矩阵求导的一些公式
- 格式:doc
- 大小:32.00 KB
- 文档页数:2
对矩阵的迹求导对矩阵的迹求导矩阵是数学中重要的概念之一,它广泛地应用于各个领域中。
在矩阵运算中,对矩阵的迹求导是一个十分重要的问题。
本文将从矩阵、矩阵的迹以及对矩阵的迹求导等方面进行阐述和探讨。
一、矩阵的概念和运算矩阵是一个非常重要的数学概念,不仅涉及数学本身,还涉及到其他领域,如物理、化学、经济学、计算机科学等等。
矩阵可以看作是由数个数排成一排(称之为行)或一列(称之为列),比如:$$ \begin{bmatrix} 1 & 2 & 3\\ 4 & 5 & 6\\ 7 & 8 & 9 \end{bmatrix} $$其中包含了3行3列9个数,它被称为一个3x3的矩阵。
我们可以对矩阵进行加、减、乘等操作,其中加法和减法很容易理解,乘法有两种情形。
1. 矩阵与标量相乘给定一个标量k和一个矩阵A,我们可以定义矩阵与标量的乘法,即:$$ kA= \begin{bmatrix} ka_{11} & ka_{12} &\cdots & ka_{1n} \\ ka_{21} & ka_{22} & \cdots &ka_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ka_{m1} & ka_{m2} & \cdots & ka_{mn} \end{bmatrix} $$eg.$$ 3\cdot \begin{bmatrix} 1 & 2\\ 3 & 4\end{bmatrix} = \begin{bmatrix} 3 & 6\\ 9 & 12\end{bmatrix} $$2. 矩阵与矩阵相乘对于两个矩阵A和B,只有当A的列数与B的行数相同时,它们才可以相乘。
那么,它们的乘积C的定义为:$$ C_{i,j}=\sum_{k=1}^{m}A_{i,k}B_{k,j} $$其中,m表示A和B中的矩阵元素的数量。
矩阵函数求导首先要区分两个概念:矩阵函数和函数矩阵(1) 函数矩阵,简单地说就是多个一般函数的阵列,包括单变量和多变量函数。
函数矩阵的求导和积分是作用在各个矩阵元素上,没有更多的规则。
单变量函数矩阵的微分与积分考虑实变量t 的实函数矩阵()()()ij m n X t x t ×=,所有分量函数()ij x t 定义域相同。
定义函数矩阵的微分与积分0()(),()().t t ij ij t t d d X t x t X d x d dx dx ττττ⎛⎞⎛⎞⎟⎜⎟⎜⎟==⎜⎟⎜⎟⎟⎜⎜⎟⎝⎠⎝⎠∫∫ 函数矩阵的微分有以下性质:(1) ()()()()()d d d X t Y t X t t dt dt dt+=+; (2) ()()()()()()()d dX t dY t X t Y t t X t dt dt dt=+; 特殊情形(a ) 若K 是常数矩阵,则()()()d d KX t K X t dt dt=; (b ) 若()X t 是方阵,则2()()()()()d dX t dX t X t X t X t dt dt dt=+; (3) ()111()()()()d dX t X t X t X t dt dt =----; (4) 对任意的方阵A 和时变量t ,恒有At At At d e Ae e A dt==; (5) 若AB BA =,则A B B A A B e e e e e +==。
如果,A B 可交换,则许多三角不等式可以推广到矩阵上。
如sin(),sin(2)A b A +等。
参考文献:余鄂西,矩阵论,高等教育出版社。
(2) 矩阵函数,就是自变量为矩阵的函数映射;根据函数的自变量和因变量的形式可分为多种。
