汽动给水泵结构及控制
- 格式:ppt
- 大小:2.09 MB
- 文档页数:38
第一章给水泵汽轮机结构及其原理一、给水泵汽轮机热力系统的工作原理给水泵汽轮机蒸汽由高压汽源或低压汽源供汽,高压汽源来自主汽轮机的高压缸排汽(即再热冷段的蒸汽),低压汽源来自主机第四段抽汽。
蒸汽做功后排入主机凝汽器。
给水泵汽轮机与给水泵通过齿形联轴器连接,驱动给水泵向锅炉供水。
二、给水泵汽轮机的常规设计驱动给水泵的汽轮机本体结构、组成部件与主汽轮机的基本相同,主汽阀、调节阀、汽缸、喷嘴室、隔板、转子、支持轴承、推力轴承、轴封装置等样样俱全。
给水泵汽轮机的工作任务是驱动给水泵,必须满足锅炉所需的供水要求。
因此,该汽轮机的运行方式与主汽轮机的大不相同。
这些不同的特性集中体现在该汽轮机自身的润滑油系统、压力油系统和调节系统上。
三、岱海电厂的设备配置及选型我公司给水泵汽轮机为杭州汽轮机厂生产的双汽源、外切换、单缸、反动式、下排汽凝汽式汽轮机。
给水泵汽轮机正常运行汽源来自主汽轮机第四段抽汽,备用汽源来自再热冷段蒸汽,无论是正常运行汽源还是备用汽源,均由电液转换器来的二次油压控制进汽量。
进汽速关阀与汽缸法兰连接,紧急情况下速管阀在尽可能短的时间内切断进入汽轮机的蒸汽。
工作蒸汽经速关阀进入蒸汽室,蒸汽室内装有提板式调节汽阀,油动机通过杠杆机构操纵提板(阀梁)决定调节汽阀开度,控制蒸汽流量,蒸汽通过喷嘴导入调节级。
备用蒸汽由管道调节阀控制,管道调节阀法兰连接在速关阀上,备用蒸汽经管道调节阀调节后相继通过速关阀,调节汽阀,然后进入喷嘴作功,这时的调节汽阀全开,不起调节作用。
给水泵汽轮机的轴封蒸汽来自主机轴封系统;排汽通入主机凝汽器。
保护系统配备机械式危急保安装置,用于超速保护和轴位移保护。
两台给水泵汽轮机并联运行,可驱动每台锅炉给水泵50%BMCR的给水量;一台给水泵汽轮机驱动一台锅炉给水泵与一台30%BMCR容量的电动泵组并联运行,可供给锅炉100%BMCR的给水量;一台给水泵汽轮机驱动一台锅炉给水泵作单泵运行时,可供给锅炉60% BMCR的给水量。
核电厂汽动辅助给水泵转速控制
一、概述
核电厂是一个高度自动化的工厂,各种辅助设备都需要进行准确可靠的控制。
给水泵
是核电厂的重要设备之一,其转速控制对于保障核电厂的安全运行至关重要。
本文将介绍
核电厂汽动辅助给水泵转速控制的原理、优势及应用。
二、原理
核电厂汽动辅助给水泵转速控制是通过汽轮机控制系统实现的。
给水泵的转速控制是
为了保证给水泵在各种工况下都能够稳定地供水,以满足核电厂的发电需求,并且在发生
各类异常情况时能够迅速响应。
汽动辅助给水泵转速控制是利用汽轮机的蒸汽控制系统来
实现的,通过对汽轮机的控制,实现给水泵的转速控制。
三、优势
汽动辅助给水泵转速控制具有以下优势:
1. 稳定性好:通过汽轮机蒸汽控制系统实现给水泵的转速控制,可以保证给水泵的
稳定工作,不易受外部环境的干扰。
2. 可靠性高:汽动辅助给水泵转速控制采用汽轮机系统,通过多重保护和检测机制,能够保证给水泵在各种异常工况下都能够稳定工作,确保核电厂的安全运行。
3. 节能环保:汽动辅助给水泵转速控制采用汽轮机系统,可以实现对蒸汽的充分利用,提高能源利用效率,降低发电成本,同时减少环境污染。
四、应用
汽动辅助给水泵转速控制广泛应用于核电厂的给水泵系统中,通过对汽轮机的蒸汽控
制系统进行优化,实现对给水泵的转速控制,保证核电厂的安全运行。
汽动辅助给水泵转
速控制也可以应用于其他工业领域的给水泵系统中,提高设备的稳定性和可靠性,降低维
护成本,增加设备的使用寿命。
