§1-8 相速、群体及色散特性
- 格式:pdf
- 大小:222.80 KB
- 文档页数:8
一波包维基百科,自由的百科全书跳转到:导航搜索汉汉▼一个正在传播中,非色散的波包。
在物理学里,一个波包是一群平面波在空间的一个小区域内的叠和。
这些平面波都有不同的波数、波长、相位、波幅,都分别地建设性干涉于空间的一个小区域。
依据不同的演化方程,在传播的时候,波包的包络线(素描波包轮廓的曲线)可能会保持不变(没有色散,如图右),或者包络线会改变(有色散)。
在量子力学里,波包有个特别的意思:波包被铨释为粒子的概率波,而在任何位置,任何时间,概率波波幅的绝对值的平方,就是在那个位置,那个时间,找到粒子的概率密度。
在这方面,它的功能类似波函数。
类似在经典力学里的哈密顿表述,在量子力学里,应用薛定谔方程,我们可以追溯一个量子系统随着时间的演化。
波包是薛定谔方程的数学解答。
在某些区域内,波包所囊括的面积的平方,可以铨释为找到粒子处于那区域的概率密度。
采用坐标表现,波包的位置给出了粒子的位置。
波包越狭窄,粒子的位置越明确,而动量的分布越扩散。
这位置的明确性和动量的明确性,两者之间的轻重取舍是海森堡不确定原理的一个标准例子。
目录隐藏1 背景 2 波包计算范例 3 参考文献 4 参阅编辑背景早在十七世纪,牛顿就已创始地建议光的粒子观:光的移动是以离散的束包形式,称为光微粒。
可是,在许多实验中,光表现出了波动行为。
这使科学家们渐渐地倾向于波动观,认为光是一种传播于介质中的波动。
特别著名的一个实验是英国科学家托马斯杨在1801 年设计与研究成功的双缝实验。
这实验试图解答光到底是粒子还是波动的问题。
从这实验观测到的干涉图案给予光的粒子观一个致命的打击。
大多数的科学家从此接受了光的波动观。
在20 世纪初期,科学家开始发现经典力学内在的许多严重的问题,许多实验的结果,都无法用经典理论来解释。
一直到1930 年代,光的粒子性,才真正地被物理学家广泛接纳。
在这段时间,量子力学如火如荼的发展,造成了许多理论上的突破。
许多深奥的实验结果,都能够得到圆满合理的解释。
微波:波速、相速、群速和能量传输速度的区别与联系波速、相速、群速、能量传输速度1、定义波速(wave celerity):单位时间内波形传播的距离,以波长与波周期之⽐表⽰.V=⼊/T.相速(phase velocity):相速度,单⼀频率的正弦电磁波波的等相⾯(例如波峰⾯或波⾕⾯)在介质中传播的速度v=c/n,c为⾃由空间中的光速,n为介质对该频率电磁波的折射指数。
在理想介质中,电磁波的相速仅与介质参数有关.群速(group velocity):(1)、波列作为整体的传播速度(2)波群传播的速度。
波的群速度,简称群速,是指波的包络传播的速度。
实际上就是波实际前进的速度。
群速是⼀个代表能量的传播速度。
概念引⼊原因:实⽤系统的信号总是由许多频率分量组成,在⾊散介质中,各单⾊分量将以不同的相速传播,因此要确定信号在⾊散介质中的传播速度就发⽣困难,为此引⼊群速的概念,它描述信号的能量传播速度。
能量传播速度:群速是波群的能量传播速度.2、相互关系(1)相关概念⾮⾊散介质:⽆线电波在介质中传播时,介电常数ε与频率⽆关,波的传播速度也与频率⽆关的介质;⾊散介质:与此相反,如果介电常数ε或传播速度v与频率有关的介质.正常⾊散:⼀切⽆⾊透明介质在可见光区域均表现为正常⾊散。
特点:波长变⼤时,由v=λf,频率不变,则V增⼤。
⽽n=c/v,则折射率值n变⼩,⾓⾊散率D变⼩。
反常⾊散:在某些波段会出现,波长变⼤时折射率值增⼤的现象,这称为反常⾊散。
反常⾊散同样是物质的普遍性质。
反常⾊散与选择吸收密切相关,即在发⽣物质的选择吸收波段附近出现反常⾊散。
⾓⾊散率:由夫琅和费衍射理论知,产⽣衍射亮条纹的条件(光栅⽅程):dsinθ=kλ(k= 1, 2,…, n)光栅⽅程对λ微分,就可得到光栅的⾓⾊散率:ψ=Δθ/Δλ=k/dcos.⾓⾊散率是光栅、棱镜等分光元件的重要参数,随着k的增⼤,⾊散率也就越⼤。
它表⽰单位波长间隔内两单⾊谱线之间的⾓间距,当光栅常数d愈⼩时,⾓⾊散愈⼤;光谱的级次愈⾼,⾓⾊散也愈⼤。