矩阵函数的导数定义(向量导数):映射:n m f →\\,()()12(),(),,()(), 1...T m i f f x f x f x f x i m ===",定义映射的导数为一个m n ×的偏导数矩阵 (), 1..., 1...i ij j df x Df i m j n dx ⎡⎤===⎢⎥⎣⎦. 例如 dAx A dx=, ⇒()()()(),,D f x g x Df x Dg x αβαβαβ⎡⎤+=+∈∈⎢⎥⎣⎦\\()()''()()()D f g x f g x g x ⎡⎤=⎢⎥⎣⎦''()()()()()(),,T T T n m D f x g x g x f x f x g x f g ⎡⎤=+∈→⎢⎥⎣⎦\\ ⇒()()T T T T T dx Ax x A Ax x A A dx=+=+定义(矩阵导数):()vec ()()vec()d A X dA X dX d X 有符号说明•d/dx (y)是一个向量,其第(i)个元素是dy(i)/dx•d/d x (y) 是一个向量,其第(i)个元素是dy/dx(i)•d/d x (y T) 是一个矩阵,其第(i,j)个元素是dy(j)/dx(i)•d/dx (Y) 是一个矩阵,其第(i,j)个元素是dy(i,j)/dx •d/d X (y) 是一个矩阵,其第(i,j)个元素是dy/dx(i,j)注意 Hermitian 转置不能应用,因为复共轭不可解析,x,y是向量,X,Y是矩阵,x,y是标量。
2×2矩阵求导法则矩阵求导法则矩阵求导应该分为标量求导、向量求导、矩阵求导三个方面来介绍,公式繁多,但仔细看看其实是有规律可循的。
标量求导无论是矩阵、向量对标量求导,或者是标量对矩阵、向量求导,其结论都是一样的:等价于对矩阵(向量)的每个分量求导,并且保持维数不变。
例如,我们可以计算标量对向量求导:设yy为一个元素,xT=[x1~xq]xT=[x1~xq]是qq维行向量,则:∂y∂xT=[∂y∂x1~∂y∂xq]∂y∂xT=[∂y∂x1~∂y∂xq]向量求导对于向量求导,我们可以先将向量看做一个标量,然后使用标量求导法则,最后将向量形式化为标量进行。
例如,我们可以计算行向量对列向量求导:设yT=[y1~yn]yT=[y1~yn]是nn维行向量,x=[x1,~,xp]x=[x1,~,xp]是pp维列向量,则:∂yT∂x==[∂y1∂x~∂yn∂x]⎡⎡⎡⎡⎡∂y1∂x1~∂y1∂xp~~~∂yn∂x1~∂yn∂xp⎡⎡⎡⎡⎡∂yT∂x=[∂y1∂x~∂yn∂x]=[∂y1∂x1~∂yn∂x1~~~∂y1∂xp~∂yn∂xp]矩阵求导与向量求导类似,先将矩阵化当做一个标量,再使用标量对矩阵的运算进行。
例如,我们可以计算矩阵对列向量求导:设Y=⎡⎡⎡y11~ym1~~~y1n~ymn⎡⎡⎡Y=[y11~y1n~~~ym1~ymn]是m×nm×n矩阵,x=[x1,~,xp]x=[x1,~,xp]是pp维列向量,则:∂Y∂x=[∂Y∂x1,~,∂Y∂xp]∂Y∂x=[∂Y∂x1,~,∂Y∂xp]矩阵微积分常见求导性质实值函数相对于实向量的梯度设f(x)=x=[x1,~,xn]Tf(x)=x=[x1,~,xn]T∂f(x)∂xT=∂x∂xT=In×n∂f(x)∂xT=∂x∂xT=In×n∂(f(x))T∂x=∂xT∂x=In×n∂(f(x))T∂x=∂xT∂x=In×n∂f(x)∂x=∂x∂x=vec(In×n)∂f(x)∂x=∂x∂x=vec(In×n)∂(f(x))T∂xT=∂xT∂xT=vec(In×n)T∂(f(x))T∂xT=∂xT∂xT=vec(In×n)T其中,vecvec表示向量化矩阵,按列将矩阵表示为向量,具体可见Wikipedia。
转载]矩阵求导公式【转】(2011-11-15 11:03:34)转载▼标签:转载原文地址:矩阵求导公式【转】作者:三寅今天推导公式,发现居然有对矩阵的求导,狂汗--完全不会。
不过还好网上有人总结了。
吼吼,赶紧搬过来收藏备份。
基本公式:Y = A * X --> DY/DX = A'Y = X * A --> DY/DX = AY = A' * X * B --> DY/DX = A * B'Y = A' * X' * B --> DY/DX = B * A'1. 矩阵Y对标量x求导:相当于每个元素求导数后转置一下,注意M×N矩阵求导后变成N×M了Y = [y(ij)] --> dY/dx = [dy(ji)/dx]2. 标量y对列向量X求导:注意与上面不同,这次括号内是求偏导,不转置,对N×1向量求导后还是N×1向量y = f(x1,x2,..,xn) --> dy/dX = (Dy/Dx1,Dy/Dx2,..,Dy/Dxn)'3. 行向量Y'对列向量X求导:注意1×M向量对N×1向量求导后是N×M矩阵。
将Y的每一列对X求偏导,将各列构成一个矩阵。