汽动给水泵运行操作规程前言本规程依据xx汽轮机有限公司B0.32-1.27/0.3型和B0.52-1.27/0.55型背压汽轮机有关技术资料、图纸,以及我公司实际系统进行编写。
本规程适用于xx公司B0.32-1.27/0.3型和B0.52-1.27/0.55型背压汽轮机。
本规程是我公司#4、#5汽动给水泵运行、操作和事故处理的依据,是安全和经济运行的保障,各级管理人员和汽轮机运行人员都必须严格贯彻执行;本规程自颁发之日起生效,解释权属技术部。
编写:审核:批准:目录1.系统说明2.主机特性及规范说明3.汽动给水泵系统图4.背压式汽轮机启动前的检查和说明5.汽轮机启动前的暖管和疏水6.背压式汽轮机启动操作7.背压式汽轮机停机操作8.背压式汽轮机的事故处理背压汽轮机运行规程一、系统说明:1.1为提高全厂运行的经济性和安全性,有效降低厂用电率,我们将原有的#4、#5电动给水泵改造为背压式汽轮机拖动的汽动给水泵;1.2采用B0.32-1.27/0.3型工业汽轮机代替原#4给水泵355KW的电动机,汽轮机的进汽取自#2供热母管,排汽到除氧器加热蒸汽母管供除氧器加热用汽;1.3采用B0.52-1.27/0.55型工业汽轮机拖动新购买的#5给水泵,#5给水泵的型号为DG150—100*8型,汽轮机的进汽取自#2供热母管,排汽到高压加热器加热蒸汽母管供三台大汽轮机高压加热器加热用汽;1.4在B0.52-1.27/0.55型工业汽轮机和B0.32-1.27/0.3型工业汽轮机排汽管之间,我们加装了电动压力调节门和手动门,以便在运行中根据高加用汽量调节B0.52-1.27/0.55型工业汽轮机排汽压力满足给水温度的要求。
1.5改造后的给水除氧系统为四台DG85—80*10的电动给水泵、一台DG85—80*10的汽动给水泵和一台DG150—100*8的汽动给水泵,总出力为575t/h,能够满足锅炉给水的要求。
二、主机特性和规范说明:2.1主机规范:2.2汽轮机汽缸由上、下两部分组成,上下缸均由ZG25铸钢整体浇铸而成。
汽动给水泵组运行说明书广东国华台山电厂一期2×600MW上海电力修造总厂有限公司目录第一章概述 (1)1 总述12 一般说明13 技术数据(以技术协议为准)2第二章操作说明 (4)1 引言: 42 预启动检查43 启动44 日常检查:55 停机56 给水泵组热控保护57 故障找错6第三章安装及投运说明 101 安装说明102 投运步骤11第一章概述1总述HPT300-330-5s+k调速给水泵组配套于600MW汽轮发电机组50%容量或300MW汽轮发电机组100%容量。
给水泵由小汽轮机驱动,前置泵由小电动机驱动。
1.1给水泵给水泵型号HPT300-330-5s+k(芯包进口)1.2前置泵前置泵型号HZB253-640电动机型号YKK450-4(上海电机厂)2一般说明2.1前置泵HZB253-640前置泵为卧式、单级、双吸垂直进出、单蜗壳泵。
前置泵由电机驱动,通过柔性叠片式联轴器进行功率传递。
前置泵传动端和非传动端采用机械密封,从外部供冷却水。
轴承布置为:传动端为单列滚子轴承;自由端为角接触球轴承。
轴承润滑由油环提油润滑。
2.2给水泵HPT300-330-5s+k给水泵是卧式、多级双壳体离心泵,有5级叶轮,并在末级后面增加了增压级。
整体芯包,芯包整体装卸,而不妨碍泵进出口管路。
给水泵由汽轮机驱动,汽轮机与泵之间是通过叠片式柔性联轴器或齿式联轴器进行功率传递。
泵筒体是以中心线定位安装的,具备着导向系统方便于各个方向的对中;并且能吸收各个方向的热膨胀。
内泵壳是由单独的螺栓将它们紧固在一起,以避免由长系杆引起的振动问题。
芯包组件由转动部件、导叶、泵壳、轴承和所有的磨损环。
