射影定理与仿摄影定理模型
- 格式:doc
- 大小:219.00 KB
- 文档页数:6
相似三角形(射影定理及角平分线的性质)射影定理:【知识要点】1、直角三角形的性质:(1)直角三角形的两个锐角(2)Rt △ABC 中,∠C=90º,则 2+ 2= 2 (3)直角三角形的斜边上的中线长等于(4)等腰直角三角形的两个锐角都是 ,且三边长的比值为(5)有一个锐角为30º的直角三角形,30º所对的直角边长等于 ,且三边长的比值为 2、直角三角形相似的判定定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
3、双垂直型:Rt △ABC 中,∠C=90º,CD ⊥AB 于D ,则 ① ∽ ∽ ②S △ABC =22③射影定理:CD 2= · AC 2= · BC 2= · 【常规题型】1、已知:如图,△ABC 中,∠ACB=90°,CD ⊥AB 于D ,S △ABC=20,AB=10。
求AD 、BD 的长.2、已知,△ABC 中,∠ACB=90°,CD ⊥AB 于D 。
(1)若AD=8,BD=2,求AC 的长。
(2)若AC=12,BC=16,求CD 、AD 的长。
【典型例题】例1.已知:如图,在四边形ABCD 中,∠ABC=∠ADC=90º,DF ⊥AC 于E ,且与AB 的延长线相交于F ,与BC 相交于G 。
求证:AD 2=AB ·AFBADFEGDCAB例2.如图所示,在△ABC 中,∠ACB=90°,AM 是BC 边的中线,CN ⊥AM 于N 点,连接BN ,求证:BM 2=MN ·AM 。
例3.已知:如图,Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D ,DE ⊥AC 于E ,DF ⊥BC 于F 。
求证:AE ·BF ·AB =CD 3例4.在ABC Rt ∆中,k AC BC DE CE AB CD C ==⊥︒=∠,,,90,求CFBF角平分线的性质:【知识要点】如图,在△ABC 中,∠A 平分线交BC 边于D 点,则有:CDBDAC AB =. 证明:例6、在△ABC 中,∠B 和∠C 的平分线分别为BD 和CE ,且DE ∥BC 。
射影定理立体几何射影定理是立体几何中的一个重要定理,它描述了一个几何体在一个投影面上的投影和几何体的相似性之间的关系。
在本文中,我们将介绍射影定理的基本概念和应用,并探讨它在实际生活中的一些应用场景。
射影定理是从几何学的角度来研究物体的投影和相似性的定理。
在立体几何中,我们经常会遇到一个物体在一个投影面上的投影,例如一个建筑物在地面上的投影、一个人在墙上的投影等等。
射影定理告诉我们,在一定条件下,投影和几何体是相似的。
具体来说,射影定理指出,当一个几何体在一个平行于其一侧的投影面上投影时,投影和几何体是相似的。
换句话说,投影和几何体之间存在着一种比例关系,它们的相似比等于几何体和投影面之间的距离比。
例如,我们可以考虑一个长方体在一个平行于其中一个侧面的投影面上的投影。
根据射影定理,投影的形状和长方体的形状是相似的。
如果我们将这个投影和长方体分别用比例相等的边长表示,那么它们之间的比例关系就成立。
射影定理在实际生活中有着广泛的应用。
首先,它在建筑设计中起着重要的作用。
建筑师在设计建筑物时往往会通过投影来预测建筑物在不同时间和天气条件下的外观。
射影定理可以帮助建筑师准确地计算出建筑物在投影面上的投影,从而更好地评估建筑物的外观效果。
射影定理在地图制作和导航系统中也有着重要的应用。
地图制作师常常需要将三维的地理信息转化为二维的地图,这就涉及到将地球表面上的物体在地图上的投影。
通过射影定理,地图制作师可以准确地将地球表面上的物体的形状和位置转化为地图上的投影,从而制作出准确的地图。
射影定理还在计算机图形学中被广泛应用。
计算机图形学中的三维模型往往需要在二维屏幕上进行显示,这就需要将三维模型投影到屏幕上。
