非进程内核模型
- 格式:ppt
- 大小:104.01 KB
- 文档页数:10
⽤户级线程和内核级线程1.内核级线程:(1)线程的创建、撤销和切换等,都需要内核直接实现,即内核了解每⼀个作为可调度实体的线程。
(2)这些线程可以在全系统内进⾏资源的竞争。
(3)内核空间内为每⼀个内核⽀持线程设置了⼀个线程控制块(TCB),内核根据该控制块,感知线程的存在,并进⾏控制。
在⼀定程度上类似于进程,只是创建、调度的开销要⽐进程⼩。
有的统计是1:102.⽤户级线程:(1)⽤户级线程仅存在于⽤户空间。
——>对⽐内核(3)(2)内核并不能看到⽤户线程。
——>重要的区别(3)内核资源的分配仍然是按照进程进⾏分配的;各个⽤户线程只能在进程内进⾏资源竞争。
图6-1(a)显⽰了⽤户级线程,图6-1(b)显⽰了内核级线程,X(点击查看⼤图)(a) ⽤户级线程(点击查看⼤图)(b) 内核级线程图6-1⽤户级线程驻留在⽤户空间或模式。
运⾏时库管理这些线程,它也位于⽤户空间。
它们对于操作系统是不可见的,因此⽆法被调度到处理器内核。
每个线程并不具有⾃⾝的线程上下⽂。
因此,就线程的同时执⾏⽽⾔,任意给定时刻每个进程只能够有⼀个线程在运⾏,⽽且只有⼀个处理器内核会被分配给该进程。
对于⼀个进程,可能有成千上万个⽤户级线程,但是它们对系统资源没有影响。
运⾏时库调度并分派这些线程。
如同在图6-1(a)中看到的那样,库调度器从进程的多个线程中选择⼀个线程,然后该线程和该进程允许的⼀个内核线程关联起来。
内核线程将被操作系统调度器指派到处理器内核。
⽤户级线程是⼀种'多对⼀'的线程映射。
内核级线程驻留在内核空间,它们是内核对象。
有了内核线程,每个⽤户线程被映射或绑定到⼀个内核线程。
⽤户线程在其⽣命期内都会绑定到该内核线程。
⼀旦⽤户线程终⽌,两个线程都将离开系统。
这被称作'⼀对⼀'线程映射,如图6-1(b)所⽰。
操作系统调度器管理、调度并分派这些线程。
运⾏时库为每个⽤户级线程请求⼀个内核级线程。
Linux操作系统实验总结分析报告从系统的⾓度分析影响程序执⾏性能的因素1.Linux系统概念模型从全局的⾓度来看,Linux系统分为内核空间和⽤户空间,但毫⽆疑问内核空间是Linux系统的核⼼,因为内核负责管理整个系统的进程、内存、设备驱动程序、⽂件,决定着系统的性能和稳定性。
于是从这个⾓度我构建的Linux系统的概念模型如下图所⽰:此模型将Linux系统主要划分为四个模块:内存管理、进程管理、设备驱动程序、⽂件系统。
这四个部分也是⼀个操作系统最基本也是最重要的功能。
2.概念模型解析2.1 内存管理Linux系统采⽤虚拟内存管理技术,使得每个进程都有各⾃互不⼲涉的进程地址空间。
该空间是块⼤⼩为4G的线性虚拟空间,⽤户所看到和接触到的都是该虚拟地址,⽆法看到实际的物理内存地址。
利⽤这种虚拟地址不但能起到保护操作系统的效果(⽤户不能直接访问物理内存),⽽且更重要的是,⽤户程序可使⽤⽐实际物理内存更⼤的地址空间。
内存管理主要有分为如下⼏个功能:地址映射、虚拟地址管理、物理内存管理、内核空间管理、页⾯换⼊换出策略和⽤户空间内存管理,这些模块的架构图如下所⽰:2.2 进程管理进程管理是Linux系统⾮常重要的⼀部分,进程管理虽然不像内存管理、⽂件系统等模块那样复杂,但是它与其他⼏个模块的联系是⾮常紧密的。
进程管理主要包括进程的创建、切换、撤销和进程调度。
2.2.1 进程的创建、切换、撤销进程的创建:在Linux编程中,⼀般采⽤fork()函数来创建新的进程,当然,那是在⽤户空间的函数,它会调⽤内核中的clone()系统调⽤,由clone()函数继续调⽤do_fork()完成进程的创建。
整个进程创建过程可能涉及到如下函数:fork()/vfork()/_clone----------->clone()--------->do_fork()---------->copy_process()进程的切换:进程切换⼜称为任务切换、上下⽂切换。