色散和群速度的关系一、引言色散和群速度是光学领域中两个重要的概念。
色散是光波中波长不同频率不同的现象,而群速度是光的传播速度。
色散和群速度之间存在着一定的关系,通过研究这种关系可以深入理解光的本质和光的传播规律。
二、色散的定义和分类色散是指光在透明介质中传播时,由于介质的不均匀性和非线性导致不同频率的光波具有不同的传播速度,从而产生波长变化的现象。
色散现象可以用光的折射率随波长的变化来描述。
根据波长对折射率的依赖关系,色散可以分为两种类型:正常色散和反常色散。
正常色散是指折射率随着波长的增加而减小的现象。
这种色散现象在大多数物质中发生,如水、玻璃等。
当光由空气进入这些物质时,低频成分的光波传播速度较高,而高频成分的光波传播速度较低,导致光波的波前变为凹面状,即波长变长。
反常色散是指折射率随着波长的增加而增大的现象。
这种色散现象在某些特殊的物质中发生,如某些光学玻璃和光纤等。
当光由空气进入这些物质时,低频成分的光波传播速度较低,而高频成分的光波传播速度较高,导致光波的波前变为凸面状,即波长变短。
三、群速度的定义和特性群速度是指介质中光的能量传输速度。
它可以通过介质中光的波包的传播速度来描述。
群速度可以用光的相速度和色散的关系来表示。
相速度是指波的相位的传播速度,是光波的特性之一。
光波的相位是指光波的起点和终点的时间差。
根据光波的频率和波长可得到相速度的公式:v_phase = λf,其中v_phase为相速度,λ为波长,f为频率。
色散的存在使得光波的相速度和群速度不完全相同。
群速度是指波包传播过程中其最大幅值的能量传输速度。
在光的传播中,光波的不同频率成分在介质中传播速度不同,导致波包的形状能发生变化。
这种变化称为群速度的谱宽展宽效应。
群速度可以用群速度和色散的关系来描述。
群速度与色散之间存在一定的关系,通过研究这种关系可以深入理解光波的特性,有助于光学应用的发展。
四、色散与群速度的关系色散和群速度之间的关系可以通过波包的传播来解释。
导波光学清华大学电子工程系范崇澄等编著内容简介本书系1988年出版的同名教材的修改版。
全书由九章增至十二章,系统讨论了用于光通信、光传感和光信息处理的光波导的基本原理和特性。
内容包括光波理论的一般问题、平面与条形光波导、耦合波理论、阶跃和渐变折射率光导纤维中的场解、光波导中的损耗、信号沿光波导传输时的弥散、单模光纤中的双折射和偏振态的演化、光纤光栅、有源掺杂光纤以及光纤中的非线性等内容。
在叙述中强调基本物理概念和处理方法的思路,并介绍了本学科近期发展的某些重要成果。
本书适合于有关光通信、信息光电子学、电子物理、以及微波技术等专业的大学高年级学生及研究生阅读,并可作为有关领域的教学、科学研究和工程技术人员参考。
教学大纲总学时:60。
授课方式:讲课+自学。
主要内容(根据需要有所取舍):第一章光导波理论的一般问题§1-1 导波光学的基本问题及研究方法§1-2 几何光学方法§1-3 波动光学方法及波动方程§1-4 电磁波在介质界面上的反射及古斯-汉欣位移§1-5 光波导中模式的基本性质§1-6 弱导近似§1-7 传播常数(本征值)的积分表达式及变分定理§1-8 相速、群速及色散特性§1-9 本地平面波方法§1-10 光束的衍射·几何光学及本地平面波方法的应用范围§1-11 介质波导与金属波导的若干比较第二章平面及条型光波导§2-1 用本地平面波方法平面光波导的本征值方程§2-2 用电磁场方法求解平面光波导§2-3 条形光波导的近似解析解§2-4 条形光波导的数值解法概述第三章耦合模理论§3-1 模式正交性的及模式展开§3-2 导波模式的激励§3-3 耦合模方程及耦合系数§3-4 耦合模理论的局限及其改进第四章导波光束的调制§4-1 光波调制的一般概念§4-2 晶体的电-光特性§4-3 光波导的电-光调制§4-4 定向耦合型调制器/开关第五章阶跃折射率光纤中的场解§5-1 数学模型及波动方程的解§5-2 模式分类准则及模式场图(本征函数)§5-3 导波模的色散特性及U值的上、下限§5-4 色散特性的进一步简化§5-5 弱导光纤中场的标量近似解—线偏振模§5-6 平均功率与功率密度§5-7 模式场的本地平面波描述第六章渐变折射率弱导光纤中的场解§6-1 