简谐运动的物理量和表达式
- 格式:docx
- 大小:32.73 KB
- 文档页数:1
高中物理:简谐运动【知识点的认识】简谐运动1.定义:如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动图象是一条正弦曲线,这样的振动叫简谐运动。
2.简谐运动的描述(1)描述简谐运动的物理量①位移x:由平衡位置指向质点所在位置的有向线段,是矢量。
②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱。
③周期T和频率f:物体完成一次全振动所需的时间叫周期,而频率则等于单位时间内完成全振动的次数,它们是表示振动快慢的物理量。
二者互为倒数关系。
(2)简谐运动的表达式x=Asin(ωt+φ)。
(3)简谐运动的图象①物理意义:表示振子的位移随时间变化的规律,为正弦(或余弦)曲线。
②从平衡位置开始计时,函数表达式为x=Asinωt,图象如图1所示。
从最大位移处开始计时,函数表达式为x=Acosωt,图象如图2所示。
3.简谐运动的回复力(1)定义:使物体返回到平衡位置的力。
(2)方向特点:回复力的大小跟偏离平衡位置的位移大小成正比,回复力的方向总指向平衡位置,即F=﹣kx。
4.简谐运动的能量简谐运动过程中动能和势能相互转化,机械能守恒,振动能量与振幅有关,振幅越大,能量越大。
5.简谐运动的两种基本模型弹簧振子(水平)单摆模型示意图条件忽略弹簧质量、无摩擦等阻力细线不可伸长、质量忽略、无空气等阻力、摆角很小平衡位置弹簧处于原长处最低点回复力弹簧的弹力提供摆球重力沿与摆线垂直(即切向)方向的分力周期公式T =2π(不作要求)T =2π能量转化弹性势能与动能的相互转化,机械能守恒重力势能与动能的相互转化,机械能守恒【命题方向】常考题型是考查简谐运动的概念:简谐运动是下列哪一种运动()A .匀变速运动B .匀速直线运动C .变加速运动D .匀加速直线运动分析:根据简谐运动的加速度与位移的关系,分析加速度是否变化,来判断简谐运动的性质,若加速度不变,是匀变速直线运动;若加速度变化,则是变加速运动。
解:根据简谐运动的特征:a =﹣,可知物体的加速度大小和方向随位移的变化而变化,位移作周期性变化,加速度也作周期性变化,所以简谐运动是变加速运动。
简谐运动的描述一、描述简谐运动的物理量 1.振幅(1)定义:振动物体离开平衡位置的最大距离,用A 表示。
(2)物理意义:表示振动的强弱,是标量。
2.全振动图11-2-1类似于O →B →O →C →O 的一个完整振动过程。
3.周期(T )和频率(f )描述周期性运动在各个时刻所处的不同状态。
二、简谐运动的表达式简谐运动的一般表达式为x =A sin(ωt +φ) 1.x 表示振动物体相对于平衡位置的位移。
2.A 表示简谐运动的振幅。
3.ω是一个与频率成正比的量,表示简谐运动的快慢,ω=2πT =2πf 。
4.ωt +φ代表简谐运动的相位,φ表示t =0时的相位,叫做初相。
1.对全振动的理解(1)全振动的定义:振动物体以相同的速度相继通过同一位置所经历的过程,叫作一次全振动。
(2)全振动的四个特征:①物理量特征:位移(x )、加速度(a )、速度(v )三者第一次同时与初始状态相同。
②时间特征:历时一个周期。
③路程特征:振幅的4倍。
④相位特征:增加2π。
2.简谐运动中振幅和几个物理量的关系(1)振幅和振动系统的能量:对一个确定的振动系统来说,系统能量仅由振幅决定。
振幅越大,振动系统的能量越大。
(2)振幅与位移:振动中的位移是矢量,振幅是标量。
在数值上,振幅与振动物体的最大位移相等,但在同一简谐运动中振幅是确定的,而位移随时间做周期性的变化。
(3)振幅与路程:振动中的路程是标量,是随时间不断增大的。
其中常用的定量关系是:一个周期内的路程为4倍振幅,半个周期内的路程为2倍振幅。
(4)振幅与周期:在简谐运动中,一个确定的振动系统的周期(或频率)是固定的,与振幅无关。
