所带静电荷为零,在电场中不发生迁移的pH值。
等电聚胶电泳(IFE):利用一种特殊的缓冲液(两性电解质)在聚丙烯酰氨凝胶制造一个pH梯度,电泳时,每种蛋白质迁移到它的等电点(pI)处,即梯度足的某一pH时,就不再带有净的正或负电荷了3、肽键:一个氨基酸的羧基与另一个的氨基的氨基缩合,除去一分子水形成的酰氨键。
肽:两个或两个以上氨基通过肽键共价连接形成的聚合物4、构形:有机分子中各个原子特有的固定的空间排列。
这种排列不经过共价键的断裂与重新形成就是不会改变的。
构形的改变往往使分子的光学活性发生变化。
5、构象:指一个分子中,不改变共价键结构,仅单键周围的原子放置所产生的空间排布。
一种构象改变为另一种构象时,不要求共价键的断裂与重新形成。
构象改变不会改变分子的光学活性6、蛋白质的一级结构:指蛋白质多肽链中氨基酸的排列顺序,以及二硫键的位置。
7、酶:就是生物细胞产生的具有催化能力的生物催化剂。
8、全酶:具有催化活性的酶,包括所有必需的亚基,辅基与其它辅助因子。
同工酶:具有不同分子形式但却催化相同的化学反应,这种酶就称为同工酶。
限速酶:整条代谢通路中催化反应速度最慢的酶,它不但可影响整条代谢途径的总速度,还可以改变代谢方向9、结构域:在蛋白质的三级结构内的独立折叠单元。
10、蛋白质变性:生物大分子的天然构象遭到破坏导致其生物活性丧失的现象。
蛋白质在受到光照,热,有机溶济以及一些变性济的作用时,次级键受到破坏,导致天然构象的破坏,使蛋白质的生物活性丧失。
11、蛋白质的沉淀作用:在外界因素影响下,蛋白质分子失去水化膜或被中与其所带电荷,导致溶解度降低从而使蛋白质变得不稳定而沉淀的现象称为蛋白质的沉淀作用12、复性:在一定的条件下,变性的生物大分子恢复成具有生物活性的天然构象的现象13、别构效应:又称为变构效应,就是寡聚蛋白与配基结合改变蛋白质的构象,导致蛋白质生物活性丧失的现象14、活化能:将1mol反应底物中所有分子由其常态转化为过度态所需要的能量15、核酸的变性、复性:当呈双螺旋结构的DNA 溶液缓慢加热时,其中的氢键便断开,双链DNA 便脱解为单链,这叫做核酸的“溶解”或变性。