通过射影定理,计算机图形学可以准确地计算出三维模型在屏幕上的投影,从而实现逼真的三维图形显示。
射影定理的应用还远不止于此。
它在摄影术、天文学、物理学等领域都有着重要的应用。
在摄影术中,摄影师常常需要根据不同的角度和距离来拍摄物体的照片,这就涉及到将三维物体的形状和纹理投影到二维照片上。
相似三角形------射影定理的推广及应用射影定理是平面几何中一个很重要的性质定理,尽管义务教材中没有列入,但在几何证明及计算中应用很广泛,若能很好地掌握并灵活地运用它,常可取到事半功倍的效果。
一般地,若将定理中的直角三角形条件非直角化,亦可得到类似的结论,而此结论又可作为证明其它命题的预备定理及联想思路,熟练地掌握并巧妙地运用,定会在几何证明及计算“山穷水尽疑无路”时,“柳暗花明又一村”地迎刃而解。
一、射影定理射影定理直角三角形斜边上的高是它分斜边所得两条线段的比例中项;且每条直角边都是它在斜边上的射影和斜边的比例中项。
如图(1):Rt△ABC中,若CD为高,则有CD2=BD•AD、BC2=BD•AB或AC2=AD•AB。
二、变式推广1.逆用如图(1):若△ABC中,CD为高,且有DC2=BD•AD或AC2=AD•AB或BC2=BD•AB,则有∠DCB=∠A或∠ACD=∠B,均可等到△ABC为直角三角形。
2.一般化,若△ABC不为直角三角形,当点D满足一定条件时,类似地仍有部分结论成立。
(后文简称:射影定理变式(2))如图(2):△ABC中,D为AB上一点,若∠CDB=∠ACB,或∠DCB=∠A,则有△CDB∽△ACB,可得BC2=BD•AB;反之,若△ABC中,D为AB上一点,且有BC2=BD•AB,则有△CDB∽△ACB,可得到∠CDB=∠ACB,或∠DCB=∠A。
三、应用例1如图(3),已知:等腰三角形ABC中,AB=AC,高AD、BE交于点H,求证:4DH•DA=BC2分析:易证∠BAD=∠CAD=900-∠C=∠HBD,联想到射影定理变式(2),可得BD2=DH•DA,又BC=2BD,故有结论成立。
(证明略)例2 如图(4):已知⊙O中,D为弧AC中点,过点D的弦BD被弦AC分为4和12两部分, 求DC。
分析:易得到∠DBC=∠ABD=∠DCE,满足射影定理变式(2)的条件,故有CD2=DE•DB,易求得DC=8(解略)例3 已知:如图(5),△ABC中,AD平分∠BAC,AD的垂直平分线交AB于点E,交AD于点H,交AC于点G,交BC的延长线于点F,求证:DF2=CF•BF。
回顾相似三角形的判定方法总结:1. 平行于三角形一边的直线与其他两边相交,所构成的三角形与原三角形相似.2. 三边成比例的两个三角形相似.(SSS )3. 两边成比例且夹角相等的两个三角形相似. (SAS)4. 两角分别相等的两个三角形相似.(AA)5. 斜边和一条直角边成比例的两个直角三角形相似(HL) 模型一:反A 型:如图,已知△ABC ,∠ADE =∠C ,若连CD 、BE ,进而能证明△ACD ∽△ABE (SAS) 试一试写出具体证明过程模型二:反X 型:如图,已知角∠BAO =∠CDO ,若连AD ,BC ,进而能证明△AOD ∽△BOC . 试一试写出具体证明过程应用练习:1. 已知△ABC 中,∠AEF=∠ACB ,求证:(1)AE AB AF AC ⋅=⋅(2)∠BEO=∠CFO ,∠EBO=∠FCO (3)∠OEF=∠OBC ,∠OFE=∠OCB相似三角形6大证明技巧相似三角形证明方法之反A 型与反X 型OF ECBA EDCBAO DCBA2.已知在 △ABC 中 ,∠ABC =90∘,AB =3,BC =4. 点 Q 是线段 AC 上的一个动点 , 过点 Q 作 AC 的垂线交线段 AB ( 如图 1) 或线段 AB 的延长线 ( 如图 2) 于点 P .(1)当点 P 在线段 AB 上时 , 求证: △APQ ∽ △ABC ; (2)当 △PQB 为等腰三角形时,求 AP 的长。