无界抛物线折射率弱导光纤中场的解析解§6-2 WKB法求解导波模的本征函数及本征值§6-3 模式容积及主模式号·泄漏模§6-4 单模光纤的近似解法(一)——高斯近似§6-5 单模光纤的近似解法(二) -- 等效阶跃光纤近似(ESF)§6-6 单模光纤的近似解法(三) - 矩等效阶跃折射率近似及其改进§6-7 单模光纤的模场半径§6-8 单模光纤的截止波长第七章光波导中的传输损耗§7-1 损耗起因和损耗谱§7-2 本征吸收及瑞利散射损耗§7-3 杂质吸收§7-4 弯曲损耗§7-5 弯曲过渡损耗§7-6 连接损耗第八章信号沿线性光波导传输时的畸变§8-1 脉冲沿线性光波导传输时畸变的起因及描述方法§8-2 材料色散§8-3 g型多模光纤的模间弥散§8-4 单模光纤的色散§8-5 单模光纤的色散对系统色散的影响§8-6 新型石英系光纤第九章单模光波导中的双折射及偏振态的演化§9-1 双折射现象及其意义§9-2 双折射光纤的参数及其分类§9-3 光纤中的线双折射§9-4 光纤中的圆双折射§9-5 偏振态沿光纤的演化(一)—琼斯矩阵法§9-6 单模光纤中偏振态的演化(二)—邦加球法§9-7 偏振模色散在邦加球上的描述第十章光纤光栅§10-1 概述§10-2光纤布拉格光栅(FBG)的基本原理、结构和分析方法§10-3 常见的FBG§10-4 采样布拉格光栅(SBG)§10-5 长周期光纤光栅第十一章掺铒光纤放大器§11-1 引言§11-2 掺铒光纤放大器的基本工作原理与特性§11-3 EDFA内部物理过程的进一步讨论和Giles参数§11-4 EDFA的稳态工作特性§11-5 EDFA中的增益瞬态过程§11-6 EDFA的设计原则第十二章光纤中的非线性效应§12-1 引言§12-2 光纤中的非线性薛定鄂方程§12-3 光纤中的受激散射§12-4 光纤中的四波混频效应§12-5 自相位调制(SPM)§12-6 非线性色散光纤中信道内的噪声演化与调制不稳定性§12-7 信道间的串扰噪声:互相位调制(XPM)和受激拉曼散射(SRS) 结语。
相速度与群速度振动状态在空间的传播速度称为波速,又称相速度。
如沿x轴正方向传播的平面简谐波,其表达式为式中(ωt-kx)称为波相,当(ωt-kx)一定时,则ξ值一定。
当t增大时,x必须增大,才能保持(ωt-kx)不变。
这意味着用(ωt-kx)描述的振动状态随着时间的推移向x的正方向传播。
相速度即波相传播的速度,等于x对t的变化率,令ωt-kx=常量将上式两边微分,经整理可得(1)u即所求相速度。
这里ω=2πv,,代入则得此即大家熟悉的相速度的公式。
从根本上讲,相速度的大小取决于媒质的性质。
弹性波由弹性媒质的力学性质决定,电磁波由媒质的折射率决定。
实验和理论证明,相速度的大小还与波的频率有关。
光的色散现象就是波速与频率有关的明显例证。
通常把相速度与频率无关的媒质称为无色散媒质;把相速度随频率而变的媒质称为色散媒质。
在无色散媒质中,只要用相速度描述波的传播即可,但是在色散媒质中,要描述任意一种波(如图1所示的非简谐波)的传播只有相速度就不够了,需要引入群速度的概念。
p/dλ≠0,vg≠vp),并且在正常色散区域(dvp/dλ>0,dn/d λ<0),群速度小于相速度(vg<vp);在反常色散区域(dvp/dλ<0,dn/d λ>0),群速度则大于相速度(vg>vp)。
只有在无色散介质或真空中(dvp/dλ=0,dn/d λ=0),群速度才等于相速度(vg=vp)。
根据付里叶分析,任何一个复杂的波,都可以分解成许多不同频率成分的简谐波的叠加。
在色散媒质中,不同频率的简谐波传播速度不同,那么这许多简谐波合成的波是以什么速度传播呢?为了方便,以两个频率相近的等振幅简谐波的合成波的传播为例说明群速度的概念。
设合成波为(2)式(2)中或,或k2,所以变化缓慢,如图中虚线所示的包络线;而表示图中一个个小的波形。
令,,,,则式(2)可改写为在波传播过程中,一个个小的波形在向前传播的同时,整个波形即包络也在向前移动,二者移动速度可如下求得:令=常量等式两边微分,可求得小波形移动的速度为(3)同样可求得包络移动的速度或称波群移动的速度为一般表示为:(4)U g即群速度。