做简谐运动的物体位移x 随时间t 变化的表达式: x =A sin(ωt +φ)(1)x :表示振动质点相对于平衡位置的位移。
(2)A :表示振幅,描述简谐运动振动的强弱。
(3)ω:圆频率,它与周期、频率的关系为ω=2πT =2πf 。
专题18 简谐运动重点知识讲解一、简谐运动1、定义:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动叫简谐=-运动。
表达式为:F kx2、几个重要的物理量间的关系:要熟练掌握做简谐运动的物体在某一时刻(或某一位置)的位移x、回复力F、加速度a、速度v这四个矢量的相互关系。
∝,方向与位移方向相反。
(1)由定义知:F x∝,方向与位移方向相反。
(2)由牛顿第二定律知:a F∝,方向与位移方向相反。
(3)由以上两条可知:a x(4)v和x、F、a之间的关系最复杂:当v、a同向(即v、F同向,也就是v、x反向)时v一定增大;当v、a反向(即v、F反向,也就是、x同向)时,v一定减小。
要点诠释:物体从A由静止释放,从A→O→B→O→A,经历一次全振动,图中O为平衡位置,A、B为最大位移处,设向右O→A为正方向。
(1)位移:只要在平衡位置正方向就为正,只要在平衡位置负方向就为负,与运动方向无关;(2)加速度、回复力:始终指向平衡位置;(3)速度:必须按规定的正方向确定;(4)特殊点O、A、B物理量的特点:平衡位置O点:位移为零、回复力为零、加速度为零、速度最大、动能最大、势能为零。
正的最大位移A点:位移正向最大、回复力最大(指向O,图中向左)、加速度最大(指向O,图中向左)、速度为零、动能为零、势能最大。
负的最大位移B点:位移负向最大、回复力最大(指向O,图中向右)、加速度最大(指向O,图中向右)、速度为零、动能为零、势能最大。
(5)运动特点:从平衡位置O 向A (或B )运动,速度越来越小,加速度(回复力)越来越大,做加速度增大的减速运动,是变减速运动;从A (或B )向平衡位置O 运动,速度越来越大,加速度(回复力)越来越小,做加速度减小的加速运动,是变加速运动。
3、描述简谐运动的物理量:振动的最大特点是往复性或者说是周期性。
因此振动物体在空间的运动有一定的范围,用振幅A 来描述;在时间上则用周期T 来描述完成一次全振动所需的时间。
第 1 页 共 1 页 简谐运动的物理量和表达式
1.做简谐运动的物体,当它每次经过同一位置时,可能不同的物理量是( )
A .位移
B .速度
C .加速度
D .回复力
答案 B
2.某质点做简谐运动,其位移随时间变化的关系式为x =A sin π4
t ,则质点( ) A .第1 s 末与第3 s 末的位移相同
B .第1 s 末与第3 s 末的速度相同
C .第3 s 末至第5 s 末的位移方向都相同
D .第3 s 末至第5 s 末的速度方向都相同
答案 AD
解析
由关系式可知ω=π4 rad/s ,T =2πω
=8 s ,将t =1 s 和t =3 s 代入关系式中求得两时刻位移相同,A 对;作出质点的振动图象,由图象可以看出,第1 s 末和第3 s 末的速度方向不同,B 错;由图象可知,第3 s 末至第4 s 末质点的位移方向与第4 s 末至第5 s 末质点的位移方向相反,而速度的方向相同,故C 错,D 对.
3.做简谐振动的单摆摆长不变,若摆球质量增加为原来的4倍,摆球经过平衡位置时速度
减小为原来的12
,则单摆振动的( ) A .频率、振幅都不变
B .频率、振幅都改变
C .频率不变、振幅改变
D .频率改变、振幅不变
答案 C
解析 单摆的周期由摆长和当地的重力加速度决定.由单摆的周期公式T =2πl g ,可知,单摆摆长不变,则周期不变,频率不变;振幅A 是反映单摆运动过程中的能量大小的物理
量,由E k =12
m v 2结合题意可知,摆球经过平衡位置时的动能不变,因质量增大,故振幅减小,所以
C 正确.。