模型三:射影定理如图已知△ABC ,∠ACB =90°,CH ⊥AB 于H ,求证:2AC AH AB =⋅,2BC BH BA =⋅,,2HC HA HB =⋅,试一试写出具体证明过程模型四:类射影如图,已知2AB AC AD =⋅,求证:BD ABBC AC=,试一试写出具体证明过程相似三角形证明方法之射影定理与类射影CABHA BCD应用练习:1.如图,在△ABC 中,AD ⊥BC 于D ,DE ⊥AB 于E ,DF ⊥AC 于F 。
2024中考数学常见几何模型归纳总结—三角形中的倒角模型-高分线模型、双(三)垂直模型近年来各地考试中常出现一些几何倒角模型,该模型主要涉及高线、角平分线及角度的计算(内角和定理、外角定理等)。
熟悉这些模型可以快速得到角的关系,求出所需的角。
本专题高分线模型、双垂直模型、子母型双垂直模型(射影定理模型)进行梳理及对应试题分析,方便掌握。
模型1:高分线模型条件:AD 是高,AE 是角平分线结论:∠DAE=2B C∠∠-例1.(2023秋·浙江·八年级专题练习)如图,在ABC 中,30A ∠=︒,50B ∠=︒,CD 为ACB ∠的平分线,CE AB ⊥于点E ,则ECD ∠度数为()A .5︒B .8︒C .10︒D .12︒【答案】C 【分析】依据直角三角形,即可得到40BCE ∠=︒,再根据30A ∠=︒,CD 平分ACB ∠,即可得到BCD ∠的度数,再根据DCE BCD BCE ∠=∠-∠进行计算即可.【详解】解:50,B CE AB ∠=︒⊥ ,40BCE ∴∠=︒,又30A ∠=︒ ,CD 平分ACB ∠,1118050305022()BCD BCA ∴∠=∠=⨯︒-︒-︒=︒,504010DCE BCD BCE ∴∠=∠-∠=︒-︒=︒,故选:C .【点睛】本题考查的是三角形内角和定理,熟知三角形内角和是180︒是解答此题的关键.例2.(2023春·河南南阳·七年级统考期末)如图,在△ABC 中,∠1=∠2,G 为AD 的中点,BG 的延长线交AC 于点E ,F 为AB 上的一点,CF 与AD 垂直,交AD 于点H ,则下面判断正确的有()①AD 是△ABE 的角平分线;②BE 是△ABD 的边AD 上的中线;③CH 是△ACD 的边AD 上的高;④AH 是△ACF 的角平分线和高A .1个B .2个C .3个D .4个【答案】B【详解】解:①根据三角形的角平分线的概念,知AG 是△ABE 的角平分线,故此说法错误;②根据三角形的中线的概念,知BG 是△ABD 的边AD 上的中线,故此说法错误;③根据三角形的高的概念,知CH 为△ACD 的边AD 上的高,故此说法正确;④根据三角形的角平分线和高的概念,知AH 是△ACF 的角平分线和高线,故此说法正确.故选:B .【点睛】本题考查了三角形的角平分线、三角形的中线、三角形的高的概念,注意:三角形的角平分线、中线、高都是线段,且都是顶点和三角形的某条边相交的交点之间的线段.透彻理解定义是解题的关键.例3.(2023·安徽合肥·七年级统考期末)如图,已知AD 、AE 分别是Rt △ABC 的高和中线,AB =9cm ,AC =12cm ,BC =15cm ,试求:(1)AD 的长度;(2)△ACE 和△ABE 的周长的差.【答案】(1)AD 的长度为365cm ;(2)△ACE 和△ABE 的周长的差是3cm .【分析】(1)利用直角三角形的面积法来求线段AD 的长度;(2)由于AE 是中线,那么BE =CE ,再表示△ACE 的周长和△ABE 的周长,化简可得△ACE 的周长﹣△ABE 的周长=AC ﹣AB 即可.【详解】解:(1)∵∠BAC =90°,AD 是边BC 上的高,∴S △ACB =12AB•AC =12BC•AD ,∵AB =9cm ,AC =12cm ,BC =15cm ,∴AD =AB AC CB ⋅=91215⨯=365(cm ),即AD 的长度为365cm ;(2)∵AE 为BC 边上的中线,∴BE =CE ,∴△ACE 的周长﹣△ABE 的周长=AC+AE+CE ﹣(AB+BE+AE )=AC ﹣AB =12﹣9=3(cm ),即△ACE 和△ABE 的周长的差是3cm .