重要结论:dX'/dX = Id(AX)'/dX = A'4. 列向量Y对行向量X’求导:转化为行向量Y’对列向量X的导数,然后转置。
注意M×1向量对1×N向量求导结果为M×N矩阵。
dY/dX' = (dY'/dX)'5. 向量积对列向量X求导运算法则:注意与标量求导有点不同。
d(UV')/dX = (dU/dX)V' + U(dV'/dX)d(U'V)/dX = (dU'/dX)V + (dV'/dX)U'重要结论:d(X'A)/dX = (dX'/dX)A + (dA/dX)X' = IA + 0X' = Ad(AX)/dX' = (d(X'A')/dX)' = (A')' = Ad(X'AX)/dX = (dX'/dX)AX + (d(AX)'/dX)X = AX + A'X6. 矩阵Y对列向量X求导:将Y对X的每一个分量求偏导,构成一个超向量。
方向余弦矩阵求导一、引言方向余弦矩阵是描述一个坐标系相对于另一个坐标系的旋转关系的重要工具。
在机器人学、导航等领域中,方向余弦矩阵被广泛应用。
本文将介绍方向余弦矩阵的求导方法。
二、方向余弦矩阵1. 定义方向余弦矩阵是描述两个坐标系之间旋转关系的矩阵,通常记作C,其元素为cosine值。
例如,Cij表示第i个轴在第j个轴上的cosine 值。
2. 性质方向余弦矩阵具有以下性质:(1)正交性:C*C^T=I,其中I为单位矩阵。
(2)行列式为1:det(C)=1。
(3)逆矩阵等于转置:C^-1=C^T。
3. 求解方法求解方向余弦矩阵的方法有多种,其中最常用的是欧拉角法和四元数法。
这里不再赘述。
三、方向余弦矩阵求导1. 求导公式在机器人学和导航等领域中,需要对方向余弦矩阵进行求导。
下面给出求解dC/dt的公式:dC/dt=[ω]×C其中,[ω]表示角速度向量的斜对称矩阵,即[ω]=| 0 -ωz ωy || ωz 0 -ωx ||-ωy ωx 0 |2. 推导过程推导过程如下:设旋转矩阵为R(t),则其微小变化可以表示为:dR=R(t+dt)-R(t)由于R是正交矩阵,因此有:dR^T=-dR即(R+dR)^T=R^T-dR^T两边同时左乘R,得到:RR^T=(R+dR)(R+dR)^T=R(R^T-dR^T)(R+dR)^T=RR^T-dRR^T-dRR^T+d(dRR^T)因为dRR^T是一个二阶小量,可以忽略。
因此有:dRR^T=-d(dRR^T)我们要求的是旋转矩阵的微分dC/dt。
由于C=RR^-1,因此有:dC=d(RR^-1)/dt=d(R^-1)/dt R+ R d(R^-1)/dt根据导数的定义和上面推导出来的式子,可以得到:d(R^-1)/dt=-[ω]×(R^-1)将上面两个式子带入到原式中,得到:dC/dt=[ω]×(CR)由于C是正交矩阵,因此有:dC/dt=[ω]×C四、总结本文介绍了方向余弦矩阵的定义、性质和求解方法,并给出了方向余弦矩阵求导的公式和推导过程。
对行列式求导
行列式是矩阵的一个重要性质,它在数学中有着广泛的应用。
在求解一些问题时,需要对行列式进行求导,以便得到更加精确的结果。
对于一个n阶行列式,其求导可以通过以下公式进行计算:
d(det(A))/dx = det(A) * tr(A^-1 * dA/dx)
其中,A为n阶方阵,tr表示矩阵的迹,^-1表示矩阵的逆。
这个公式的意义是,求导后的行列式等于原行列式乘以一个矩阵的迹,这个矩阵是原矩阵的逆矩阵和原矩阵对x的偏导数的乘积。
对于二阶行列式而言,其求导公式就变成了:
d(det(A))/dx = (a11*a22 - a12*a21)*(da11/dx*a22 +
a11*dA22/dx - da12/dx*a21 - a12*da21/dx)
其中,a11、a12、a21、a22表示二阶矩阵A的四个元素。
需要注意的是,行列式的求导需要一定的数学基础,且计算过程可能会比较复杂,需要耐心和细心。
但是,求导的结果能够为后续的计算提供更加精确的数据,因此对于需要精确计算的问题而言,行列式的求导是非常重要的。
- 1 -。
矩阵求导的链式法则一、引言矩阵求导是数学中的重要概念,广泛应用于各个领域,如机器学习、优化等。
在矩阵求导的过程中,链式法则是一种常用且强大的工具,用于求解复合函数的导数。
本文将详细介绍矩阵求导的链式法则,并探讨其在实际问题中的应用。
