(优选)线性代数第一章阶行列式哈工大版
- 格式:ppt
- 大小:3.76 MB
- 文档页数:100
大一线性代数行列式知识点线性代数是大学数学课程中的重要内容之一,而线性代数中的行列式更是一个关键的概念。
行列式具有广泛的应用,在矩阵运算、方程求解、向量空间等方面都发挥着重要的作用。
本文将介绍一些大一学生常见的线性代数行列式知识点,包括行列式的定义、性质以及计算方法。
一、行列式的定义行列式可以看作是一个方阵的一个具体的实数值。
对于一个n阶方阵A,行列式的定义如下:det(A)=∑(−1)^σP(a1,σ(1))a2,σ(2)...an,σ(n)其中,det(A)表示方阵A的行列式,σ表示一个置换,P表示这个置换的奇偶性,a1, a2, ..., an表示A的元素。
二、行列式的性质行列式具有许多重要的性质,下面将介绍其中一些常见的性质。
1. 方阵的行列式等于其转置矩阵的行列式。
这意味着行列式的值不受行、列次序的影响,只取决于方阵中元素的值。
2. 互换某两行(列)的位置,行列式的值变号。
这个性质说明了方阵中交换两行(列)的位置对行列式的值有影响。
3. 方阵中某行(列)的元素都乘以一个数k,行列式的值乘以k。
这个性质说明了方阵某行(列)的元素乘以一个数k对行列式的值有影响。
4. 方阵中某行(列)的元素表示为两个数之和,可以将行列式分成两项之和。
这个性质可以用于简化行列式的计算。
三、行列式的计算方法计算行列式的值是线性代数中的重要技能之一,下面将介绍两种常见的计算行列式的方法。
1. 代数余子式法代数余子式法是一种逐步缩小行列式规模的计算方法。
具体步骤如下:- 选定方阵A的第一行(列);- 对于第一行(列)的每个元素aij,计算其代数余子式Mij;- 根据公式det(A) = ∑((-1)^(i+j))aijMij,计算行列式的值。
2. 拉普拉斯展开法拉普拉斯展开法是一种从行或列展开的计算方法。
具体步骤如下:- 选定方阵A的第一行(列);- 对于每个选定的元素aij,计算其余子式Aij;- 根据公式det(A) = ∑((-1)^(i+j))aijAij,计算行列式的值。
《线性代数》第一章习题解答1.确定下列排列的逆序数,并指出它们是奇排列还是偶排列.(1) 41253 (2)654321 (3)(1)(2)321n n n --⋅⋅ 解:(1)(41253)4τ=偶排列(2)(654321)15τ=奇排列(3)12((1)321)(1)n n n n τ-⋅⋅=- , 当441n =ℜℜ+或时:偶排列 当4243n =ℜ+ℜ+或时,奇排列.2.设四阶行列式1325127064311916231419--,试求:142232,,A A A .解:14141270(1)4311908162314A +=--=, 2222125(1)4119803161419A +-=--=-,2332125(1)1206660161419A +-=-=-3.设四阶行列式1241111125683152----,试求:41424344.A A A A +++ 解:4142434412411111025681111A A A A -+++==-.4.计算下列行列式:(1)352423124-(2)11121321223100a a a a a a (3)1210032141031263------(3)14232432333441424344000000a a a a a a a a a a (5)100110011001a b c d ---(6)0000a b aa ab b a a a b a (7)1111111111111111x xy y+-+-解:(1)-69 (2)132231a a a -(3)0 (4)14233241a a a a(5)1abcd ab cd ad ++++(6)222(4)b b a -(7)22x y 5.证明:(1)22322()111a ab b aa b b a b +=-(2)33()ax byay bz az bx x y z ay bzaz bx ax by a b y zx az bxax by ay bz zxy++++++=++++ (3)222222222222222(1)(2)(3)(1)(2)(3)0(1)(2)(3)(1)(2)(3)a a a a b b b b c c c c d d d d ++++++=++++++(4)222244441111()()()()()()()a b c da b a c a d b c b d c d a b c d a b c d a b c d =------+++解:证明略. 6.已知:0231111xy z=,求下列各行列式的值. (1)11133323111xyz (2)111134111x y z --- (3)33436111xyzxy z x y z +++++解:(1)13(2)1 (3)2 7.n 阶行列式111213121222323132333123nnn n n n n nna a a a a a a a D a a a a a a a a =中,若: ,1,2,,ij ji a a i j n =-= 那么称n D 为反对称行列式(n 阶).证明:奇数阶反对称行列式等于零.证明:11213111112131122232221222321132********333123123nn n n n n n nnn nnn nnnna a a a aaa a a a a a a a a aD a a a a a aa a a a a a a a a a --------==--------21(1)(1)n n n n D D D ℜ+=-⋅=-=-,0n D ∴=.8. 