中考专题分式方程中的参数问题(共18张PPT)
- 格式:ppt
- 大小:2.55 MB
- 文档页数:18
分式方程参数问题求分式方程中参数(字母系数)的取值范围的问题是一类非常重要的题目,在各类试题中出现频率较高,和解分式方程的题目相比,它更能考差学生思维的全面性和敏捷程度。
在此类题目中往往首先给出分式方程解的情况,让解题者作出逆向判断,从而确定参数的取值范围。
由于分式方程是先化成整式方程求解的,并且在去分母化简的过程中容易扩大未知数的范围,所以求出的参数的取值范围也就不准确了。
例1. 已知关于x 的分式方程132323-=--+--xmxx x 无解,求m 的值。
正解:将原方程化为整式方程,得:()21-=-x m , 因为原分式方程无解,所以()01=-m 或312=--m所以m=1或 m=35.辨析:产生错误的原因是只从字面意思来理解“无解”,认为“无解”就单单是解不出数来。
实际上,导致分式方程无解的原因有两个:①解不出数来,也就是整式方程无解;②解出的数不符合原方程,也就是整式方程虽然有解,但这个解能使最简公分母为零. 例2. 已知关于x 的分式方程323-=--x mx x 有一个正解,求m 的取值范围。
正解:将原方程化为整式方程,得:()m x x =--32∴m x -=6,∵原方程有解且是一个正解 ∴06>-m 且36≠-m ∴m 的取值范围是:m <6且m ≠3辨析:产生错误的原因是忽视了分式方程的解必须满足的条件:最简公分母不等于零。
误认为分式方程有一个正解就是整式方程有一个正解,从而简单处理了事。
实际上,题目隐含着一个重要的条件:x ≠3, 有一个正解并不表示所有的正数都是它的解,而表示它有一个解并且这个解是一个正数两层含义。
例3:已知关于x 的分式方程42212-=-+x m x x 的解也是不等式组()⎪⎩⎪⎨⎧-≤-->-832221x x x x的一个解,求m 的取值范围。
正解:解不等式组()⎪⎩⎪⎨⎧-≤-->-832221x x x x得:x ≤-2 将分式方程42212-=-+x m x x 化为整式方程,得:m x x x 2)2(42=+--解这个整式方程得:2--=m x ∴分式方程42212-=-+x mx x 的解为:2--=m x (其中m ≠0和-4) 由题意得:22-≤--m ,解得:0≥m ∴m 的取值范围是:m >0.辨析:产生错误的原因是忽视了分式方程的解必须满足的条件:最简公分母不等于零。
专题04 分式方程中的参数问题考纲要求:1. 了解分式方程的概念2.会解可化为一元一次方程的分式方程(方程中的分式不超过两个),会对分式方程的解进行检验.3.会用分式方程解决简单的事件问题.基础知识回顾:1.分式方程的定义:分母中含有未知数的方程叫做分式方程.2.解分式方程的一般步骤:()1去分母化分式方程为整式方程.()2解这个整式方程,求出整式方程的根.()3检验,得出结论.一般代入原方程的最简公分母进行检验.3.增根是分式方程化为整式方程的根,但它使得原分式方程的分母为零.应用举例:招数一、分式方程增根问题:增根问题可按如下步骤进行:①让最简公分母0,确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.【例1】若关于x的分式方程+=2m有增根,则m的值为______.【答案】1【解析】方程两边都乘x﹣2,得x﹣2m=2m(x﹣2)∵原方程有增根,∴最简公分母x﹣2=0,解得x=2,当x=2时,m=1故m的值是1,故答案为1招数二、分式方程无解问题:分式方程无解分为以下两种情况:①原方程解不出数来,也就是整式方程无解;②整式方程能解出来,但是解出来的数使得原分式方程的分母为零,也就是所谓的增根,所以切记一定要讨论。
【例2】取5张看上去无差别的卡片,分别在正面写上数字1,2,3,4,5,现把它们洗匀正面朝下,随机摆放在桌面上.从中任意抽出1张,记卡片上的数字为m,则数字m使分式方程﹣1=无解的概率为________.【答案】.【解答】解:由分式方程,得m=x(x+2)﹣(x﹣1)(x+2)x=1或﹣2时,分式方程无解,x=1时,m=2,x=﹣2时,m=0,所以在1,2,3,4,5取一个数字m使分式方程无解的概率为.招数三、已知分式方程解的范围求参数范围问题:明确告诉了解的范围,首先还是要按正常步骤解出方程,解中肯定带有参数,再根据解的范围求参数的范围,注意:最后一定要讨论增根的问题.