二、矩阵求导的基本概念在进一步了解矩阵求导的链式法则之前,首先需要了解矩阵求导的基本概念。
对于一个矩阵函数,我们可以将其看作是一个将矩阵映射到矩阵的函数。
假设有一个矩阵函数f:ℝm×n→ℝp×q,我们希望求解其导数∂f∂X ,其中X∈ℝm×n。
矩阵求导的目标是找到一个与X同维度的矩阵,使得该矩阵的元素分别是f对X中相应元素的导数。
三、链式法则的概念链式法则是微积分中的一条基本规则,用于计算复合函数的导数。
对于多个函数的复合,链式法则告诉我们如何求解复合函数的导数。
在矩阵求导中,链式法则同样适用,并且可以帮助我们简化复杂函数的导数计算。
链式法则的基本形式如下:∂f(g(X))∂X =∂f(g(X))∂g(X)⋅∂g(X)∂X其中,f和g分别是函数,X是自变量。
该公式表明,要计算复合函数f(g(X))对X的导数,可以先计算f对g(X)的导数,再乘以g(X)对X的导数。
四、矩阵求导的链式法则推导接下来,我们将推导矩阵求导的链式法则。
假设有两个矩阵函数F:ℝm×n→ℝp×q 和G:ℝp×q→ℝr×s,我们希望求解复合函数H=G(F(X))对X的导数。
根据链式法则,可以得到如下的推导过程:1.首先,计算复合函数H对X的导数:∂H ∂X =∂G(F(X))∂X2.根据链式法则,将复合函数拆分为两个部分:∂G(F(X))∂X =∂G(F(X))∂F(X)⋅∂F(X)∂X3.计算导数的乘积项:–计算∂G(F(X))∂F(X):根据矩阵求导的定义,可以逐元素地计算G对F(X)的导数。
–计算∂F(X)∂X:同样地,根据矩阵求导的定义,可以逐元素地计算F 对X的导数。
旋转矩阵的导数公式(一)旋转矩阵的导数公式1. 旋转矩阵的定义旋转矩阵是一种表示二维或三维旋转变换的矩阵。
在二维情况下,旋转矩阵是一个2x2矩阵,而在三维情况下,旋转矩阵是一个3x3矩阵。
一般来说,旋转矩阵可以通过角度来定义,例如在二维情况下:R(theta) = [cos(theta) -sin(theta)][sin(theta) cos(theta)]其中theta表示旋转角度。
2. 旋转矩阵的导数公式在矩阵求导的过程中,旋转矩阵的导数公式是非常有用的。
根据这些公式,我们可以更方便地计算旋转矩阵的导数。
二维情况下的旋转矩阵导数公式二维情况下,旋转矩阵的导数公式如下:dR(theta)/dtheta = [-sin(theta) -cos(theta)][ cos(theta) -sin(theta)]这个公式表示,在二维旋转中,旋转矩阵关于旋转角度的导数等于一个特殊的矩阵。
三维情况下的旋转矩阵导数公式三维情况下,旋转矩阵的导数公式具有一定的复杂性,但也可以通过一个简洁的形式给出。
假设旋转矩阵为R,对应的旋转向量为omega,则旋转矩阵的导数公式如下:dR/dtheta = J(omega)其中J(omega)表示一个特殊的3x3矩阵,被称为旋转矩阵的“雅可比矩阵”。
3. 公式应用举例二维旋转矩阵导数公式应用假设我们有一个二维的旋转变换,其旋转角度为theta = pi/4,则根据二维情况下的旋转矩阵导数公式,可以得到:dR(theta)/dtheta = [-sin(theta) -cos(theta)][ cos(theta) -sin(theta)]dR(pi/4)/dtheta = [-sin(pi/4) -cos(pi/4)][ cos(pi/4) -sin(pi/4)]= [-1/sqrt(2) -1/sqrt(2)][ 1/sqrt(2) -1/sqrt(2)]这样,我们就得到了旋转角度为pi/4时,二维旋转矩阵关于旋转角度的导数。
基本求导公式、矩阵公式、数学建模1.基本求导公式⑴ 0)(='C (C 为常数)⑵ 1)(-='n nnxx ;一般地,1)(-='αααxx 。
特别地:1)(='x ,x x 2)(2=',21)1(x x -=',xx 21)(='。
⑶ x x e e =')(;一般地,)1,0( ln )(≠>='a a a a a xx 。
⑷ x x 1)(ln =';一般地,)1,0( ln 1)(log ≠>='a a ax x a 。