第二章进程与线程·在早期计算机中,每个字节的读写直接由CPU处理(即没有DMA),对于多道程序而言这种组织方式有什么含义?在这个读取任务中包括两个时间:CPU复制数据的时间和IO设备工作的时间。
而早期IO设备的速度太慢了,IO 设备的工作时间远大于把数据存到内存中所需要的时间,CPU则会空转很长时间,此时多道程序设计就非常必要了。
进程是OS提供的最古老最需要的抽象概念,它把来回切换的多道程序描述成一种多程序的并发。
2.1进程多道程序设计站在系统的角度——提高了CPU的利用率站在用户的角度——可“同时”运行多个程序对某个具体的任务而言——执行速度不变单个CPU不能真正实现并行计算,其在任意时刻都只能执行一道指令。
(第一章到第六章都是以单个CPU来讲解的)·如何解决这个矛盾:OS采用了一系列软件技术实现程序并发执行。
·什么是程序的并发执行【“大家注意把这个刻在脑子里”】若干个程序段同时在系统中运行,这些程序段的执行在时间上是重叠的,一个程序段的执行尚未结束,另一个程序段的执行已经开始,即使这种重叠是很小的一部分,也称这几个程序段是并发执行的。
·什么是运行时间:程序在内存中的时间。
只有一个CPU,但是又希望有多个CPU——虚拟出多个CPU。
(“伪并行”,在任意时刻只有一个程序是活跃的)面向每个任务虚拟出一个CPU,这就是进程。
(CPU:从内存中取指令并执行)虚拟出的CPU本质:对每个进程虚拟了程序计数器。
2.1.1进程模型并行性:处理多个同时性活动的能力并行处理:利用多个处理部件,为完成一个整体任务而同时执行在任意时刻物理PC只对应一个程序的指令底层:CPU在各个进程间来回切换2.1.2进程的创建有4种主要事件导致进程的创建:1.系统初始化(foreground processes and daemons)2.执行了正在运行的进程所调用的进程创建系统调用★3.用户请求创建一个新进程4.一个批处理作业的初始化Fork子进程是父进程的精确副本。
1. 简介进程模型是操作系统中的核心概念之一,它描述了程序如何在计算机中执行,如何进行通信和同步等重要内容。
在计算机科学中,有许多不同的进程模型,每种模型都有其特定的特点和适用场景。
本文将对进程模型进行深入解读,包括其基本概念、分类、特点、应用等方面的内容。
2. 进程模型的基本概念进程是指在计算机系统中运行的程序的实例。
它是操作系统资源分配的基本单位,具有独立的位置区域空间、独立的内存空间、独立的文件系统等特点。
进程模型则是描述进程如何被创建、管理、调度、通信和同步的理论模型。
它包括了进程的状态转换、进程间的通信机制、进程的调度算法等内容。
3. 进程模型的分类根据进程的调度方式,进程模型可以分为多种类型。
常见的进程模型包括批处理系统、交互式系统、实时系统等。
批处理系统是指按照程序提交的顺序进行执行的系统,其中每个程序都需要等待前一个程序执行完毕才能开始执行。
交互式系统是指用户可以直接与系统进行交互的系统,用户可以随时输入指令并得到相应的结果。
实时系统是指对时间要求非常严格的系统,能够在严格的时间限制内完成任务的系统。
4. 进程模型的特点不同的进程模型具有不同的特点。
批处理系统具有高效、稳定的特点,但用户体验较差;交互式系统可以提供良好的用户体验,但需要保证系统响应速度和并发执行能力;实时系统需要满足时间要求非常严格的特点,能够在规定的时间内完成任务。
5. 进程模型的应用进程模型的应用非常广泛。
在操作系统中,不同类型的进程模型可以应用于不同的场景。
批处理系统常用于需要进行大量计算的场景,如科学计算、数据分析等;交互式系统常用于普通用户使用的计算机系统,能够提供良好的用户体验;实时系统常用于对时间要求非常严格的场景,如航空航天、工业控制等领域。
6. 结语进程模型是操作系统中非常重要的概念,对于理解计算机系统的运行原理和优化程序设计具有重要意义。
不同的进程模型具有不同的特点和适用场景,合理地选择和使用进程模型能够提高系统的性能和可靠性。