这种设计使芯包能够迅速地进行互换。
节省了维护的时间。
由于轴径与轴承跨矩之比较大,保证了轴的刚性。
轴上没有螺纹,排除了应力集中和防止了轴变形。
平衡鼓吸收了很大一部分的转子的推力,余下的一小部分推力则由推力轴承来承担。
通过了解平衡鼓的泄漏量可以估计间隙的大小和泵的效率。
核电厂汽动辅助给水泵转速控制核电站汽动辅助给水泵是实现核反应堆主用给水与热交换过程的重要设备,对于核电站的安全运行和生产效率具有重要意义。
因此,在运行过程中需要保证其安全、稳定地工作和及时地发现、处理一些异常情况。
本文就对辅助给水泵的转速控制作一些讨论。
1.辅助给水泵的转速概述辅助给水装置是核反应堆能量转换和冷却系统的重要部分,其核心是汽动泵。
一些核电站中使用的给水泵主要是一种蒸汽动力泵,其传动方式是通过蒸汽的压力差来传递轴承上的动力,进而控制辅助给水泵的转速。
其工作原理是通过调整控制器的电位器和其他开关元件的状态,使得驱动器输出的信号控制泵电机的转速。
在核电站,辅助给水泵必须随时在最佳状态下运行,以确保主循环系统能够稳定运行。
2.流量控制辅助泵的工作点可以通过控制汽轮机的出口蒸汽流量和入口汽水比率来控制。
在此过程中,可以通过流量传感器来实现流量调整和控制辅助泵的转速。
流量控制的目的是使泵在工作流量下保持稳定的转速,以确保给水系统的压力和流量能够保持在预定值以下。
3.转速变化辅助给水泵的工作状态可能会发生变化。
所以,必需对这些变化进行及时地监测和反应。
变化的来源可能包括供电不稳定、水力系统参数变化或泵内叶轮受损等。
当变化超过设定的极限值时,控制器将发出警报,以便操作员能及时采取措施。
4.电动泵备用装置电动泵备用装置是为了确保给水系统的连续性而设置的。
当主汽动泵运行出现问题时,电动泵将立即启动,并增加输出。
这种情况下的转速控制流程与主汽动泵的流程完全相同。
整个过程中,控制器始终监测给水系统的压力和流量,确保其在正常范围内运行。
5.总结辅助泵转速的控制在核电站中极为重要。
通过控制汽轮机的出口流量、入口汽水比率和流量传感器等实现对其转速的调整。
同时,应密切监测泵的工作状态,以及在出现问题时及时对其进行处理。
总之,只有通过全面、有效的控制手段,才能确保核电站辅助给水泵的安全、稳定运行。
核电厂汽动辅助给水泵转速控制核电厂是一种重要的能源生产设施,其正常运行对于维护国家能源安全和经济发展具有重要意义。
在核电厂中,给水泵是起到非常重要作用的设备之一,它们的运行状态直接关系到核电厂的安全和稳定。
为了确保给水泵运行的安全可靠,其控制系统也显得尤为重要。
本文将从核电厂汽动辅助给水泵转速控制方面进行介绍和探讨。
二、汽动辅助给水泵转速控制的特点1. 自动控制:汽动辅助给水泵的转速控制一般是自动完成的,即在发生故障或者停机时,控制系统会自动启动汽动辅助给水泵,并控制其转速达到设定值。
2. 灵活调整:由于核电厂运行状态的复杂性,汽动辅助给水泵的转速需要能够灵活调整,以适应不同的运行需求。
控制系统需要能够根据实际情况对汽动辅助给水泵的转速进行精确控制。
3. 安全稳定:给水泵是核电厂供水系统中的重要设备,其控制系统需要具有高可靠性和稳定性,确保在任何情况下都能够正常运行。
汽动辅助给水泵转速控制的实现方法主要包括以下几种:1. PID控制:PID控制是一种经典的控制方法,通过对汽动辅助给水泵的转速进行实时监测,然后根据其偏差值来调整控制参数,从而使得控制系统能够迅速、准确地调节汽动辅助给水泵的转速,确保其在设定范围内运行。
2. 进口控制:汽动辅助给水泵的转速控制也可以通过进口控制来实现,即通过对进口阀门的开度来控制汽动辅助给水泵的转速。