2.求导法则 ⑴ 四则运算法则设f (x ),g (x )均在点x可导,则有:(Ⅰ))()())()((x g x f x g x f '±'='±; (Ⅱ))()()()())()((x g x f x g x f x g x f '+'=',特别)())((x f C x Cf '='(C 为常数); (Ⅲ))0)(( ,)()()()()())()((2≠'-'='x g x g x g x f x g x f x g x f ,特别21()()()()g x g x g x ''=-。
3.微分 函数()y f x =在点x处的微分:()dy y dx f x dx ''== 4、 常用的不定积分公式(1) ⎰⎰⎰⎰⎰+==+=+=-≠++=+c x dx x x dx x c x xdx c x dx C x dx x 43,2,),1( 11433221αααα; (2) C x dx x+=⎰||ln 1; C e dx e x x +=⎰;)1,0( ln ≠>+=⎰a a C a a dx a xx;(3)⎰⎰=dx x f k dx x kf )()((k 为常数) 5、定积分()()|()()bb a af x dx F x F b F a ==-⎰⑴⎰⎰⎰+=+bab abadx x g k dx x f k dx x g k x f k )()()]()([2121⑵ 分部积分法设u (x ),v(x )在[a,b]上具有连续导数)(),(x v x u '',则⎰⎰-=bab abax du x v x v x u x dv x u )()()()()()(6、线性代数 特殊矩阵的概念(1)、零矩阵 ,000022⎥⎦⎤⎢⎣⎡=⨯O (2)、单位矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=100010001 n I 二阶,100122⎥⎦⎤⎢⎣⎡=⨯I (3)、对角矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n a a a A 000000021 (4)、对称矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---==752531212,A a a ji ij (5)、上三角形矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n n a a a a a a A 000022211211 下三角形矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n a a a A 000000021 (6)、矩阵转置⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n n n n a a a a a a a a a A 212222111211转置后⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n nn n T a a a a a a a a a A 2122212121116、矩阵运算 ⎥⎦⎤⎢⎣⎡++++=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=+h d g c f b e a h g f ed c b a B A ⎥⎦⎤⎢⎣⎡++++=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=dh cf dg ce bh af bg ae h gf ed c b a AB 7、MA TLA B软件计算题例6 试写出用M ATLA B软件求函数)e ln(2x x x y ++=的二阶导数y ''的命令语句。
多元函数矩阵求导
多元函数的矩阵求导是微积分中的一个重要内容,它涉及到矩
阵的偏导数和梯度等概念。
首先,我们来看多元函数的梯度。
对于
一个多元函数,如果其自变量是一个n维向量,因变量是一个标量,那么这个函数的梯度就是一个n维向量,其中每个分量分别是函数
对自变量的偏导数。
假设有一个多元函数f(x1, x2, ..., xn),那
么它的梯度可以表示为∇f = [∂f/∂x1, ∂f/∂x2, ...,
∂f/∂xn]。
这里∂f/∂xi表示函数f对自变量xi的偏导数。
接下来我们来看矩阵的求导。
对于一个矩阵函数F(X),其中X