计算n 阶行列式(1)00010200100000n n-(2)010000200010n n-(3)000000000x y x x y yx(4)121212n nn mx m x x x x m x x x x ---(5)12311100002200011n n n n-----(6)1231111111111111111na a a a ++++(7)01211111001001n a a a a -(120n a a a ⋅≠ ) 解:(1)(3)2(1)!n n n +-⋅(2)1(1)!n n +-⋅ (3)1(1)nn nx y ++-(4)11()()nn i i m x m -=--∑(各列加到第一列)(5)1(1)(1)!2n n -⋅⋅+(各列加到第一列) (6)112211111111111100111n n a a a a D a ++++=+12111210000111n n n n n a a a D a D a a a ---=+=+12122121[]n n n n n a a D a a a a a a ----=++12123122121n n n n n n a a a a a a a a a a a a a a ---==++++111(1)n ni i i ia a ===⋅+∏∑ (7) 1121011()n n n i ia a a a a a --=-∑ (各列乘1i a -加到第一列11i n ≤≤-) 9. 证明: (1)(2)cos 100012cos 100cos()012cos 00012cos n ααααα=(3)123112231111000000(1)00000n n nin i in n na x a a a a x x x x a x x x x x x -=--+--=+-∑,这里 1230n x x x x ⋅⋅⋅⋅≠ .(4)11000100()01000001n n a b ab a b aba b a b a ba ba b++++-=≠+-+证明:(1)左121212110000100001n n nn n xx C xC a a a x a x a x a -----+-+++211211010000010001n n nn in i i C xC C xC x a x x a ---=--++-++∑111(1)()(1)nn nn i n i i x a x +--==-+⋅-∑111n n n x a x a x x --=++++ =右(2)当1n =时成立,设当n k =时成立,则当1n k =+时,行列式按第1k +行展开1cos 1012cos 02cos 2cos 011D D θθθθℜ+ℜ=⋅-12cos 2cos cos cos(1)cos(1)D D k k k θθθθθℜℜ-=⋅-=⋅--=+故命题成立. (3).31121231121110001100(1)()0001000011n n n na a a a a x x x x x n j n x x x χ--+--≤≤-j 各列提出因子左32231121210100)()011001in inna a a a x x x x i n n C C C x x x =++++-∑121()(1)ii na n x i x x x ==+∑ =右 (4) 00001000000001n a a b ab D a b ab a b+==+++左 00010000001b ab a b ab a b ab a b+++=110001000001n a a b ab a D ba b -+⋅++1100001000001n b ab a D ba b-=⋅++ 1n n a D b -=⋅+同理由,a b 的对称性,可得:1n n n D b D a -=⋅+两式联立消去1n D -,得11n n a b n a bD ++--=10.利用范德蒙行列式计算(1)1111437516949256427343125--(2)1111234514916182764解:(1)10368 (2) 12 11.用拉普拉斯定理计算下列行列式(1)560001560015600015600015(2)a a a b x y yb y x y byy xλ解: (1)56016056501560561516015015D =⋅-⋅=665 (2)0000000a a a a bx y y y y x x y D y x x y x yλ--=---(1)(2)00000000000n a a a a b x n yy y y x y x y x yλ-+--=--00000000(1)0000(2)00000x y x y n a x y bx n yx y x yλ----=⋅+---2[(2)(1)]()n x n y n ab x y λλ-=+-⋅---12. 用克莱姆法则解下列线性方程组(1)123412423412342583682254760x x x x x x x x x x x x x x +-+=⎧⎪--=⎪⎨-+=-⎪⎪+-+=⎩(2)123412341234123425323321348256642x x x x x x x x x x x x x x x x +-+=⎧⎪--+-=-⎪⎨-++-=-⎪⎪--+=⎩解:(1)123427,81,108,27,27∆=∆=∆=-∆=-∆=12343,4,1,1x x x x ==-=-=(2)123417,34,0,17,85∆=∆=-∆=∆=∆= 12342,0,1,5x x x x =-===13. 求k 的值,使下列方程组有非零解0020kx y z x ky z x y z ++=⎧⎪+-=⎨⎪-+=⎩解:211113404 1.211kk k k k ∆=-=--=∴==--或k 14.设有方程组33331x y z ax by cz d a x b y c z d ⎧++=⎪++=⎨⎪++=⎩试求它能用克莱姆法则求解的条件,并求出解. 解:333111()()()()0a bc b a c a c b a b c a b c ∆==---++≠,,,0a b a c b c a b c ∴≠≠≠++≠时有解,且解为:123()()()()()()()()()()()()()()()()()()()()()()()()b dcd c b d b c x b a c a c b a b c d a c a c d d b c x b a c a c b a b c b a d a d b a b c x b a c a c b a b c ---++=---++---++=---++---++=---++14. 设121222212111111211111()n n n n n n n xa a a F x xa a a x a a a -------=,其中11,n a a - 互不相同。