【点睛】此题主要考查了三角形的面积,关键是掌握直角三角形的面积求法.例4.(2023·广东东莞·八年级校考阶段练习)如图,在ABC 中,AD ,AE 分别是ABC 的高和角平分线,若30B ∠=︒,50C ∠=︒.(1)求DAE ∠的度数.(2)试写出DAE ∠与C B ∠-∠关系式,并证明.(3)如图,F 为AE 的延长线上的一点,FD BC ⊥于D ,这时AFD ∠与C B ∠-∠的关系式是否变化,说明理由.【答案】(1)10︒(2)()12DAE C B ∠=∠-∠(3)不变,理由见解析【分析】(1)根据三角形内角和求出BAC ∠,根据角平分线的定义得到50BAE ∠=︒,根据高线的性质得到90ADE ∠=︒,从而求出60BAD ∠=︒,继而根据角的和差得到结果;(2)根据角平分线的定义得到12BAE BAC ∠=∠,根据三角形内角和求出119022EAC B C ∠=︒-∠-∠,根据角的和差得到结果;(3)过A 作AG BC ⊥于G ,结合(2)知1()2EAG C B ∠=∠-∠,证明FD AG ∥,得到AFD EAG ∠=∠,即可证明.【详解】(1)解:∵30B ∠=︒,50C ∠=︒,∴1805030100BAC ∠=︒-︒-︒=︒,∵AE 平分BAC ∠,∴1502BAE CAE BAC ∠=∠=∠=︒,∵AD 是高,∴90ADE ∠=︒,∵30B ∠=︒,∴60BAD ∠=︒,∴10DAE BAD BAE ∠=∠-∠=︒;(2)()12DAE C B ∠=∠-∠,证明如下:∵AE 平分BAC ∠,∴12EAC BAC ∠=∠,∵180BAC B C ∠=︒-∠-∠,∴()11101902822B C B C EAC ︒-∠-∠-∠︒-==∠∠,∴EAD EAC DAC ∠=∠-∠()11090922B C C =︒∠---∠︒-∠()12C B =∠-∠;(3)不变,理由是:如图,过A 作AG BC ⊥于G ,由(2)可知:1()2EAG C B ∠=∠-∠,AG BC ⊥ ,90AGB ∠=︒,FD BC ⊥ ,90FDC ∴∠=︒,AGD FDC ∴∠=∠,FD AG ∴∥,AFD EAG ∴∠=∠,1()2AFD C B ∴∠=∠-∠.【点睛】本题主要考查三角形的内角和定理、角平分线的性质、直角三角形的性质和平行线的判定与性质,熟练掌握三角形的内角和定理和角平分线的性质是解题的关键.模型2:双垂直模型结论:①∠A =∠C ;②∠B =∠AFD =∠CFE ;③AB CD AE BC ⋅=⋅。
射影定理的原理和应用1. 射影定理的原理射影定理是在线性代数中常用的一条重要定理,它描述了向量空间中的向量通过投影运算能够分解为两个互相垂直的向量的和。
1.1 向量空间和内积空间在介绍射影定理之前,我们先来了解一下向量空间和内积空间的概念。
•向量空间是指具有加法和数乘运算的集合,满足一些基本的性质,如封闭性、结合律、分配律等。
在向量空间中,我们可以定义向量的加法和数乘运算。
•内积空间是在向量空间的基础上引入了内积的概念。
内积是一个函数,它将两个向量映射为一个标量,满足一些基本的性质,如对称性、线性性、正定性等。
1.2 射影定理的表述射影定理的表述如下:在内积空间中,对于任意一个向量b和一个子空间M,存在唯一的向量a ∈ M,使得向量b与M中的任意向量m的差向量都垂直。
即,有b - a ∈ M⊥其中,M⊥表示M的正交补空间。
1.3 射影向量的计算为了计算向量b在子空间M上的射影向量a,我们可以使用射影公式进行计算。
射影公式如下:a = Pm(b) = (mb * m) / (m * m) * m其中,Pm(b)表示向量b在子空间M上的射影向量,mb表示向量b在子空间M上的投影向量,m表示子空间M的一组基。