通过合理调整进口阀门的开度,能够有效控制汽动辅助给水泵的进水量,从而达到控制其转速的目的。
3. 马达控制:在实际应用中,汽动辅助给水泵的转速可通过控制电动机的速度来实现,即通过调节电动机的供电电压和频率来控制汽动辅助给水泵的转速。
1. 传感器的选择:为了实现对汽动辅助给水泵转速的实时监测,需要选择合适的传感器,以获得准确的汽动辅助给水泵转速数据。
2. 控制算法的优化:为了实现对汽动辅助给水泵转速的精确控制,需要优化控制算法,以提高对汽动辅助给水泵转速的控制精度和稳定性。
核电厂汽动辅助给水泵转速控制1. 引言1.1 研究背景核电厂汽动辅助给水泵是核电厂中一个重要的设备,其作用是在发生事故或紧急情况时,为主给水泵提供辅助水源,保证核电厂的安全运行。
当前,随着核电行业的快速发展,对汽动辅助给水泵转速控制的要求也越来越高。
研究背景:核电厂作为我国清洁能源的重要组成部分,具有着极其重要的地位。
而核电厂汽动辅助给水泵作为保障核电厂安全运行的关键设备之一,其转速控制对核电厂的安全性和可靠性有着直接影响。
现有的转速控制方法存在着一些问题,如控制精度不高、响应速度慢等,需要进一步加以改进和优化。
针对核电厂汽动辅助给水泵转速控制存在的问题,开展研究并采取有效的控制方法,对于提高核电厂的安全性和可靠性具有重要意义。
本文旨在探讨核电厂汽动辅助给水泵转速控制的原理、现有控制方法的优缺点以及改进控制方法的实施方案,以期为核电厂汽动辅助给水泵转速控制提供有益参考。
1.2 目的目的:核电厂汽动辅助给水泵转速控制是核电厂运行过程中的重要环节,其稳定性和可靠性直接影响到核电厂的安全运行。
本文旨在通过对核电厂汽动辅助给水泵转速控制的研究和探讨,提出改进控制方法,提高系统的控制效果和应用性能,为核电厂运营管理提供技术支持和指导。
具体来说,本文的目的如下:1. 分析汽动辅助给水泵的功能和作用,深入了解其在核电站中的重要性;2. 探讨核电厂汽动辅助给水泵转速控制的原理,揭示其控制机理和作用机制;3. 分析现有控制方法的优缺点,指出存在的问题和不足之处;4. 提出改进控制方法的实施方案,探讨如何提高控制精度和响应速度;5. 研究控制效果及应用情况,评估改进方法的实际效果和应用效果。
通过以上研究,旨在为核电厂汽动辅助给水泵转速控制的优化提供理论参考和实践指导,进一步提升核电站的运行水平和安全性。
2. 正文2.1 汽动辅助给水泵的功能和作用汽动辅助给水泵是核电厂中一个重要的设备,其主要功能是为主给水泵提供必要的启动辅助动力,保证主给水泵在启动过程中顺利运转。
汽动给水泵工作原理
汽动给水泵是一种利用汽动力驱动的水泵,其工作原理基于汽动力的转化和传递。
汽动给水泵主要由以下几个部分组成:汽缸、活塞、连杆、曲柄轴、水泵腔和进、出水管道等。
工作过程如下:
1. 气动力输入:通过供气系统供给压缩空气,将压缩空气进入汽缸。
2. 气缸往复运动:压缩空气进入汽缸后,推动活塞做往复运动,从而带动连杆和曲柄轴旋转。
3. 曲柄轴旋转转换力:活塞的往复运动使得曲柄轴旋转,将活塞高低运动转化为曲柄轴的旋转运动。
4. 水泵腔工作:曲柄轴的旋转运动带动水泵腔内的叶轮或活塞等工作元件产生相应运动,使水从进水管道吸入,并经过腔内工作元件的作用被推到出水管道中。
5. 出水和排放水:水泵腔将被推到出水管道中的水推向管道末端或其他需要的地方,起到给水的作用。
总之,汽动给水泵通过利用压缩空气驱动活塞做往复运动,然后通过连杆和曲柄轴将活塞运动转化为轴的旋转运动,最终带动水泵腔内的工作元件将水吸入并推向出水管道。
通过这一过程,实现了汽动力向机械运动的转换和水的输送,从而起到给水的作用。