【例3】已知关于x的分式方程=1的解是非正数,则m的取值范围是()A.m≤3B.m<3 C.m>﹣3 D.m≥﹣3【答案】A【解析】方程两边同乘以x﹣3,得2x﹣m=x﹣3,移项及合并同类项,得x=m﹣3,∵分式方程=1的解是非正数,x﹣3≠0,∴,解得,m≤3,故选:A.【例4】若关于x的分式方程=1的解是负数,求m的取值范围.【答案】m<2且m≠0.【解析】解:由=1,得(x+1)2-m=x2-1,解得x=-1+.由已知可得-1+<0,-1+≠1且-1+≠-1,解得m<2且m≠0.招数四、与其它方程或不等式结合求参数问题:【例5】关于x的两个方程260x x--=与213x m x=+-有一个解相同,则m= .【答案】﹣8.【解析】【例6】若数a使关于x的不等式组有且仅有三个整数解,且使关于y的分式方程﹣=﹣3的解为正数,则所有满足条件的整数a的值之和是()A.﹣3 B.﹣2 C.﹣1 D.1【答案】A【解析】由关于x的不等式组得∵有且仅有三个整数解,∴<x≤3,x=1,2,或3.∴,∴﹣<a<3;由关于y的分式方程﹣=﹣3得1﹣2y+a=﹣3(y﹣1),∴y=2﹣a,∵解为正数,且y=1为增根,∴a<2,且a≠1,∴﹣<a<2,且a≠1,∴所有满足条件的整数a的值为:﹣2,﹣1,0,其和为﹣3.故选:A .方法、规律归纳:1.按照基本步骤解分式方程时,关键是确定各分式的最简公分母,若分母为多项式时,应首先进行因式分解,将分式方程转化为整式方程,给分式方程乘最简公分母时,应对分式方程的每一项都乘以最简公分母,不能漏乘常数项;2.检验分式方程的根是否为增根,即分式方程的增根是去分母后整式方程的某个根,如果它使分式方程的最简公分母为0.则为增根. 增根问题可按如下步骤进行:①让最简公分母0,确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.3. 分式方程的增根和无解并非同一个概念,分式方程无解,可能是解为增根,也可能是去分母后的整式方程无解;分式方程的增根是去分母后整式方程的根,也是使分式方程的分母为0的根.实战演练:1.若关于x 的分式方程﹣1=有增根,则m 的值为______.【答案】3【解析】方程两边都乘(x ﹣2),得3x ﹣x+2=m+3∵原方程有增根,∴最简公分母(x ﹣2)=0,解得x =2,当x =2时,m =3.故答案为3.2.若关于x 的分式方程1322m x x x -=---有增根,则实数m 的值是 . 【答案】1.【解析】试题分析:去分母,得:13(2),m x x =---由分式方程有增根,得到20,x -= 即 2.x =把2x =代入整式方程可得: 1.m =故答案为:1.3. 若关于x 的分式方程=2a 无解,则a 的值为_____.【答案】1或【解析】解:去分母得:x-3a=2a(x-3),整理得:(1-2a)x=-3a,当1-2a=0时,方程无解,故a=;当1-2a≠0时,x==3时,分式方程无解,则a=1,故关于x的分式方程=2a无解,则a的值为:1或.故答案为:1或.4.已知关于x的分式方程﹣2=的解为正数,则k的取值范围为()A.﹣2<k<0 B.k>﹣2且k≠﹣1 C.k>﹣2 D.k<2且k≠1【答案】B【解析】∵=2,∴=2,∴x=2+k,∵该分式方程有解,∴2+k≠1,∴k≠﹣1,∵x>0,∴2+k>0,∴k>﹣2,∴k>﹣2且k≠﹣1,故选:B.5.已知关于x的方程无解,则a的值为_____________.【答案】-4或6或1【解析】由原方程得:2(x+2)+ax=3(x-2),整理得:(a-1)x=-10,(i)当a-1=0,即a=1时,原方程无解;(ii)当a-1≠0,原方程有增根x=±2,当x=2时,2(a-1)=-10,即a=-4;当x=-2时,-2(a-1)=-10,即a=6,即当a=1,-4或6时原方程无解.故答案为-4或6或16.关于x的方程﹣1=的解为正数,则k的取值范围是()A.k>﹣4 B.k<4 C.k>﹣4且k≠4D.k<4且k≠﹣4 【答案】C.【解析】分式方程去分母得:k﹣(2x﹣4)=2x,解得:x=,根据题意得:>0,且≠2,解得:k>﹣4,且k≠4.故选:C.7 . 若关于x的方程2230x x+-=与213x x a=+-有一个解相同,则a的值为()A.1 B.1或﹣3 C.﹣1 D.﹣1或3 【答案】C.【解析】解方程2230x x+-=,得:x1=1,x2=﹣3,∵x=﹣3是方程213x x a=+-的增根,∴当x=1时,代入方程213x x a=+-,得:21131a=+-,解得a=﹣1.故选C.8.