2. 射影定理的应用射影定理在实际问题中有着广泛的应用,例如在图像处理、信号处理、机器学习等领域。
2.1 图像处理中的应用在图像处理中,我们常常需要对图像进行降噪处理。
射影定理可以帮助我们去除图像中的噪声,并恢复出清晰的图像。
具体地,我们可以将图像看作是向量空间中的向量,其中每个像素点对应一个维度。
通过将图像向量投影到一个合适的子空间上,可以得到图像在该子空间上的射影向量,从而滤除图像中的噪声。
2.2 信号处理中的应用在信号处理中,射影定理可以用于信号压缩和信号恢复的问题。
例如,在无线通信中,由于带宽受限,需要对信号进行压缩以减少传输的数据量。
通过将信号投影到一个合适的子空间上,并保留最重要的部分信息,可以实现信号的压缩。
射影定理所谓射影,就是正投影。
直角三角形射影定理(又叫欧几里德(Euclid)定理):直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
公式: 如图,Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,则有射影定理如下:(1)(BD)2=AD·DC,(2)(AB)2=AD·AC ,(3)(BC)2=CD·CA。
直角三角形射影定理的证明一、(主要是从三角形的相似比推算来的)在△BAD与△BCD中,∵∠ABD+∠CBD=90°,且∠CBD+∠C=90°,∴∠ABD=∠C,又∵∠BDA=∠BDC=90°∴△BAD∽△CBD∴ AD/BD=BD/CD即BD2=AD·DC。
其余同理可得可证有射影定理如下:AB2=AD·AC,BC2=CD·CA两式相加得:AB2+BC2=(AD·AC)+(CD·AC) =(AD+CD)·AC=AC2 。
二、用勾股证射影∵AD2=AB2-BD2=AC2-CD2,∴2AD2=AB2+AC2-BD2-CD2=BC2-BD2-CD2=(BC+BD)(BC-BD)-CD2=(BC+BD)CD-CD2=( BC+BD-CD)CD=2BD×CD.故AD2=BD×CD.运用此结论可得:AB2=BD2+AD2=BD2+BD×CD=BD×(BD+CD) =BD×BC,AC2 =CD2+AD2=CD2+BD×CD=CD(BD+CD)=CD×CB.综上所述得到射影定理。
同样也可以利用三角形面积知识进行证明。
三、用三角函数证明由等积法可知:AB×BC=BD×AC在Rt△ABD和Rt△ABC中,tan∠BAD=BD/AD=BC/AB故AB×BC=BD×AC两边各除以tan∠BAD得:AB^2=AD×AC 同理可得BC2=CD·CA 在Rt△ABD和Rt△BCD中tan∠BAD=BD/AD cot∠BCD=CD/BD又∵tan∠BAD=cot∠BCD故BD/AD=CD/BD得BD^2=AD×CD。
射影定理与仿射影定理模型
一.选择题(共14小题)
1.(2015•辽宁二模)如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,AC=6,AB=9,则AD=()
1 2 3 4
A.2 B.3 C.4 D.5
2.(2014秋•丰台区期末)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,如果AC=3,AB=6,那么AD的值为()
A.B.C.D.3
3.(2014秋•岱岳区校级月考)如图,Rt△ABC中,∠ACB=90°,CD⊥AB,AC=8,AB=10,则AD等于()
A.4.4 B.5.5 C.6.4 D.7.4
4.(2016•浦东新区一模)如图,Rt△ABC中,∠ACB=90°,CD⊥AB于点D,下列结论中错误的是()
A.AC2=AD•AB B.CD2=CA•CB C.CD2=AD•DB D.BC2=BD•BA
5.(2000•嘉兴)在Rt△ABC中,AD是斜边BC上的高线,若BD=2,BC=6,则AB=()A.B.C.D.