是一个矩阵,我们可以对其进行求导。
如果F(X)的每个元素都是关
于X的函数,那么F(X)的导数就是一个与X同型的矩阵,其中每个
元素是对应元素的偏导数。
具体来说,如果F(X)是一个m×n的矩
阵函数,那么它的导数就是一个m×n的矩阵,其中第i行第j列的
元素是∂Fij/∂Xkl,其中k是第i行,l是第j列。
在实际应用中,多元函数的矩阵求导常常用于优化问题、机器
学习和深度学习等领域。
通过对多元函数的梯度和矩阵的导数进行
求解和分析,可以帮助我们理解函数的变化规律,并且为优化算法
的设计提供重要的数学基础。
在深度学习中,梯度下降法等优化算
法的实现也离不开对多元函数的矩阵求导。
总之,多元函数的矩阵求导是一项重要且复杂的数学工作,它在实际问题中有着广泛的应用,并且对于理解和解决实际问题具有重要意义。
希望我的回答能够帮助你更好地理解这一内容。
在网上看到有人贴了如下求导公式:
Y = A * X --> DY/DX = A'
Y = X * A --> DY/DX = A
Y = A' * X * B --> DY/DX = A * B'
Y = A' * X' * B --> DY/DX = B * A'
于是把以前学过的矩阵求导部分整理一下:
1. 矩阵Y对标量x求导:
相当于每个元素求导数后转置一下,注意M×N矩阵求导后变成N×M了
Y = [y(ij)] --> dY/dx = [dy(ji)/dx]
2. 标量y对列向量X求导:
注意与上面不同,这次括号内是求偏导,不转置,对N×1向量求导后还是N×1向量
y = f(x1,x2,..,xn) --> dy/dX = (Dy/Dx1,Dy/Dx2,..,Dy/Dxn)'
3. 行向量Y'对列向量X求导:
注意1×M向量对N×1向量求导后是N×M矩阵。
将Y的每一列对X求偏导,将各列构成一个矩阵。
重要结论:
dX'/dX = I
d(AX)'/dX = A'
4. 列向量Y对行向量X’求导:
转化为行向量Y’对列向量X的导数,然后转置。
注意M×1向量对1×N向量求导结果为M×N矩阵。
dY/dX' = (dY'/dX)'
5. 向量积对列向量X求导运算法则:
注意与标量求导有点不同。
d(UV')/dX = (dU/dX)V' + U(dV'/dX)
d(U'V)/dX = (dU'/dX)V + (dV'/dX)U'
重要结论:
d(X'A)/dX = (dX'/dX)A + (dA/dX)X' = IA + 0X' = A
d(AX)/dX' = (d(X'A')/dX)' = (A')' = A
d(X'AX)/dX = (dX'/dX)AX + (d(AX)'/dX)X = AX + A'X
6. 矩阵Y对列向量X求导:
将Y对X的每一个分量求偏导,构成一个超向量。
注意该向量的每一个元素都是一个矩阵。
7. 矩阵积对列向量求导法则:
d(uV)/dX = (du/dX)V + u(dV/dX)
d(UV)/dX = (dU/dX)V + U(dV/dX)
重要结论:
d(X'A)/dX = (dX'/dX)A + X'(dA/dX) = IA + X'0 = A
8. 标量y对矩阵X的导数:
类似标量y对列向量X的导数,
把y对每个X的元素求偏导,不用转置。
dy/dX = [ Dy/Dx(ij) ]
重要结论:
y = U'XV = ΣΣu(i)x(ij)v(j) 于是dy/dX = = UV'
y = U'X'XU 则dy/dX = 2XUU'
y = (XU-V)'(XU-V) 则dy/dX = d(U'X'XU - 2V'XU + V'V)/dX = 2XUU' - 2VU' + 0 = 2(XU-V)U'
9. 矩阵Y对矩阵X的导数:
将Y的每个元素对X求导,然后排在一起形成超级矩阵。
无关善良
天不太好,冷冷的风,凉凉的夜,凄凄的雨,陌陌的路,寂寞的路灯,清冷的街道,还有那个独行的人、、、、、、
回忆总是很厚重,一个广告画面,一句歌词,一个表情,总能让人陷入深深的回忆,放不下的,不仅仅有甜的,还有苦的。
越长大,眷恋越多,开始学着去放弃,放弃曾经坚守的美好,放弃你不舍得放弃的东西,开始评价他人,自己都觉得话语刻薄,开始无视情感,别人都看你不忍心,越来越觉得,别人越来越善良,而自己,离这个癖好越来越远。
所以,越长大,越孤单、、、、、、。