操作系统原理第一章操作系统概论1.1操作系统的概念操作系统的特征:并发性,共享性,随机性。
研究操作系统的观点:软件的观点,资源管理的观点,进程的观点,虚拟机的观点,服务提供者的观点。
操作系统的功能:1.进程管理:进程控制,进程同步,进程间通信,调度。
2.存储管理:内存分配与回收,存储保护,内存扩充。
3.文件管理:文件存储空间管理,目录管理,文件系统安全性。
4.设备管理5.用户接口UNIX是一个良好的、通用的、多用户、多任务、分时操作系统。
1969年AT&T公司Kenneth L.Thompson 用汇编语言编写了Unix第一个版本V1,之后Unix用C语言编写,因此事可移植的。
1.3操作系统分类1.批处理操作系统:优点是作业流程自动化较高,资源利用率较高,作业吞吐量大,从而提高了整个系统的效率。
缺点是用户不能直接与计算机交互,不适合调试程序。
2.分时系统:特点是多路性,交互性,独占性,及时性。
3.实时操作系统4.嵌入式操作系统5.个人计算机操作系统6.网络操作系统7.分布式操作系统8.智能卡操作系统1.4操作系统结构1.整体式结构2.层次结构3.微内核(客户机/服务器)结构:①可靠,②灵活(便于操作系统增加新的服务功能),③适宜分布式处理的计算机环境第二章操作系统运行机制2.1中央处理器寄存器:用户可见寄存器:数据寄存器(通用寄存器),地址寄存器,条件码寄存器。
控制和状态寄存器:程序计数器,指令寄存器,程序状态字。
目态到管态的转换唯一途径是通过终端和异常。
管态到目态的转换可以通过设置PSW指令(修改程序状态字)实现。
PSW包括:①CPU的工作状态代码②条件码③中断屏蔽码2.2存储体系存储器设计:容量,速度,成本存储保护:①界地址寄存器(界限寄存器):产生程序中断-越界中断或存储保护中断②存储键2.3中断与异常机制分类:中断:时钟中断,输入输出(I/O)中断,控制台中断,硬件故障中断异常:程序性中断,访管指令异常2.4系统调用系统调用程序被看成是一个低级的过程,只能由汇编语言直接访问。
计算机操作系统慕课版课后答案目标:提高系统资源的利用率诸如CPU,I/O设备,内存空间等资源。
提高系统的吞吐量,也就是通过操作系统可以合理地组织计算机的工作流程,提高资源利用利率,加速程序的运行,缩短程序的运行周期。
提高系统的吞吐量。
作用:对处理器,存储器,I/O设备,和信息(数据和程序)这四类资源进行管理。
(2)试说明OS与硬件、其它系统软件以及用户之间的关系?给用户提供一个管理界面,用来管理硬件的运行,给软件提供基础。
(3)试说明推动OS发展的主要动力是什么?计算机系统的性能的快速提高,硬件成本的下降,不断增长的应用需求都也促使操作系统的性能和结构有了显著提高,也促进了操作系统的不断更新升级。
(4)在OS中,何谓脱机IO和联机IO?脱机IO:事先将装有用户程序和数据的纸带装入纸带输入机,在一台外围机的控制下,把纸带上的数据输入到磁带上。
当CPU需要这些程序和数据时,再从磁带上高速地调入内存。
该方式下的输入输出由外围机控制完成,是在脱离主机的情况下进行的。
联机IO:在主机的直接控制下进行输入/输出的方式,称为联机输入/输出(On-Line I/O)方式。
是指作业的输入、调入内存及结果输出都在cpu直接控制下进行。
(5)试说明推动分时系统形成和发展的主要动力是什么?满足用户的需要。
CPU的分时使用缩短了作业的使用周期;人机交互能力使用户能直接的控制自己的作业;主机的共享使多个用户能同时使用同一台计算机,独立处理自己的作业(6)实现分时系统的关键问题是什么?应如何解决?关键问题:当用户在自己的终端上键入命令时,系统应能及时接收并及时处理该命令,在用户能接受的时延内将结果返回给用户。
解决方法:针对及时接收问题,在系统中设置多路卡,使主机能同时接收用户从各个终端上输入的数据;为每个终端配置缓冲区,暂存用户键入的命令或数据。
针对及时处理问题,应使所有的用户作业都直接进入内存,并且为每个作业分配一个时间片,允许作业只在自己的时间片内运行,这样在不长的时间内,能使每个作业都运行一次。