若关于x的一元一次不等式组的解集是x≤a,且关于y的分式方程﹣=1有非负整数解,则符合条件的所有整数a的和为()A.0 B.1 C.4 D.6【答案】B【解析】由不等式组得:∵解集是x≤a,∴a<5;由关于y的分式方程﹣=1得2y﹣a+y﹣4=y﹣1∴y=,∵有非负整数解,∴≥0,∴a≥﹣3,且a=﹣3,a=﹣1(舍,此时分式方程为增根),a=1,a=3它们的和为-3+1+3=1.故选:B.9.已知关于x的不等式组有且只有四个整数解,又关于x的分式方程﹣2=有正数解,则满足条件的整数k的和为()A.5 B.6 C.7 D.8【答案】D【解析】解不等式-(4x+)<0,得:x>,解不等式﹣(x+2)+2≥0,得:x≤2,则不等式组的解集为<x≤2,∵不等式组有且只有四个整数解,∴﹣2≤<﹣1,解得:﹣3≤k<5;解分式方程-2=得:x=,∵分式方程有正数解,∴>0,且≠1,解得:k>﹣3且k≠﹣1,所以满足条件的整数k的值为﹣2、0、1、2、3、4,则满足条件的整数k的和为﹣2+0+1+2+3+4=8,故选:D.10.阅读下列材料:在学习“分式方程及其解法”过程中,老师提出一个问题:若关于x的分式方程的解为正数,求a的取值范围?经过小组交流讨论后,同学们逐渐形成了两种意见:小明说:解这个关于x的分式方程,得到方程的解为x=a﹣2.由题意可得a﹣2>0,所以a>2,问题解决.小强说:你考虑的不全面.还必须保证a≠3才行.老师说:小强所说完全正确.请回答:小明考虑问题不全面,主要体现在哪里?请你简要说明:.完成下列问题:(1)已知关于x的方程=1的解为负数,求m的取值范围;(2)若关于x的分式方程=﹣1无解.直接写出n的取值范围.【答案】(1):m<且m≠﹣;(2)n=1或n=.【解析】请回答:小明没有考虑分式的分母不为0(或分式必须有意义)这个条件;(1)解关于x的分式方程得,x=,∵方程有解,且解为负数,∴,解得:m<且m≠-;(2)分式方程去分母得:3-2x+nx-2=-x+3,即(n-1)x=2,由分式方程无解,得到x-3=0,即x=3,代入整式方程得:n=;当n-1=0时,整式方程无解,此时n=1,综上,n=1或n=.。
分式方程参数问题求分式方程中参数(字母系数)的取值范围的问题是一类非常重要的题目,在各类试题中出现频率较高,和解分式方程的题目相比,它更能考差学生思维的全面性和敏捷程度。
在此类题目中往往首先给出分式方程解的情况,让解题者作出逆向判断,从而确定参数的取值范围。
由于分式方程是先化成整式方程求解的,并且在去分母化简的过程中容易扩大未知数的范围,所以求出的参数的取值范围也就不准确了。
例1. 已知关于x 的分式方程132323-=--+--xmxx x 无解,求m 的值。
正解:将原方程化为整式方程,得:()21-=-x m , 因为原分式方程无解,所以()01=-m 或312=--m所以m=1或 m=35.辨析:产生错误的原因是只从字面意思来理解“无解”,认为“无解”就单单是解不出数来。
实际上,导致分式方程无解的原因有两个:①解不出数来,也就是整式方程无解;②解出的数不符合原方程,也就是整式方程虽然有解,但这个解能使最简公分母为零. 例2. 已知关于x 的分式方程323-=--x mx x 有一个正解,求m 的取值范围。
正解:将原方程化为整式方程,得:()m x x =--32∴m x -=6,∵原方程有解且是一个正解 ∴06>-m 且36≠-m ∴m 的取值范围是:m <6且m ≠3辨析:产生错误的原因是忽视了分式方程的解必须满足的条件:最简公分母不等于零。
误认为分式方程有一个正解就是整式方程有一个正解,从而简单处理了事。
实际上,题目隐含着一个重要的条件:x ≠3, 有一个正解并不表示所有的正数都是它的解,而表示它有一个解并且这个解是一个正数两层含义。
例3:已知关于x 的分式方程42212-=-+x m x x 的解也是不等式组()⎪⎩⎪⎨⎧-≤-->-832221x x x x的一个解,求m 的取值范围。
正解:解不等式组()⎪⎩⎪⎨⎧-≤-->-832221x x x x得:x ≤-2 将分式方程42212-=-+x m x x 化为整式方程,得:m x x x 2)2(42=+--解这个整式方程得:2--=m x ∴分式方程42212-=-+x mx x 的解为:2--=m x (其中m ≠0和-4) 由题意得:22-≤--m ,解得:0≥m ∴m 的取值范围是:m >0.辨析:产生错误的原因是忽视了分式方程的解必须满足的条件:最简公分母不等于零。