6.(2009秋•厦门校级期中)如图,已知∠ABC=90°,BD⊥AC于D,AB=4,AC=10,则AD=()
6 7 8
A.B.2 C.D.1
7.已知CD是Rt△ABC斜边上的高,则下列各式中不正确的是()
A.BC2=BD•AB B.CD2=BD•AD C.AC2=AD•AB D.BC•AD=AC•BD
8.(2014秋•潜山县校级月考)如图,在Rt△ABC,∠BAC=90°,AD⊥BC,AB=10,BD=6,则BC的值为()
A.B.C. D.
9.(2013春•新泰市期末)如图,CD是Rt△ABC斜边AB上的高,CD=6,BD=4,则AB的长为()
9 10 11
A.10 B.11 C.12 D.13
10.(2015•长沙县模拟)如图,△ABC中,点D在线段BC上,且∠BAD=∠C,则下列结论一定正确的是()
A.AB2=AC•BD B.AB•AD=BD•BC C.AB2=BC•BD D.AB•AD=BD•CD
11.(2014秋•武侯区校级月考)如图,△ABC中,∠C=90°,CD⊥AB,若AC=3,AB=4,则AD=()
A.1 B.C.D.5
12.(2013秋•哈尔滨校级月考)如图,在△ABC中,∠BAC=90°,AD⊥BC于D,DC=4,BC=9,则AC为()
12 13 14
A.5 B.6 C.7 D.8
13.(2014秋•莘县期中)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,若AD=1,BD=4,则CD=()
A.2 B.4 C.D.3
14.如图,在Rt△ABC中,∠C=90°,CD⊥AB于D.已知AB=13,CD=6,则Rt△ABC的周长为()
A.13+5 B.13+13C.13+9 D.18
答案
1.C;2.A;3.C;4.B;5.C;6.A;7.D;8.D;9.D;10.C;11.B;12.B;13.A;14.A;
一.选择题(共30小题)
1.(2015•荆州)如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()
1 2 3 4
A.∠ABP=∠C B.∠APB=∠ABC C.=D.=
2.(2015•永州)如图,下列条件不能判定△ADB∽△ABC的是()
A.∠ABD=∠ACB B.∠ADB=∠ABC C.AB2=AD•AC D.=
3.(2015•河北区一模)如图,在△ABC中,D是边AC上一点,连BD,给出下列条件:①∠ABD=∠ACB;②AB2=AD•AC;③AD•BC=AB•BD;④AB•BC=AC•BD.其中单独能够判定△ABC∽△ADB的个数是()
A.①② B.①②③C.①②④D.①②③④
4.(2016•罗平县校级一模)如图,△ACD和△ABC相似需具备的条件是()
A.B.C.AC2=AD•AB D.CD2=AD•BD
5.(2012•海南)如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,添加一个条件,不正确的是()
5 6 7
A.∠ABD=∠C B.∠ADB=∠ABC C.D.
6.(2015•青岛模拟)如图,D是△ABC一边BC上一点,连接AD,使△ABC∽△DBA的条件是()
A.AC:BC=AD:BD B.AC:BC=AB:AD C.AB2=CD•BC D.AB2=BD•BC
7.(2009•滨州)如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③;
④AC2=AD•AB.其中单独能够判定△ABC∽△ACD的个数为()
A.1 B.2 C.3 D.4
8.(2014•上海模拟)如图,在△ABC中,D是边AC上一点,联结BD,给出下列条件:
①∠ABD=∠ACB;②AB2=AD•AC;③AD•BC=AB•BD;④AB•BC=AC•BD.