I/O多路复用分类:嵌入式 2011-05-03 16:12 163人阅读评论(0) 收藏举报一、五种I/O模型1、阻塞I/O模型最流行的I/O模型是阻塞I/O模型,缺省情形下,所有套接口都是阻塞的。
我们以数据报套接口为例来讲解此模型(我们使用UDP而不是TCP作为例子的原因在于就UDP而言,数据准备好读取的概念比较简单:要么整个数据报已经收到,要么还没有。
然而对于TCP来说,诸如套接口低潮标记等额外变量开始活动,导致这个概念变得复杂)。
进程调用recvfrom,其系统调用直到数据报到达且被拷贝到应用进程的缓冲区中或者发生错误才返回,期间一直在等待。
我们就说进程在从调用recvfrom开始到它返回的整段时间内是被阻塞的。
2、非阻塞I/O模型进程把一个套接口设置成非阻塞是在通知内核:当所请求的I/O操作非得把本进程投入睡眠才能完成时,不要把本进程投入睡眠,而是返回一个错误。
也就是说当数据没有到达时并不等待,而是以一个错误返回。
3、I/O复用模型调用select或poll,在这两个系统调用中的某一个上阻塞,而不是阻塞于真正I/O 系统调用。
阻塞于select调用,等待数据报套接口可读。
当select返回套接口可读条件时,调用recevfrom将数据报拷贝到应用缓冲区中。
4、信号驱动I/O模型首先开启套接口信号驱动I/O功能, 并通过系统调用sigaction安装一个信号处理函数(此系统调用立即返回,进程继续工作,它是非阻塞的)。
当数据报准备好被读时,就为该进程生成一个 SIGIO信号。
随即可以在信号处理程序中调用recvfrom来读数据报,井通知主循环数据已准备好被处理中。
也可以通知主循环,让它来读数据报。
5、异步I/O模型告知内核启动某个操作,并让内核在整个操作完成后(包括将数据从内核拷贝到用户自己的缓冲区)通知我们。
这种模型与信号驱动模型的主要区别是:信号驱动I/O:由内核通知我们何时可以启动一个I/O操作,异步I/O模型:由内核通知我们I/O操作何时完成。
⼀⽂读懂什么是进程、线程、协程(建议收藏)进程我们都知道计算机的核⼼是CPU,它承担了所有的计算任务;⽽操作系统是计算机的管理者,它负责任务的调度、资源的分配和管理,统领整个计算机硬件;应⽤程序则是具有某种功能的程序,程序是运⾏于操作系统之上的。
进程是⼀个具有⼀定独⽴功能的程序在⼀个数据集上的⼀次动态执⾏的过程,是操作系统进⾏资源分配和调度的⼀个独⽴单位,是应⽤程序运⾏的载体。
进程是⼀种抽象的概念,从来没有统⼀的标准定义。
进程⼀般由程序、数据集合和进程控制块三部分组成。
程序⽤于描述进程要完成的功能,是控制进程执⾏的指令集;数据集合是程序在执⾏时所需要的数据和⼯作区;程序控制块(Program Control Block,简称PCB),包含进程的描述信息和控制信息,是进程存在的唯⼀标志。
进程具有的特征:动态性:进程是程序的⼀次执⾏过程,是临时的,有⽣命期的,是动态产⽣,动态消亡的;并发性:任何进程都可以同其他进程⼀起并发执⾏;独⽴性:进程是系统进⾏资源分配和调度的⼀个独⽴单位;结构性:进程由程序、数据和进程控制块三部分组成。
线程在早期的操作系统中并没有线程的概念,进程是能拥有资源和独⽴运⾏的最⼩单位,也是程序执⾏的最⼩单位。
任务调度采⽤的是时间⽚轮转的抢占式调度⽅式,⽽进程是任务调度的最⼩单位,每个进程有各⾃独⽴的⼀块内存,使得各个进程之间内存地址相互隔离。
后来,随着计算机的发展,对CPU的要求越来越⾼,进程之间的切换开销较⼤,已经⽆法满⾜越来越复杂的程序的要求了。
于是就发明了线程。
线程是程序执⾏中⼀个单⼀的顺序控制流程,是程序执⾏流的最⼩单元,是处理器调度和分派的基本单位。
⼀个进程可以有⼀个或多个线程,各个线程之间共享程序的内存空间(也就是所在进程的内存空间)。
⼀个标准的线程由线程ID、当前指令指针(PC)、寄存器和堆栈组成。
⽽进程由内存空间(代码、数据、进程空间、打开的⽂件)和⼀个或多个线程组成。