其中单独能够判定△ABD∽△ACB的个数是()
8 9 10 11
A.1个B.2个C.3个D.4个
9.(2015•金华模拟)如图,在△ABC中,点D在AB上,下列条件能使△BCD和△ABC相似的是()
A.∠ACD=∠B B.∠ADC=∠ACB C.AC2=AD•AB D.BC2=BD•BA
10.(2011•海南)如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有()
A.1对B.2对C.3对D.4对
11.(2015春•相城区期末)如图,在Rt△ABC中,CD是斜边AB上的高,则图中相似三角形的对数有()
A.0对B.1对C.2对D.3对
12.(2015秋•当涂县期末)如图,已知△ABC,P为AB上一点,连接CP,以下条件中不能判定△ACP∽△ABC的是()
12 13 14
A.∠ACP=∠B B.∠APC=∠ACB C.D.
13.(2016春•长兴县月考)如图,已知点P在△ABC的边AC上,下列条件中,不能判断△ABP∽△ACB的是()
A.∠ABP=∠C B.∠APB=∠ABC C.AB2=AP•AC D.=
14.(2013•庆阳)如图,给出下列条件,其中不能单独判定△ABC∽△ACD的条件为()
A.∠B=∠ACD B.∠ADC=∠ACB C.=D.=
15.(2015秋•建湖县期末)如图,△ABC中,P为AB上的一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC和△ACB相似的条件是()
15 16 17 18
A.①②④B.①③④C.②③④D.①②③
16.(2014•宁波模拟)如图所示,给出下列条件:①∠ACD=∠ADC;②∠ADC=∠ACB;③=;
④.其中单独能够判定△ABC∽△ACD的个数为()
A.1 B.2 C.3 D.4
17.(2015•随州)如图,在△ABC中,点D、E分别在边AB、AC上,下列条件中不能判断△ABC∽△AED的是()
A.∠AED=∠B B.∠ADE=∠C C.=D.=
18.(2013•贵阳)如图,M是Rt△ABC的斜边BC上异于B、C的一定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有()
A.1条B.2条C.3条D.4条
19.(2015•枣阳市模拟)如图,在△ABC中,AB=8,AC=6,点D在AC上,且AD=2,如果要在AB上找一点E,使△ADE与△ABC相似,则AE的长为()
19 20 21 22
A.B.C.3 D.或
20.(2015•福建模拟)如图,无法保证△ADE与△ABC相似的条件是()
A.∠1=∠C B.∠A=∠C C.∠2=∠B D.
21.(2014•虹口区一模)如图,在△ABC中,如果DE与BC不平行,那么下列条件中,不能判断△ADE∽△ABC的是()
A.∠ADE=∠C B.∠AED=∠B C.D.
22.(2014秋•怀宁县期末)如图,已知点P是不等边△ABC的边BC上的一点,点D在边AB或AC上,若由点P、D截得的小三角形与△ABC相似,那么D点的位置最多有()
A.2处B.3处C.4处D.5处
23.(2016•孝感模拟)如图,在△ABC中,点D、E分别在边AC、BC上,下列条件中不能判断△CAB∽△CED的是()
23 24 25 26
A.∠CDE=∠B B.∠CED=∠A C.D.
24.(2015秋•孝南区期末)如图,在钝角三角形ABC中,AB=6cm,AC=12cm,动点D从A 点出发到B点止,动点E从C点出发到A点止.点D运动的速度为1cm/秒,点E运动的速度为2cm/秒.如果两点同时运动,那么当以点A、D、E为顶点的三角形与△ABC相似时,运动的时间是()
A.4或4.8 B.3或4.8 C.2或4 D.1或6
25.(2014•琼海模拟)如图,D是BC上的点,∠ADC=∠BAC,则下列结论正确的是()A.△ABC∽△DAB B.△ABC∽△DAC C.△ABD∽△ACD D.以上都不对
26.(2015春•茶陵县期中)如图,P是△ABC的AB边上的一点,下列条件不可能是△ACP ∽△ABC的是()
A.∠ACP=∠B B.AP•BC=AC•PC C.∠APC=∠ACB D.AC2=AP•AB
一.选择题(共30小题)
1.D;2.D;3.A;4.C;5.C;6.D;7.C;8.C;9.D;10.C;11.D;12.D;13.D;14.C;15.D;16.B;17.D;18.C;19.D;20.B;21.C;22.C;23.D;24.B;25.B;26.B;。